[1] Bank S, Kaufman R. An extension of Hölder's theorem concerning the Γ-function. Funkcial Ekvac, 1976, 19:53-63 [2] Chiang Y M, Feng S J. Difference independence of the Riemann ζ-function. Acta Arithmetica, 2006, 4(125):317-329 [3] Gross F, Osgood C F. A generalization of the nielson-holder theorem about Γ(z). Complex Variables, Theory and Application:An International Journal, 1998, 37:243-250 [4] Han Q, Liu J B. Algebraic differential independence regarding the Euler Γ-function and the Riemann ζ-function. J Number Theory, https://doi.org/10.1016/j.jnt.2019.12.006 [5] Hausdorff F. Zum Hölderschen Satzüber ζ(z). Math Ann, 1925, 94:244-247 [6] Hilbert D, Mathematische probleme. Arch Math Phys, 1901, 63(44):213-317 [7] Hilbert D. Mathematical problems. Bull Amer Math Soc (NS), 2000, 37(4):407-436 [8] Hölder O. Uber die Eigenschaft der Γ-Function, keiner algebraischen ¨ Differentialgleichung zu genügen. Math Ann, 1887, 28:1-13 [9] Karatsuba A A, Voronin S M. The Riemann ζ-Function. Berlin:Walter de Gruyter, 1992 [10] Laine I. Nevanlinna Theory and Complex Differential Equations. Berlin:Walter de Gruyter, 1993 [11] Li B Q, Ye Z. Algebraic differential equations with functional coefficients concerning ζ and Γ. J Differential Equations, 2016, 260:1456-1464 [12] Li B Q, Ye Z. On differential independence of the Riemann ζ-function and the Eulergamma function. Acta Arith, 2008, 135(4):333-337 [13] Li B Q, Ye Z. Algebraic differential equations concerning the Riemann ζ-function and the Euler gamma function. Indiana Univ Math J, 2010, 59:1405-1415 [14] Li B Q, Ye Z. On algebraic differential properties of the Riemann ζ-function and the Euler Γ-function. Complex Var Elliptic Equ, 2011, 56:137-145 [15] Liao L, Yang C C. On some new properties of the gamma function and the Riemann ζ-function. Math Nachr, 2003, 257:59-66 [16] Liao L, Ye Z. The Lang-type of the Riemann ζ-function. Complex Variables Elliptic Equations, 2006, 51:239-241 [17] Lü F. A study on algebraic differential equationd of gamma function and dirichlet series. J Math Anal Appl, 2018, 462(2):1195-1204 [18] Lü F. On algebraic differential equations for the gamma function and L functions in the extended Selberg class. Bulletin of the Australian Mathematical Society, 2017, 96:36-43 [19] Markus L. Differential independence of Γ and ζ. J Dynam Differential Equations, 2007, 19:133-154 [20] Mijajlovic Z, Malesevic B. Differentially transcendental functions. Bull Belg Math Soc Simon Stevin, 2008, 15:193-201 [21] Mordykhai B. D. On hypertranscendence of the function ξ(x, s). Izv Politekh Inst Warsaw, 1914, 2:1-16 [22] Moore E. Concerning transcendentally transcendental functions. Math Ann, 1897, 48:49-74 [23] Nevanlinna R. Analytic Functions. Berlin:Springer, 1970 [24] Ostrowski A. Uber Dirichletsche Reihen und algebraische Differentialgl ¨ eichungen. Math Z, 1920, 8:241-298 [25] Ostrowski A. Neuer Beweis des Hölderschen Satzes, daβ die Gammafunktion keiner algebraischen Differentialgleichung genügt. Mathematische Annalen, 1918, 79:286-288 [26] Ostrowski A. Zum Hölderschen Satz über Γ(z). Math Annalen, 1925, 94:248-251 [27] Stadigh V E E, Ein Satzüber Funktionen, die algebraische Differentialgleichungen befriedigen, under die Eigenschaft der Funktion ζ(s) keiner solchen Gleichung zu genügen. Diss Frenckell Dr, 1902 [28] Steuding J. Value Distribution of L-Functions//Lecture Notes in Math. Vol 1877. Berlin:Springer-Verlag, 2007 [29] Titchmarsh E. The Theory of Functions. 2nd edition. Oxford Univ Press, 1968 [30] Voronin S M. On the functional independence of Dirichlet L-functions. Acta Arith, 1975, 27:493-503 [31] Voronin S M. On differential independence of ζ functions. Soviet Math Dokl, 1973, 14:607-609 [32] Voronin S M. The distribution of the nonzero values of the Riemann ζ-function. Trudy Mat Inst Steklov, 1972, 128:131-150 |