[1] Bank S, Kaufman R. An extension of Hölders theorem concerning the Gamma function. Funkcial Ekvac, 1976, 19:53-63 [2] Cimpoea M, Nicolae F. Independence of Artin L-functions. Forum Mathematicum, 2019, 31(2):529-534 [3] Chiang Y M, Feng S J. Difference independence of the Riemann zeta function. Acta Arithmetica, 2006, 125(4):317-329 [4] Gross F, Osgood C F. A generalization of the nielson-holder theorem about Γ(z). Complex Variables Theory and Application:An International Journal, 1998, 37:243-250 [5] Han Q. Liu J B, Wang Q Y, et al. algebraic differential independence regarding the Euler Γ function and the riemann ζ function. arXIV:1811.04188v1 [6] Han Q, Liu J B. On differrntial independence of ζ and Γ. arXIV:1811.09336v2 [7] Hausdorff F. Zum Hölderschen Satz über ζ(z). Math Ann, 1925, 94:244-247 [8] Hilbert D. Mathematische probleme. Arch Math Phys, 1901, 63(44):213-317 [9] Hilbert D. Mathematical problems. Bull Amer Math Soc (NS), 2000, 37(4):407-436 [10] Hölder O. Über die Eigenschaft der Γ-Function, keiner algebraischen Differentialgleichung zu genügen. Math Ann, 1887, 28:1-13 [11] Karatsuba A A, Voronin S M. The Riemann Zeta Function. Berlin:Walter de Gruyter, 1992 [12] Laine I. Nevanlinna Theory and Complex Differential Equations. Berlin:Walter de Gruyter, 1993 [13] Li B Q, Ye Z. Algebraic differential equations with functional coefficients concerning ζ and Γ. J Differential Equations, 2016, 260:1456-1464 [14] Li B Q, Ye Z. On differential independence of the Riemann zetafunction and the Eulergamma function. Acta Arith, 2008, 135(4):333-337 [15] Li B Q, Ye Z. Algebraic differential equations concerning the Riemann zeta function and the Euler gamma function. Indiana Univ Math J, 2010, 59:1405-1415 [16] Li B Q, Ye Z. On algebraic differential properties of the Riemann ζ-function and the Euler Γ-function. Complex Var Elliptic Equ, 2011, 56:137-145 [17] Liao L W, Yang C C. On some new properties of the gamma function and the Riemann zeta function. Math Nachr, 2003, 257:59-66 [18] Lü F. A study on algebraic differential equationd of gamma function and dirichlet series. J Math Anal Appl, 2018, 462(2):1195-1204 [19] Lü F. On algebraic differential equations for the gamma function and L-functions in the extendeded selberg class. Bulletin of the Australian Mathematical Society, 2017, 96:36-43 [20] Markus L. Differential independence of Γ and ζ. J Dynam Differential Equations, 2007, 19:133-154 [21] Mijajlovic Z, Malesevic B. Differentially transcendental functions. Bull Belg Math Soc Simon Stevin, 2008, 15:193-201 [22] Boltovskoi D M. On hypertranscendence of the function ξ(x, s). Izv Politekh Inst Warsaw, 1914, 2:1-16 [23] Moore E. Concerning transcendentally transcendental functions. Math Ann, 1897, 48:49-74 [24] Nevanlinna R. Analytic Functions. Berlin:Springer, 1970 [25] Ostrowski A. Über Dirichletsche Reihen und algebraische Differentialgl eichungen. Math Z, 1920, 8:241-298 [26] Ostrowski A. Neuer Beweis des Hölderschen Satzes, daβ die Gammafunktion keiner algebraischen Differentialgleichung genügt. Mathematische Annalen, 1918, 79:286-288 [27] Ostrowski A. Zum Hölderschen Satz über Γ(z). Math Annalen, 1925, 94:248-251 [28] Stadigh V E E. Ein Satz über Funktionen, die algebraische Differentialgleichungen befriedigen, und ber die Eigenschaft der Funktion ζ(s) keiner solchen Gleichung zu genügen. Diss Frenckell Dr, 1902 [29] Steuding J. Value Distribution of L-Functions. Berlin:Springer-Verlag, 2007 [30] Titchmarsh E. The Theory of Functions. 2nd ed. Oxford Univ Press, 1968 [31] Voronin S M. On the functional independence of Dirichlet L-functions. Acta Arith, 1975, 27:493-503 [32] Voronin S M. On differential independence of ζ functions. Soviet Math Dokl, 1973, 14:607-609 |