[1] Alashti R A, Khorsand M, Tarahhomi M H. Thermo-elastic analysis of a functionally graded spherical shell with piezoelectric layers by differential quadrature method. Scientia Iranica B, 2013, 20:109-119 [2] Benaissa H, Essoufi El-H, Fakhar R. Existence results for unilateral contact problem with friction of thermo electro-elasticity. Appl Math Mech, 2015, 36:911-926 [3] Benaissa H, Essoufi El-H, Fakhar R. Variational analysis of a thermo-piezoelectric contact problem with friction. J Adv Res Appl Math, 2015, 7:52-75 [4] Chau O, Oujja R, Rochdi M. A mathematical analysis of a dynamical frictional contact model in thermoviscoelasticity. Disc Cont Dyn Systems, Ser S, 2008, 1:61-70 [5] Clarke F H. Optimization and Nonsmooth Analysis. New York:Wiley-Interscience, 1983 [6] Denkowski Z, Migórski S, Papageorgiou N S. An Introduction to Nonlinear Analysis:Applications. New York:Kluwer/Plenum, 2003 [7] Denkowski Z, Migórski S, Hemivariational inequalities in thermoviscoelasticity. Nonlinear Anal, 2005, 63:87-97 [8] Denkowski Z, Migórski S. A system of evolution hemivariational inequalities modeling thermoviscoelastic frictional contact. Nonlinear Anal, 2005, 60:1415-1441 [9] Ikeda T. Fundamentals of Piezoelectricity. Oxford:Oxford University Press, 1990 [10] Hadjiloizi D A, Georgiades A V, Kalamkarov A L, Jothi S. Micromechanical modeling of piezo-magnetothermo-elastic composite structures:Part Ⅱ applications. European J Mech A/Solids, 2013, 39:313-327 [11] Han W, Sofonea M. Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. Providence, RI:Amer Math Soc, International Press, 2002 [12] Migorski S. A class of hemivariational inequalities for electroelastic contact problems with slip dependent friction. Disc Contin Dyn Syst Ser S, 2008, 1:117-126 [13] Migorski S. Dynamic hemivariational inequality modeling viscoelastic contact problem with normal damped response and friction. Appl Anal, 2005, 84:669-699 [14] Migórski S, Ochal A. Boundary hemivariational inequality of parabolic type. Nonlinear Anal, 2004, 57:579-596 [15] Migorski S, Ochal A, Sofonea M. A dynamic frictinal contact problem for piezoelectric materials. J Math Anal Appl, 2010, 361:161-176 [16] Migorski S, Ochal A, Sofonea M. Variational analysis of fully coupled electro-elastic frictional contact problems. Math Nach, 2010, 283:1314-1335 [17] Migorski S, Ochal A, Sofonea M. Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems. Advances in Mechanics and Mathematics, Vol 26. New York:Springer, 2013 [18] Migorski S, Ochal A, Sofonea M. Integrodifferential hemivariational inequalities with applications to viscoelastic frictional contact. Math Model Meth Appl Sci, 2008, 18:271-290 [19] Migorski S, Ochal A. A unified approach to dynamic contact problems in viscoelasticity. J Elasticity, 2006, 83:247-275 [20] Migorski S, Ochal A, Sofonea M. Integrodifferential hemivariational inequalities with applications to viscoelastic frictional contact. Math Model Methods Appl Sci, 2008, 18:271-290 [21] Migorski S, Szafraniec P. A class of dynamic frictional contact problems governed by a system of hemivariational inqualities in thermoviscoelasticity. Nonlinear Anal:RWA, 2014, 15:158-171 [22] Migorski S, Ochal A. Dynamic bilateral contact problem for viscoelastic piezoelectric material with adhesion. Nonlinear Anal, 2008, 69:495-509 [23] Naniewicz Z, Panagiotopoulos P D. Mathematical Theory of Hemivariational Inequalities and Applications. New York, Basel, Hong Kong:Marcel Dekker, Inc, 1995 [24] Panagiotopoulos P D. Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions. Basel:Birkhäuser, 1985 [25] Panagiotopoulos P D. Hemivariational Inequalities, Applications in Mechanics and Engineering. Berlin:Springer-Verlag, 1993 [26] Sofonea M, Essoufi El H. A piezoelectric contact problem with slip dependent coefficient of friction. Math Model Anal, 2004, 9:229-242 [27] Yang J, Yang J S. Introduction to the Theory of Piezoelectricity. New York:Springer, 2005 [28] Yao W, Qiu L. A dynamic quasistatic contact problem for viscoelastic materials with friction and damage. Appl Math Sci, 2012, 6:5801-5810 [29] Zeidler E. Nonlinear Functional Analysis and Applications Ⅱ A/B. New York:Springer, 1990 |