数学物理学报(英文版) ›› 2019, Vol. 39 ›› Issue (6): 1619-1627.doi: 10.1007/s10473-019-0612-9

• 论文 • 上一篇    下一篇

CONVEX MAPPINGS ASSOCIATED WITH THE ROPER-SUFFRIDGE EXTENSION OPERATOR

张丹莉1, 徐辉明1, 王建飞2   

  1. 1. Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China;
    2. School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
  • 收稿日期:2018-05-21 修回日期:2019-05-16 出版日期:2019-12-25 发布日期:2019-12-30
  • 通讯作者: Jianfei WANG,E-mail:wangjf@mail.ustc.edu.cn E-mail:wangjf@mail.ustc.edu.cn
  • 作者简介:Danli ZHANG,E-mail:shirley9519@163.com;Huiming XU,E-mail:xhm@zjnu.cn
  • 基金资助:
    The project was partially supported by the National Natural Science Foundation of China (11671362, 11571105), Beijing Municipal Natural Science Foundation (1182008) and the Scientific Research Funds of Huaqiao University.

CONVEX MAPPINGS ASSOCIATED WITH THE ROPER-SUFFRIDGE EXTENSION OPERATOR

Danli ZHANG1, Huiming XU1, Jianfei WANG2   

  1. 1. Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China;
    2. School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China
  • Received:2018-05-21 Revised:2019-05-16 Online:2019-12-25 Published:2019-12-30
  • Contact: Jianfei WANG,E-mail:wangjf@mail.ustc.edu.cn E-mail:wangjf@mail.ustc.edu.cn
  • Supported by:
    The project was partially supported by the National Natural Science Foundation of China (11671362, 11571105), Beijing Municipal Natural Science Foundation (1182008) and the Scientific Research Funds of Huaqiao University.

摘要: Let λG(z)|dz|be the hyperbolic metric on a simply connected proper domain G ⊂ C containing the origin, and let||·||j be the Banach norms of Cnj for j=1, 2, …, k.This note is to prove that if f is a normalized biholomorphic convex function on G, then
ΦN,1/p1,…,1/pk(f)(z)=F1/p1,…,1/pk(z)=f(z1), (f'(z1))1/p1z, …, (f'(z1))1/pkw)
is a normalized biholomorphic convex mapping on
N={(z1, z, …, w) ∈ C×Cn1×…×Cnk:||z||1p1 + … +||w||kpk<1/λG (z1)},
where N=1 + n1 + … + nk and the branch is chosen such that (f'(z1))1/pj|z1=0=1, j=1, …, k. Applying to the Roper-Suffridge extension operator, we obtain a new convex mappings construction of an unbounded domain and a refinement of convex mappings construction on a Reinhardt domain, respectively.

关键词: Roper-Suffridge operator, convex mapping, hyperbolic metric

Abstract: Let λG(z)|dz|be the hyperbolic metric on a simply connected proper domain G ⊂ C containing the origin, and let||·||j be the Banach norms of Cnj for j=1, 2, …, k.This note is to prove that if f is a normalized biholomorphic convex function on G, then
ΦN,1/p1,…,1/pk(f)(z)=F1/p1,…,1/pk(z)=f(z1), (f'(z1))1/p1z, …, (f'(z1))1/pkw)
is a normalized biholomorphic convex mapping on
N={(z1, z, …, w) ∈ C×Cn1×…×Cnk:||z||1p1 + … +||w||kpk<1/λG (z1)},
where N=1 + n1 + … + nk and the branch is chosen such that (f'(z1))1/pj|z1=0=1, j=1, …, k. Applying to the Roper-Suffridge extension operator, we obtain a new convex mappings construction of an unbounded domain and a refinement of convex mappings construction on a Reinhardt domain, respectively.

Key words: Roper-Suffridge operator, convex mapping, hyperbolic metric

中图分类号: 

  • 32H02