[1] Gong S, Wang S K, Yu Q H. The growth and 1/4-theorem for starlike mappings on Bp. Chin Ann Math, 1990, 11B(1): 100-104
[2] Barnard R W, FitzGerald C H, Gong S. The growth and 1/4-theorem for starlike mappings in Cn. Pacific J Math, 1991, 150: 13-22
[3] Hamada H. starlike mappings on bounded balanced domains with C1-plurisubharmonic defining functions. Pacific J Math, 2000, 194(2): 359-371
[4] Hamada H, Honda T. Sharp growth theorems and coefficient bounds for starlike mappings in several complex variables. Chin Ann Math, 2008, 29B(4): 353-368
[5] Liu T S, Ren G B. The growth theorem for starlike mappings on bounded starlike circular domains. Chin Ann Math, 1998, 19B(4): 401-408
[6] Liczberski P, Starkov V V. Distortion theorems for biholomorphic convex mappings in Cn. J Math Anal Appl, 2002, 274: 495-504
[7] Özdemir M E, Dragomir S S, Yildiz C. The hadamard inequality for convex function via fractional integrals. Acta Math Sci, 2013, 33B(5): 1293-1299
[8] Arif M, Sokói J, Ayaz M. Sufficient condition for functions to be in a class of meromorphic multivalent sakaguchi type spiral-like functions. Acta Math Sci, 2014, 34B(2): 575-578
[9] Liczberski P. New characterization of strongly starlike mappings on balanced pseudoconvex domains in Cn. J Math Anal Appl, 2011, 384: 497-503
[10] Hamada H, Kohr G. Subordination chains and the growth theorem of spirallike mappings. Mathematic (Cluj), 2000, 42(65): 153-161
[11] Lu J, Liu T S, Wang J F. Distortion theorems for subclasses of starlike mappings along a unit direction in Cn. Acta Math Sci, 2012, 32B(4): 1675-1680
[12] Feng S X, Liu T S. Uniformly starlike mappings and uniformly convex mappings on the unit ball Bn. Acta Math Sci, 2014, 34B(2): 435-443
[13] Roper K, Suffridge T J, Convex mappings on the unit ball of Cn. J Anal Math, 1995, 65: 333-347
[14] Graham I. Loewner chains and the Roper-Suffridge extension operator. J Math Anal Appl, 2000, 247: 448-465
[15] Gong S, Liu T S. The generalized Roper-Suffridge extension operator. J Math Anal Appl, 2003, 284: 425-434
[16] Liu T S, Xu Q H. Loewner chains associated with the generalized Roper-Suffridge extension operator. J Math Anal Appl, 2006, 322: 107-120
[17] Wang J F. On the growth theorem and the Roper-Suffridge Extension Operator for a class of starlike mappings in Cn. Acta Math Sci, 2010, 30A(6): 1699-1703
[18] Muir J R. A modification of the Roper-Suffridge extension operator. Comput Methods Funct Theory, 2005, 5: 237-251
[19] Wang Jianfei, Liu Taishun. A modification of the Roper-Suffridge extension operator for some holomorphic mappings. Chin Ann Math, 2010, 31A(4): 487-496
[20] Chuaqui M. Applications of subordination chains to starlike mappings in Cn. Pacif J Math, 1995, 168: 33-48
[21] Liu X S. A relation between two subclasses of biholomorphic mappings in several complex variables. Journal of Henan University (Natural Sciance) (in Chinese), 2010, 40(6): 556-559
[22] Hamada H, Kohr G. The growth theorem and quasiconformal extension of strongly spiralike mappings of type α. Complex Variables, 2001, 44: 281-297
[23] Xu Q H, Liu T S. On the growth and covering theorem for normalized biholomorphic mappings. Chin Ann Math, 2009, 30A(2): 213-220
[24] Cai R H, Liu X S. The third and fourth coefficient estimations for the subclasses of strongly spirallike functions. Journal of Zhanjiang Normal College (in Chinese), 2010, 31(6): 38-43
[25] Ahlfors L V. Complex Analysis. New York: Mc Graw-Hill Book Co, 1979 |