数学物理学报(英文版) ›› 2025, Vol. 45 ›› Issue (2): 327-337.doi: 10.1007/s10473-025-0203-x
Di Wu
收稿日期:
2023-12-29
出版日期:
2025-03-25
发布日期:
2025-05-08
Di Wu
Received:
2023-12-29
Online:
2025-03-25
Published:
2025-05-08
About author:
Di Wu, E-mail: 202011104010014@stu.hubu.edu.cn
摘要: In this paper, C1,1 regularity for solutions to the degenerate dual Orlicz-Minkowski problem is considered. The dual Orlicz-Minkowski problem is a generalization of the Lp dual Minkowski problem in convex geometry. The proof is adapted from Guan-Li [17] and Chen-Tu-Wu-Xiang [11].
中图分类号:
Di Wu. C1,1 REGULARITY FOR SOLUTIONS TO THE DEGENERATE DUAL ORLICZ-MINKOWSKI PROBLEM[J]. 数学物理学报(英文版), 2025, 45(2): 327-337.
Di Wu. C1,1 REGULARITY FOR SOLUTIONS TO THE DEGENERATE DUAL ORLICZ-MINKOWSKI PROBLEM[J]. Acta mathematica scientia,Series B, 2025, 45(2): 327-337.
[1] Aleksandrov A. Existence and uniqueness of a convex surface with a given integral curvature. Doklady Acad Nauk Kasah SSSR, 1942, 36: 131-134 [2] Bianchi G, Böröczky K, Colesanti A. The Orlicz version of the Lp Minkowski problem for −n<p<0. Adv Appl Math, 2019,111: 101937 [3] Böröczky K.The logarithmic Minkowski conjecture and the Lp-Minkowski problem. arXiv: 2210.00194 [4] Böröczky K, Fodor F. The Lp dual Minkowski problem for p>1 and q>0. J Differential Equations, 2019, 266: 7980-8033 [5] Böröczky K, Henk M, Pollehn H. Subspace concentration of dual curvature measures of symmetric convex bodies. J Differential Geom, 2018, 109: 411-429 [6] Böröczky K, Lutwak E, Yang D, Zhang G. The logarithmic Minkowski problem. J Amer Math Soc, 2013, 26: 831-852 [7] Chen C, Huang Y, Zhao Y. Smooth solutions to the Lp dual Minkowski problem. Math Ann, 2019, 373: 953-976 [8] Chen H, Chen S, Li Q. Variations of a class of MA type functionals and their applications. Anal & PDE, 2021, 14(3): 689-716 [9] Chen L, Liu Y, Lu J, Xiang N. Existence of smooth even solutions to the dual Orlicz-Minkowski problem. J Geom Anal, 2022, 32(2): 1-25 [10] Chen L, Tu Q, Wu D, Xiang N. Anisotropic Gauss curvature flows and their associated dual Orlicz-Minkowski problems. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2022, 152(1): 148-162 [11] Chen L, Tu Q, Wu D, Xiang N. C1,1 regularity for solutions to the degenerate Lp dual Minkowski problem. Calc Var Partial Differential Equations, 2021, 60(3): Art 115 [12] Chen S, Li Q, Zhu G. The logarithmic Minkowski problem for non-symmetric measures. Trans Amer Math Soc, 2019, 371: 2623-2641 [13] Chou K, Wang X. The Lp-Minkowski problem and the Minkowski problem in centroaffine geometry. Adv Math, 2006, 205: 33-83 [14] Ding S, Li G.A class of anisotropic inverse Gauss curvature flows and dual Orlicz Minkowski type problem. arXiv: 2209.04601 [15] Gardner R, Hug D, Weil W, et al. General volumes in the Orlicz-Brunn-Minkowski theory and a related Minkowski problem I. Calc Var Partial Differential Equations, 2019, 58: Art 12 [16] Gardner R, Hug D, Xing S, Ye D. General volumes in the Orlicz-Brunn-Minkowski theory and a related Minkowski problem II. Calc Var Partial Differential Equations, 2020, 59: Art 15 [17] Guan P, Li Y. C1,1 estimates for solutions of a problem of Alexandrov. Comm Pure Appl Math, 1997, 50: 789-811 [18] Guang Q, Li Q, Wang X.The Lp-Minkowski problem with super-critical exponents. arXiv: 2203.05099 [19] Haberl C, Lutwak E,Yang D, Zhang G. The even Orlicz Minkowski problem. Adv Math, 2010, 224: 2485-2510 [20] He Y, Li Q, Wang X. Multiple solutions of the Lp-Minkowski problem. Calc Var Partial Differential Equations, 2016, 55(5): Art 117 [21] Henk M, Pollehn H. Necessary subspace concentration conditions for the even dual Minkowski problem. Adv Math, 2018, 323: 114-141 [22] Huang Y, Jiang Y. Variational characterization for the planar dual Minkowski problem. J Funct Anal, 2019, 277: 2209-2236 [23] Huang Y, Lutwak E, Yang D, Zhang G. Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems. Acta Math, 2016, 216: 325-388 [24] Huang Y, Lutwak E, Yang D, Zhang G. The Lp-Aleksandrov problem for Lp-integral curvature. J Differential Geom, 2018, 110: 1-29 [25] Huang Y, Zhao Y. On the Lp dual Minkowski problem. Adv Math, 2018, 332: 57-84 [26] Hug D, Lutwak E, Yang D, Zhang G. On the Lp Minkowski problem for polytopes. Discrete Comput Geom, 2005, 33: 699-715 [27] Jian H, Lu J. Existence of solutions to the Orlicz-Minkowski problem. Adv Math, 2019, 344: 262-288 [28] Jian H, Lu J, Wang X. A priori estimates and existence of solutions to the prescribed centroaffine curvature problem. J Funct Anal, 2018, 274: 826-862 [29] Jian H, Lu J, Zhu G. Mirror symmetric solutions to the centro-affine Minkowski problem. Calc Var Partial Differential Equations, 2016, 55: Art 41 [30] Li Q, Liu J, Lu J. Non-uniqueness of solutions to the Lp dual Minkowski problem. Inter Math Rese Noti, 2022, 12: 9114-9150 [31] Li Q, Sheng W, Wang X. Flow by Gauss curvature to the Aleksandrov and dual Minkowski problems. J Eur Math Soc, 2020, 22: 893-923 [32] Liu Y, Lu J. A flow method for the dual Orlicz-Minkowski problem. Trans Amer Math Soc, 2020: 373: 5833-5853 [33] Lu J. Nonexistence of maximizers for the functional of the centroaffine Minkowski problem. Sci China Math, 2018, 61: 511-516 [34] Lu J. A remark on rotationally symmetric solutions to the centroaffine Minkowski problem. J Differential Equations, 2019, 266: 4394-4431 [35] Lu J, Wang X. Rotationally symmetric solutions to the Lp-Minkowski problem. J Differential Equations, 2013, 254: 983-1005 [36] Lutwak E. The Brunn-Minkowski-Firey theory I: Mixed volumes and the Minkowski problem. J Differential Geom, 1993, 38: 131-150 [37] Lutwak E, Yang D, Zhang G. On the Lp-Minkowski problem. Trans Amer Math Soc, 2004, 356: 4359-4370 [38] Lutwak E, Yang D, Zhang G. Lp dual curvature measures. Adv Math, 2018, 329: 85-132 [39] Minkowski H.Allgemeine Lehrsätze über die konvexen Polyeder// Ausgewählte Arbeiten zur Zahlentheorie und zur Geometrie. Leipzig: Teubner, 1897: 198-219 [40] Minkowski H. Volumen and Oberfläche. Math Ann, 1903: 57: 447-495 [41] Oliker V.Existence and uniqueness of convex hypersurfaces with prescribed Gaussian curvature in spaces of constant curvature// Sem Inst Mate Appl ``Giovanni Sansone", Univ Studi Firenze, 1983 [42] Pogorelov A.Extrinsic Geometry of Convex Surfaces. Providence, RI: Amer Math Soc, 1973 [43] Schneider R.Convex Bodies: the Brunn-Minkowski theory. Cambridge: Cambridge University Press, 2013 [44] Sheng W, Yi C.An anisotropic shrinking flow and Lp Minkowski problem. arXiv: 1905.04679 [45] Stancu A. The discrete planar L0-Minkowski problem. Adv Math, 2002, 167: 160-174 [46] Xie F. The Orlicz Minkowski problem for general measures. Proc Amer Math Soc, 2022, 150(10): 4433-4445 [47] Xing S, Ye D. The general dual Orlicz-Minkowski problem. Indiana Univ Math J, 2020, 69: 621-655 [48] Zhao Y. The dual Minkowski problem for negative indices. Calc Var Partial Differential Equations, 2017, 56: Art 18 [49] Zhao Y. Existence of solutions to the even dual Minkowski problem. J Differential Geom, 2018, 110: 543-572 [50] Zhu B, Xing S, Ye D. The dual Orlicz-Minkowski problem. J Geom Anal, 2018, 28: 3829-3855 [51] Zhu G. The logarithmic Minkowski problem for polytopes. Adv Math, 2014, 262: 909-931 [52] Zhu G. The centro-affine Minkowski problem for polytopes. J Differential Geom, 2015, 101: 159-174 |