[1] Boudin L, Desvillettes L, Grandmont C, Moussa A. Global existence of solution for the coupled Vlasov and Navier-Stokes equations. Differential Integral Equations, 2009, 22: 1247-1271 [2] Bae H O, Choi Y P, Ha S Y, Kang M J. Time-asymptotic interaction of flocking particles and incompressible viscous fluid. Nonlinearity, 2012, 25: 1155-1177 [3] Bae H O, Choi Y P, Ha SY, Kang M J. Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids. Discrete and Continuous Dynamical System, 2014, 34: 4419-4458 [4] Bae H O, Choi Y P, Ha S Y, Kang M J. Global existence of strong solution for the Cucker-Smale-Navier-Stokes system. J Differ Equat, 2014, 257: 2225-2255 [5] Baranger C, Boudin L, Jabin P E, Mancini S. A modeling of biospray for the upper airways. ESAIM Proc, 2005, 14: 41-47 [6] Berres S, Bürger R, Karlsen K H, Tory E M. Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression. SIAM J Appl Math, 2003, 64 41-80 [7] Berres S, Bürger R, Tory E M. Mathematical model and numerical simulation of the liquid fluidization of polydisperse solid particle mixtures. Comput Vis Sci, 2004, 6: 67-74 [8] Bürger R, Wendland W L, Concha F. Model equations for gravitational sedimentation-consolidation processes. Z Angew Math Mech, 2000, 80: 79-92 [9] Boudin L, Desvillettes L, Grandmont C, Moussa A. Global existence of solutions for the coupled Vlasov and Navier-Stokes equations . Diff Integral Eqns, 2009, 22(11/12): 1247-1271 [10] Choi Y P, Lee J. Global existence of weak and strong solutions to Cucker-Smale-Navier-Stokes equations in R2. Nonlinear Analysis: Real World Applications, 2016, 27: 158-182 [11] Choi Y P, Ha S Y, Jung J, Kim J. Global dynamics of the thermomechanical Cucker-Smale ensemble immersed in incompressible viscous fluids. Nonlinearity, 2019, 32: 1597-1640 [12] Choi Y P, Kwon B. Global well-posedness and large-time behavior for the inhomogeneous V lasov- N avier- S tokes equations. Nonlinearity, 2015, 28: 3309-3336 [13] Constantin P, Masmoudi N. Global well-posedness for a Smoluchowski equation coupled with Navier-Stokes equations in 2D . Commun Math Phys, 2007, 278(1): 179-191 [14] Cucker F, Smale S. Emergent behavior in flocks. IEEE Trans Automat Control, 2007, 52(5): 852-862 [15] Carrillo J A, Fornasier M, Rosado J, Toscani G. Asymptotic flocking dynamics for the kinetic Cucker-Smale model . SIAM J Math Anal, 2010, 42(1): 218-236 [16] Duan R, Fornasier M, Toscani G. A kinetic flocking model with diffusion. Commun Math Phys, 2010, 300(1): 95-145 [17] Falkovich G, Fouxon A, Stepanov M G. Acceleration of rain initiation by cloud turbulence. Nature, 2002, 219: 151-154 [18] Fujita H, Kato T. On the Navier-Stokes initial value problem. I : Arch Ration Mech Anal,1964, 16(4): 269-315 [19] Ha S Y, Liu J G. A simple proof of the Cucker-Smale flocking dynamics and mean-field limit . Commun Math Sci, 2009, 7(2): 297-325 [20] Ha S Y, Tadmor E. From particle to kinetic and hydrodynamic descriptions of flocking. Kinet Relat Models, 2008, 1(3): 415-435 [21] Han-Kwan D. Large-time behavior of small-data solutions to the Vlasov-Navier-Stokes system on the whole space . Probab Math Phys, 2022, 3: 35-67 [22] Han-Kwan D, Moussa A, Moyano I. Large time behavior of the V lasov- N avier- S tokes system on the torus . Arch Ration Mech Anal,2020, 3: 1273-1323 [23] Hamdache K. Global existence and large time behavior of solutions for the Vlasov-Stokes equations . Japan J Indust Appl Math, 1998, 15(1): 51-74 [24] Jin C. The local existence and blowup criterion for strong solutions to the kinetic Cucker-Smale model coupled with the compressible Navier-Stokes equations . Nonlinear Anal: RWA,2019, 49: 217-249 [25] Jin C.Global existence and large time behaviors of strong solutions to the Kinetic Cucker-Smale model coupled with the three dimensional incompressible Navier-Stokes equations . arXiv:2112.12900 [26] Kim J, Zou W Y. Solvability and blow-up criterion of the thermomechanical Cucker-Smale-Navier-Stokes. Kinet Relat Models, 2020, 13: 623-651 [27] Lin F, Liu C, Zhang P. On a micro-macro model for polymeric fluids near equilibrium. Commun Pure Appl Math, 2007, 60(6): 838-866 [28] Lin F, Zhang P, Zhang Z. On the global existence of the smooth solution to the 2-D FENE dumbbell model . Commun Math Phys, 2008, 277(2): 531-553 [29] Leray J. Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math, 1934, 63: 193-248 [30] Schonbek M. L2 decay for weak solutions of the Navier-Stokes equations. Arch Rational Mech Anal, 1985, 88: 209-222 [31] Schonbek M. Large time behavior of solutions to the Navier-Stokes equations. Comm Partial Differential Equations, 1986, 11: 733-763 [32] Schonbek M. Lower bounds of rates of decay for solutions to the Navier-Stokesequations. J Amer Math Soc, 1991, 4: 423-449 [33] Williams F A. Combustion Theory . Menlo Park: Benjamin Cummings, 1985 [34] Zou W. The global existence of strong solutions to thermomechanical Cucker-Smale-Stokes equations in the whole domain. Acta Math Sci, 2024, 44B(3): 887-908 |