Processing math: 4%

数学物理学报, 2025, 45(2): 347-358

复值 Ginzburg-Landau 方程组的无粘性极限

邹冉,, 廖梦兰,*

河海大学数学学院 南京 210098

The Inviscid Limit of the Ginzburg-Landau System

Zou Ran,, Liao Menglan,*

School of Mathematics, Hohai University, Nanjing 210098

通讯作者: * 廖梦兰,E-mail: liaoml@hhu.edu.cn

收稿日期: 2024-05-7   修回日期: 2024-09-9  

基金资助: 国家自然科学基金(U2340221)
国家自然科学基金(12401290)
江苏省自然科学基金(BK20230036)
江苏省自然科学基金(BK20221497)
江苏省自然科学基金(BK20230946)

Received: 2024-05-7   Revised: 2024-09-9  

Fund supported: NSFC(U2340221)
NSFC(12401290)
NSFC of Jiangsu Province(BK20230036)
NSFC of Jiangsu Province(BK20221497)
NSFC of Jiangsu Province(BK20230946)

作者简介 About authors

邹冉,E-mail:231362010028@hhu.edu.cn

摘要

该文主要研究 Ginzburg-Landau 方程组的整体无粘性极限, 其中初值属于 L2(Rn)×L2(Rn)H1(Rn)×H1(Rn). 具体来说, 研究 Ginzburg-Landau 方程组与非线性薛定谔方程组解的差值, 利用能量估计对差值进行处理, 从而得到 Ginzburg-Landau 方程组的无粘性极限是非线性薛定谔方程组的解.

关键词: Ginzburg-Landau 方程组; 无粘性极限; 能量估计; 薛定谔方程组

Abstract

This paper mainly studies the global inviscid limit of the Ginzburg-Landau system while the initial data is taken in L2(Rn)×L2(Rn)orH1(Rn)×H1(Rn). Specifically, we investigate the difference between the solution of the Ginzburg-Landau system and the nonlinear Schrödinger system, and use energy estimate to deal with the difference.It is obtained that the inviscid limit of the solution of the Ginzburg-Landau system is the solution of the nonlinear Schrödinger system.

Keywords: Ginzburg-Landau system; inviscid limit; energy estimate; Schrödinger system

PDF (635KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

邹冉, 廖梦兰. 复值 Ginzburg-Landau 方程组的无粘性极限[J]. 数学物理学报, 2025, 45(2): 347-358

Zou Ran, Liao Menglan. The Inviscid Limit of the Ginzburg-Landau System[J]. Acta Mathematica Scientia, 2025, 45(2): 347-358

1 引言

Ginzburg-Landau 方程[1]在描述流体动力学系统不稳定性的开始及其空间模型的形成都发挥了重要的作用, 它是一种在物理学中常见的方程, 用于描述多体力学系统的时变特性, 通常应用于液体、固体和气体中的物理过程.关于 Ginzburg-Landau 方程的解[2], 前人已做了广泛研究, Wu[3]、Bechouche 和 Jungel[4] 利用薛定谔能量泛函的估计以及 Gagliardo-Nirenberg 不等式等方法, 研究了一般形式的 Ginzburg-Landau 方程的无粘性极限, 得到其无粘性极限是非线性薛定谔方程的解. Wang[5] 利用非线性估计、半群估计、Strichartz 不等式等方法, 研究了 Ginzburg-Landau 方程柯西问题的解的极限行为, 证明了在不考虑临界情况下, 其解收敛到半线性薛定谔方程柯西问题的解. 但 Wang 未对能量临界的情况进行研究, 随后 Huang 和 Wang[6] 利用能量估计、Sobolev 嵌入等方法, 对能量临界的 Ginzburg-Landau 方程进行研究, 得到其解收敛到能量临界的非线性薛定谔方程的解, 并获得其最优的收敛速率.

基于上述研究, 本文利用能量估计, 对其差值进行处理, 进而将 Ginzburg-Landau 方程的相关结论推广到方程组中, 因此本文研究如下的 Ginzburg-Landau 方程组

{tu1=(a+iη)Δu1(b+iμ)(u12u1+u22u1),tu2=(a+iη)Δu2(b+iμ)(u22u2+u12u2),
(1.1)

其中 u1:=u1(x,t), u2:=u2(x,t), (x,t)Rn×(0,), || 代表复数的模, a,b 代表实部, η,μ 代表虚部, 这里分别考虑 n2 和 n>2 的情形. 在初值 (u1(x,0),u2(x,0))L2(Rn)×L2(Rn)H1(Rn)×H1(Rn) 时, 利用能量估计、Gagliardo-Nirenberg 不等式等方法, 研究 Ginzburg-Landau 方程组的无粘性极限及其收敛速率.

为了方便起见, 在下文中, 记 u01:=u1(x,0),u02:=u2(x,0). 贯穿全文, 记 Lp(Rn)×Lp(Rn) 范数为 , H^s(\mathbb{R}^n)\times H^s(\mathbb{R}^n) 范数为 \left\|\cdot\right\|_{H^{s}},下文中 p=2,4,6, s=1,2.

2 预备知识

为给出本文的主要结果, 在这一节, 我们将给出一些有用的定理和引理. 首先, 将上述 (1.1) 式转变为向量形式

\partial_t\vec{u}=(\begin{matrix}a+i\eta\\\end{matrix})\Delta\vec{u}-(\begin{matrix}b+i\mu\\\end{matrix})\mid\vec{u}\mid^2\vec{u},
(2.1)

其中 \vec{u}= (u_{1},u_{2})^T, 初值 \vec{u}(0)=\vec{u}_0=\left(u_{1}^{0},u_{2}^{0}\right)^T. 令 a=b=0 , 则 Ginzburg-Landau 方程组就变成了非线性薛定谔方程组, 其向量形式为

i\partial_t\vec{\nu}=-\eta\Delta\vec{\nu}+\mu\mid\vec{\nu}\mid^2\vec{\nu}.
(2.2)

这里 \vec{\nu}=(\nu_1,\nu_2)^T, \nu_1:=\nu_1(x,t), \nu_2:=\nu_2(x,t), (x,t)\in \mathbb{R}^n\times(0,\infty). 与 Ginzburg-Landau 方程相比,方程组 (1.1) 中的两个分量的相互影响和彼此作用使得对方程组的求解和证明更加困难, 因此我们采用向量表示的方法, 会使整体的处理过程更加简便. 如无特殊说明, 在下文中的方程组都采用向量形式来表示.

其次, 回顾一些具有初值 \vec{u}_{0}\in L^{2}(\mathbb{R}^{n})\times L^{2}(\mathbb{R}^{n})\vec{u}_{0}\in H^{1}(\mathbb{R}^{n})\times H^{1}(\mathbb{R}^{n}) 的 Ginzburg-Landau 方程组和具有初值 \vec{\nu}_{0}\in H^{1}(\mathbb{R}^{n})\times H^{1}(\mathbb{R}^{n})\vec{\nu}_{0}\in H^{2}(\mathbb{R}^{n})\times H^{2}(\mathbb{R}^{n}) 的非线性薛定谔方程组解的性质和存在性结果.

定理2.1[3]\vec{u}_{0}\in L^{2}(\mathbb{R}^{n})\times L^{2}(\mathbb{R}^{n}), 则 Ginzburg-Landau 方程组 (2.1) 存在整体解 \vec{u}, 满足

\begin{split}\vec{u}&\in C\left([0,\infty);L^{2}\right)\cap L_{\rm loc}^{2}\left([0,\infty);H^{1}\right)\cap L_{\rm loc}^{4}\left([0,\infty);L^{4}\right)\\& \times C\left([0,\infty);L^{2}\right)\cap L_{\rm loc}^{2}\left([0,\infty);H^{1}\right)\cap L_{\rm loc}^{4}\left([0,\infty);L^{4}\right),\end{split}

此外, \vec{u}(0)=\vec{u}_{0}, \vec{u} 满足能量关系

\frac12\|\vec{u}(t)\|_{L^2}^2+a\int_0^t\|\nabla\vec{u}(s)\|_{L^2}^2{\rm d}s+b\int_0^t\|\vec{u}(s)\|_{L^4}^4{\rm d}s=\frac12\|\vec{u}_{0}\|_{L^2}^2,

其中 t\in\left[0,\infty\right).

定理2.2[3] 假设 \mu\geq0n<4, 如果 n>2, 有 \left|1+i \frac{\eta}{a}\right|\leq\frac{n}{n-2} 成立. 令 \vec{u}_0\in (H^1(\mathbb{R}^n)\cap L^4(\mathbb{R}^n))\times (H^1(\mathbb{R}^n)\cap L^4(\mathbb{R}^n)), 则 Ginzburg-Landau 方程组 (2.1) 存在唯一的解 \vec{u}, 满足

\begin{align} \vec{u}&\in C\left(\left[0,\infty\right);H^{1}\cap L^{4}\right)\cap L_{\rm loc}^{2}\left(\left[0,\infty\right);H^{2}\right)\cap L_{\rm loc}^{6}\left(\left[0,\infty\right);L^{6}\right)\notag\\ & \times C\left(\left[0,\infty\right);H^{1}\cap L^{4}\right)\cap L_{\rm loc}^{2}\left(\left[0,\infty\right);H^{2}\right)\cap L_{\rm loc}^{6}\left(\left[0,\infty\right);L^{6}\right),\notag \end{align}

其中, \vec{u}(0)=\vec{u}_{0}, 且 \vec{u} 满足 (2.4) 式.

定理2.3[3] 假设 3\leq n\leq4, 则对于任意的 \vec{\nu}_{0}\in H^{1}(\mathbb{R}^{n})\times H^{1}(\mathbb{R}^{n}), 存在某个 T^{*}=T^{*}\left(\left\|\vec{\nu}_{0}\right\|_{H^{1}}\right)>0, 使得非线性薛定谔方程组 (2.2)\left[0,T^*\right) 上存在解 \vec{\nu}, 满足

\begin{align} \vec{\nu}&\in C\left(\left[0,T^{*}\right);H^{1}\right)\cap C^{1}\left(\left[0,T^{*}\right);H^{-1}\right)\cap L_{\rm loc}^{4}\left(\left[0,T^{*}\right);L^{4}\right)\notag\\ & \times C\left(\left[0,T^{*}\right);H^{1}\right)\cap C^{1}\left(\left[0,T^{*}\right);H^{-1}\right)\cap L_{\rm loc}^{4}\left(\left[0,T^{*}\right);L^{4}\right).\notag \end{align}

此外 \vec{\nu}(0)=\vec{\nu}_{0}, 对任意的 t<T^{*}, 有

E(\vec{\nu}(t))=E(\vec{\nu}_0), \|\vec{\nu}(t)\|_{L^2}=\|\vec{\nu}_0\|_{L^2},
(2.5)

其中

E\left(\vec{\nu}\right)=\frac{\eta}{2}\left\|\nabla\vec{\nu}\right\|_{L^2}^2+\frac{\mu}{4}\left\|\vec{\nu}\right\|_{L^4}^4,
(2.6)

是哈密顿量.

定理2.4[3] 假设 5\leq n\leq6, 则对于任意的 \vec{\nu}_{0}\in H^{2}(\mathbb{R}^{n})\times H^{2}(\mathbb{R}^{n}), 存在某个 T^ {*}=T^{*}\left(\left\|\vec{\nu}_{0}\right\|_{H^{2}}\right)>0, 使得非线性薛定谔方程组 (2.2) 有唯一解

\vec{\nu}\in C\Big([0,T^*);H^2\Big)\times C\Big([0,T^*);H^2\Big).

此外, \vec{\nu}(0)=\vec{\nu}_{0}, 对任意的 T<T^{*}, 有

\left\|\vec{\nu}(t)\right\|_{H^2}\leq K\left\|\vec{\nu}_0(t)\right\|_{H^2}, \quad t\leq T,
(2.7)

其中 K 是依赖于 T\sup\left\{\left\|\vec{u}(t)\right\|_{H^1}, t\leq T\right\} 的常数.

引理2.1[3] 对于 \vec{\nu}\in H^{1}\times H^{1}, 如果 \frac1p\geq\frac12-\frac1n, 则

\left\|\vec{\nu}\right\|_{L^p}\leq C(p)\left\|\nabla\vec{\nu}\right\|_{L^2}^\theta\left\|\vec{\nu}\right\|_{L^2}^{1-\theta}, \theta=n\left(\frac{1}{2}-\frac{1}{p}\right),

其中 C 是依赖于 p 的常数.

n\leq4, p=4 时, 利用引理 2.1 可得

\left\|\vec{\nu}\right\|_{L^4}^4\leq C(p)\left\|\nabla\vec{\nu}\right\|_{L^2}^n\left\|\vec{\nu}\right\|_{L^2}^{4-n}.

这验证了对 \vec{\nu}\in H^{1}\times H^{1}, 在 (2.5) 式中 E(\vec{\nu}) 的定义.

3 主要定理

在这一节中, 我们将给出本文的主要结果: 在 n\leq2n>2 的情形下, 分别得到初值 \vec{u}_0\in L^2(\mathbb{R}^n){\times}L^2(\mathbb{R}^n),\vec{u}_0\in H^1(\mathbb{R}^n){\times}H^1(\mathbb{R}^n) 时, Ginzburg-Landau 方程 (2.1) 的无粘性极限及其收敛速率.

定理3.1 假设 \mu\geq0, 3\leq n\leq4\mu<0, n\leq2. b, \mu 满足

\left|1+i\frac{\mu}{b}\right|\leq2.
(3.1)

\vec{u}_{0}\in L^{2}\left(\mathbb{R}^{n}\right)\times L^{2}\left(\mathbb{R}^{n}\right), \vec{\nu}_{0}\in H^{1}(\mathbb{R}^{n})\times H^{1}(\mathbb{R}^{n}) (若 \mu<0, n=2,\left\|\vec{\nu}_{0}\right\|_{L^{2}} 非常小). 考虑 Ginzburg-Landau 方程组 (2.1) 与非线性薛定谔方程组 (2.2) 的解之间的差值

\vec{w}(x,t)=\vec{u}(x,t)-\vec{\nu}(x,t),

其中 \vec{u}(x,0)=\vec{u}_{0}, \vec{\nu}(x,0)=\vec{\nu}_{0}. 则对任意的 T<\infty, t\leq T, \vec{w} 遵循下列估计

\left\|\vec{u}(t)-\vec{\nu}(t)\right\|_{L^2}^2\leq\left\|\vec{u}_0-\vec{\nu}_0\right\|_{L^2}^2+a\wp(\vec{\nu}_0)t+C_1b^{\frac{3}{4}}(1+b)\psi(\vec{\nu}_0)t+C_2b^{\frac{3}{4}}\left\|\vec{u}_0\right\|_{L^2}^2,
(3.2)

其中 C_1, C_2 是常数, \wp(\vec{\nu}_0), \psi(\vec{\nu}_0) 分别以 \left\|\nabla\vec{\nu}\right\|_{L^2}^2, \left\|\vec{\nu}\right\|_{L^4}^4 为界.

特别地, 如果 \left\|\vec{u}_{0}-\vec{\nu}_{0}\right\|_{L^{2}}^{2}=O(a)+O(b^{\frac{3}{4}}), 则对于 a, b 很小时, 有

\left\|\vec{u}(t)-\vec{\nu}(t)\right\|_{L^2}=O(\sqrt{a})+O(b^{\frac{3}{8}}).
(3.3)

定理3.2 假设 \mu\geq0, 5\leq n\leq6, b, \mu 满足上述条件 (3.1). 令 \vec{u}_0\in L^2(\mathbb{R}^n)\times L^2(\mathbb{R}^n), \vec{\nu}_0\in H^2(\mathbb{R}^n)\times H^2(\mathbb{R}^n) (若 \mu<0, n=2,\left\|\vec{\nu}_{0}\right\|_{L^{2}} 非常小). 考虑 Ginzburg-Landau 方程组 (2.1) 与非线性薛定谔方程组 (2.2) 的解之间的差值

\vec{w}(x,t)=\vec{u}(x,t)-\vec{\nu}(x,t),

则遵循下述估计

\left\|\vec{u}(t)-\vec{\nu}(t)\right\|_{L^2}^2\leq\left\|\vec{u}_0-\vec{\nu}_0\right\|_{L^2}^2{\rm e}^{2t}+\frac{a^2}{2}\Theta(\vec{\nu}_0)\left({\rm e}^{2t}-1\right)+\frac{b^2}{2}\Gamma(\vec{\nu}_0)\left({\rm e}^{2t}-1\right),

其中 t<T<\infty, \Theta(\vec{\nu}_{0})\left\|\vec{\nu}\right\|_{C\left([T];H^2\right)} 为界, 且 \Theta(\vec{\nu}_0), \Gamma(\vec{\nu}_0) 的定义在 (4.16), (4.17) 式中给出.

特别地, 如果 \left\|\vec{u}_0-\vec{\nu}_0\right\|_{L^2}=O(a)+O(b), 则对于 a, b 很小时, 有

\left\|\vec{u}-\vec{v}\right\|_{L^2}=O(a)+O(b).

定理3.3n\leq2, 假设 \vec{u}_0\in H^1(\mathbb{R}^n)\times H^1(\mathbb{R}^n) (若 n=2,\left\|\vec{u}_{0}\right\|_{L^{2}} 非常小), \vec{\nu}_0\in H^2(\mathbb{R}^n)\times H^2(\mathbb{R}^n) (如果 \mu<0, n=2,\left\|\vec{\nu}_{0}\right\|_{L^{2}} 非常小). 考虑 Ginzburg-Landau 方程组 (2.1) 与非线性薛定谔方程组 (2.2) 的解之间的差值

\vec{w}(x,t)=\vec{u}(x,t)-\vec{\nu}(x,t),

则遵循下述估计

\begin{split}\left\|\nabla\vec{w}\right\|_{L^2}^2&\leq\left\|\nabla\vec{u}_0-\nabla\vec{\nu}_0\right\|_{L^2}^2+2a\Theta(\vec{\nu}_0)t\\&\quad +4a^{-1}(b^2+\mu^2)\Gamma(\vec{\nu}_0)t+2a^{-1}(b^2+\mu^2)\Psi(\vec{\nu}_0,a,b,t),\end{split}
(3.4)

其中 \Psi(\vec{\nu}_0,a,b,t) 只与 \vec{\nu}_{0},a,b,t 有关.

特别地, (3.4) 式表明, 如果 \vec{u}_{0}=\vec{\nu}_{0}, b^{2}+\mu^{2}=O(a^{2}) 或更高阶, 则有下述无粘性极限结果

\left\|\nabla(\vec{u}-\vec{\nu})(t)\right\|_{L^2}^2=O(a^2)+O((b^2+\mu^2)a^{-1-\frac n2}).

4 主要定理的证明

在这一节, 依次对主要定理进行证明, 在给出主要定理的证明之前, 先给出下述命题.

命题4.1 假设 \mu\geq0, 3\leq n\leq4\mu<0, n\leq2. 令 \vec{\nu}_{0}\in H^{1}(\mathbb{R}^{n})\times H^{1}(\mathbb{R}^{n}) (若 \mu<0, n=2,\left\|\vec{\nu}_{0}\right\|_{L^{2}} 很小), 则具有初值 \vec{\nu}_{0} 的非线性薛定谔方程组的解满足

\left\|\nabla\vec{\nu}\right\|_{L^2}^2\leq\wp(\vec{\nu}_{0}),
(4.1)
\left\|\vec{\nu}\right\|_{L^4}^4\leq\psi(\vec{\nu}_{0}),
(4.2)

其中 \wp(\vec{\nu}_{0}), \psi(\vec{\nu}_{0}) 是由 \vec{\nu}_{0} 决定, 但与 a, b 无关.

分为散焦情况 (\mu\geq0) 和聚焦情况 (\mu<0) 证明.

(1)\mu\geq0 时, H^{1} 范数和 L^{4} 范数可以利用能量守恒定律进行控制. 事实上, 由于

E(\vec{\nu}_0)=E(\vec{\nu})=\frac{\eta}{2}\|\nabla \vec{\nu}\|_{L^2}^2+\frac{\mu}{4}\| \vec{\nu}\|_{L^4}^4\ge\frac{\eta}{2}\|\nabla \vec{\nu}\|_{L^2}^2,

\left\|\nabla\vec{\nu}\right\|_{L^2}^2\leq\frac{2}{\eta}E\left(\vec{\nu}_0\right),

利用引理 2.1 可得

\left\|\vec{\nu}\right\|_{L^4}^4\leq C\left\|\nabla\vec{\nu}\right\|_{L^2}^n\left\|\vec{\nu}\right\|_{L^2}^{4-n}\leq C\left(\frac{E\left(\vec{\nu}_0\right)}{\eta}\right)^{\frac{n}{2}}\left\|\vec{\nu}_0\right\|_{L^2}^{4-n}.

(2)\mu<0 时, \left\|\vec{\nu}_0\right\|_{L^2} 足够小, 可得 L^{2}-次临界聚焦情况 (n<2)L^{2}-临界聚焦情况 (n=2) 的界[7]. 事实上, 利用引理 2.1 可得

E\left(\vec{\nu}_0\right)=\frac{\eta}{2}\left\|\nabla\vec{\nu}\right\|_{L^2}^2+\frac{\mu}{4}\left\|\vec{\nu}\right\|_{L^4}^4\geq\frac{\eta}{2}\left\|\nabla\vec{\nu}\right\|_{L^2}^2+C\mu\left\|\nabla\vec{\nu}\right\|_{L^2}^n\left\|\vec{\nu}\right\|_{L^2}^{4-n}.
(4.3)

如果 n=2, \left\|\vec{\nu}_0\right\|_{L^2} 足够小, \frac\eta2+C\mu\left\|\vec{\nu}_0\right\|_{L^2}^{4-n}>0, 则由 (4.3) 式可得

\left\|\nabla\vec{\nu}\right\|_{L^2}^2\leq\left(\frac{\eta}{2}+C\mu\left\|\vec{\nu}_0\right\|_{L^2}^{4-n}\right)^{-1}E\left(\vec{\nu}_0\right).

如果 n<2, 利用文献 [3,引理 3.7], 则

\left\|\nabla\vec{\nu}\right\|_{L^2}^2\leq\max\left\{\left(C\eta^{-1}(-\mu)\left\|\vec{\nu}_0\right\|_{L^2}^{4-n}\right)^{\frac{2}{2-n}},4\eta^{-1}E\left(\vec{\nu}_0\right)\right\}.

命题4.2 假设 5\leq n\leq6, 令 \vec{u} 为 Ginzburg-Landau 方程组的解, 且 \vec{u}_{0}\in H^1(\mathbb{R}^n)\times H^1(\mathbb{R}^n), 则遵循估计

\left\|\nabla\vec{u}\right\|_{L^2}^2+a\int_0^t\left\|\Delta\vec{u}(s)\right\|_{L^2}^2{\rm d}s-\left[C\frac{b^2+\mu^2}{a}\left\|\vec{u}_0\right\|_{L^2}^{6-n}\right]\int_0^t\left\|\Delta\vec{u}(s)\right\|_{L^2}^n{\rm d}s\leq\left\|\nabla\vec{u}_0\right\|_{L^2}^2.
(4.4)

如果 n=2, \left\|\vec{u}_0\right\|_{L^2} 足够小, \left\|\vec{u}_{0}\right\|_{L^2}^{6-n}<C^{-1}a^2(b^2+\mu^2)^{-1}, 则有

\int_0^t\left\|\Delta\vec{u}(s)\right\|_{L^2}^2{\rm d}s\leq\left[a-Ca^{-1}(b^2+\mu^2)\left\|\vec{u}_0\right\|_{L^2}^{6-n}\right]^{-1}\left\|\nabla\vec{u}_0\right\|_{L^2}^2.
(4.5)

如果 n<2, 则有

\int_{0}^{t}\|\Delta\vec{u}(s)\|_{L^{2}}^{2}{\rm d}s\leq\max\left\{2a^{-1}\|\nabla\vec{u}_{0}\|_{L^{2}}^{2},\left[Ca^{-2}(b^{2}+\mu^{2})\|\vec{u}_{0}\|_{L^{2}}^{6-n}\right]^{\frac{2}{2-n}}t\right\}.
(4.6)

\vec{u} 为 Ginzburg-Landau 方程组 (2.1) 的解, 且满足

\partial_t\nabla\vec{u}=(a+i\eta)\Delta(\nabla\vec{u})-(b+i\mu)\nabla(|\vec{u}|^2\vec{u}).

2\nabla\bar{\vec{u}}\phi_{R}^{2} 乘到上式的两侧, 后进行积分取实部可得

\begin{split}\partial_t\int\phi_R^2\left|\nabla\vec{u}\right|^2&=2\operatorname{Re}\int\phi_R^2(\partial_t\nabla\vec{u})\nabla\overline{\vec{u}}\\&=2\operatorname{Re}(a+i\eta)\int\phi_R^2\Delta(\nabla\vec{u})\nabla\overline{\vec{u}}-2\operatorname{Re}(b+i\mu)\int\phi_R^2\nabla(\left|\vec{u}\right|^2\vec{u})\nabla\overline{\vec{u}}\\&:=\textbf{I}+\textbf{II},\end{split}

其中 \phi 是截断函数, 满足

\phi(x)=\left\{ \begin{array}{ll} 1, & |x|\le 1, \\ 0, & |x|\ge 2, \end{array} \right.\qquad \phi_R(x)=\phi\left(\frac xR\right),

这里 R>0.

利用分部积分, 可得

\textbf{I}=-2a\int\phi_R^2\left|\Delta\vec{u}\right|^2-4\operatorname{Re}(a+i\eta)\int(\phi_R\Delta\vec{u})(\nabla\phi_R\nabla\overline{\vec{u}}),
\textbf{II}=2\operatorname{Re}(b+i\mu)\int\phi_{R}^{2}\left|\vec{u}\right|^{2}\vec{u}\Delta\overline{\vec{u}}+4\operatorname{Re}(b+i\mu)\int\phi_{R}\left|\vec{u}\right|^{2}\vec{u}\nabla\phi_{R}\nabla\overline{\vec{u}}.

利用 Young 不等式, 则有

\begin{align} \partial_t\int\phi_R^2\left|\nabla\vec{u}\right|^2&=\textbf{I}+\textbf{II}\notag\\ &\leq-2a\int\phi_R^2\left|\Delta\vec{u}\right|^2+4\operatorname{Re}(b+i\mu)\int\phi_R^2\left|\vec{u}\right|^2\vec{u}\Delta\vec{u}\notag\\ &\quad +4\operatorname{Re}(b+i\mu)\int\phi_R\left|\vec{u}\right|^2\vec{u}\nabla\phi_R\nabla\overline{\vec{u}}\notag\notag\\ &\leq-2a\int\phi_R^2\left|\Delta\vec{u}\right|^2+2\int\frac{2|b+i\mu|\sqrt{a}\phi_R^2|\vec{u}|^3\Delta \vec{u}}{\sqrt{a}} +2\int\frac{2|b+i\mu|\sqrt{a}\phi_R|\vec{u}|^3\nabla \phi_R\nabla \overline{\vec{u}}}{\sqrt{a}} \notag\\ &\leq-2a\int\phi_R^2\left|\Delta\vec{u}\right|^2+2\int\left(\frac{\left(2\frac{\sqrt{b^2+\mu^2}}{\sqrt{a}}\phi_R^2\left|\vec{u}\right|^3\right)^2}2+\frac{\left(\sqrt{a}\left|\Delta\vec{u}\right|\right)^2}2\right)\notag\\ &\quad +2\int\left(\frac{\left(2\frac{\sqrt{b^2+\mu^2}}{\sqrt{a}}\phi_R\left|\vec{u}\right|^3\right)^2}2+\frac{\left(\sqrt{a}\nabla\phi_R\nabla\overline{\vec{u}}\right)^2}2\right)\notag\\ &\leq-2a\int\phi_R^2\left|\Delta\vec{u}\right|^2+\frac{4(b^2+\mu^2)}a\int\phi_R^4\left|\vec{u}\right|^6+a\int\left|\Delta\vec{u}\right|^2\notag\\ &\quad +\frac{4(b^2+\mu^2)}a\int\phi_R^2\left|\vec{u}\right|^6+a\int\left|\nabla\phi_R\nabla\vec{u}\right|^2.\notag \end{align}

由于 \phi_{R}(x)=\phi\left(\frac{x}{R}\right)=\begin{cases}1,&\left|x\right|\leq R\\0,&\left|x\right|>R\end{cases},R\rightarrow\infty,\phi_{R}(x)\rightarrow1, 则上式变为

\begin{split}\partial_{t}\int\left|\nabla\vec{u}\right|^{2}&\leq-2a\int\left|\Delta\vec{u}\right|^{2}+\frac{4\left(b^{2}+\mu^{2}\right)}{a}\int\left|\vec{u}\right|^{6}+a\int\left|\Delta\vec{u}\right|^{2}+\frac{4\left(b^{2}+\mu^{2}\right)}{a}\int\left|\vec{u}\right|^{6}+a\int\left|\nabla 1\nabla\vec{u}\right|^{2} \\&=-2a\int\left|\Delta\vec{u}\right|^{2}+\frac{4\left(b^{2}+\mu^{2}\right)}{a}\int\left|\vec{u}\right|^{6}+a\int\left|\Delta\vec{u}\right|^{2}+\frac{4\left(b^{2}+\mu^{2}\right)}{a}\int\left|\vec{u}\right|^{6} \\&=-a\int\left|\Delta\vec{u}\right|^{2}+\frac{8\left(b^{2}+\mu^{2}\right)}{a}\int\left|\vec{u}\right|^{6}.\end{split}

因此,

\partial_{_t}\int\left|\nabla\vec{u}\right|^2\leq-a\left\|\Delta\vec{u}\right\|_{L^2}^2+\frac{8(b^2+\mu^2)}{a}\left\|\vec{u}\right\|_{L^6}^6.

\left\|\vec{u}\right\|_{L^{6}}^{6} 应用 Gagliardo-Nirenberg 不等式[8]可得

\left\|\vec{u}\right\|_{L^6}\leq C\left\|\Delta\vec{u}\right\|_{L^2}^\theta\left\|\vec{u}\right\|_{L^2}^{1-\theta}, \text{其中 } \theta>0, \theta=\frac{n}{6}.

因为 n<6, 所以 \theta\leq1. 因此, 有

\partial_t\int\left|\nabla\vec{u}\right|^2+a\left\|\Delta\vec{u}\right\|_{L^2}^2 \le\frac{8(b^2+\mu^2)}{a}\|\vec{u}\|_{L^6}^6\le \frac{C(b^2+\mu^2)}{a}\left\|\Delta\vec{u}\right\|_{L^2}^n\left\|\vec{u}_0\right\|_{L^2}^{6-n},

\partial_t\int\left|\nabla\vec{u}\right|^2+a\left\|\Delta\vec{u}\right\|_{L^2}^2-\frac{C(b^2+\mu^2)}{a}\left\|\Delta\vec{u}\right\|_{L^2}^n\left\|\vec{u}_0\right\|_{L^2}^{6-n}\leq0.

t 积分, 可得

\left\|\nabla\vec{u}\right\|_{L^{2}}^{2}-\left\|\nabla\vec{u}_{0}\right\|_{L^{2}}^{2}+a\int_{0}^{t}\left\|\Delta\vec{u}(s)\right\|_{L^{2}}^{2}{\rm d}s-\left[ C\frac{b^{2}+\mu^{2}}{a}\left\|\vec{u}_{0}\right\|_{L^{2}}^{6-n}\right]\int_{0}^{t}\left\|\Delta\vec{u}(s)\right\|_{L^{2}}^{n}{\rm d}s\leq0,

即得 (4.4) 式.

由 (4.4) 式可得

\begin{align} a\int_{0}^{t}\left\|\Delta\vec{u}(s)\right\|_{L^{2}}^{2}{\rm d}s&\leq\left\|\nabla\vec{u}_{0}\right\|_{L^{2}}^{2}-\left\|\nabla\vec{u}\right\|_{L^{2}}^{2}+\left[C\frac{b^{2}+\mu^{2}}{a}\left\|\vec{u}_{0}\right\|_{L^{2}}^{6-n}\right]\int_{0}^{t}\left\|\Delta\vec{u}(s)\right\|_{L^{2}}^{n}{\rm d}s\notag\\ &\leq\left\|\nabla\vec{u_0}\right\|_{L^2}^2+\left[C\frac{b^2+\mu^2}{a}\left\|\vec{u}_{0}\right\|_{L^2}^{6-n}\right]\int_0^t\left\|\Delta\vec{u}(s)\right\|_{L^2}^n {\rm d}s.\notag \end{align}

n=2 时, 则有

\int_{0}^{t}\left\|\Delta \vec{u}(s)\right\|_{L^{2}}^{2}{\rm d}s\leq\left[a-C\frac{b^{2}+\mu^{2}}{a}\left\|\vec{u}_{0}\right\|_{L^{2}}^{6-n}\right]^{-1}\left\|\nabla\vec{u}_{0}\right\|_{L^{2}}^{2},

即得 (4.5) 式. 由 (4.4) 式可知

\begin{align} \int_{0}^{t}\left\|\Delta\vec{u}(s)\right\|_{L^{2}}^{2}{\rm d}s-\left[C\frac{b^2+\mu^2}{a^2}\left\|\vec{u}_{0}\right\|_{L^2}^{6-n}\right]\int_0^t\left\|\Delta\vec{u}(s)\right\|_{L^2}^n {\rm d}s \le \frac1a\left\|\nabla\vec{u}_0\right\|_{L^2}^2.\notag \end{align}

n<2 时, 令 y=\|\Delta \vec{u}(s)\|_{L^2}, 有

y^2-\left[C\frac{b^2+\mu^2}{a^2}\left\|\vec{u}_{0}\right\|_{L^2}^{6-n}\right]y^n \le \frac{1}{at}\left\|\nabla\vec{u}_0\right\|_{L^2}^2.

利用文献 [3,引理 3.7] 可得

y\le \max\left\{\left(C\frac{b^2+\mu^2}{a^2}\|\vec{u}_0\|_{L^2}^{6-n}\right)^{\frac{1}{2-n}}, \sqrt{\frac{2}{at}\|\nabla\vec{u}_0\|_{L^2}^2}\right\},

即有

\|\Delta \vec{u}(s)\|_{L^2}^2\le \max\left\{\left(C\frac{b^2+\mu^2}{a^2}\|\vec{u}_0\|_{L^2}^{6-n}\right)^{\frac{2}{2-n}}, \frac{2}{at}\|\nabla\vec{u}_0\|_{L^2}^2\right\}.

对上式关于 s(0,t) 上积分可得

\int_{0}^{t}\left\|\Delta\vec{u}(s)\right\|_{L^{2}}^{2}{\rm d}s\leq\max\left\{2a^{-1} \left\|\nabla\vec{u}_{0}\right\|_{L^{2}}^{2},\left[Ca^{-2}(b^{2}+\mu^{2})\left\|\vec{u}_{0}\right\|_{L^{2}}^{6-n}\right]^{\frac{2}{2-n}}t\right\},

即得 (4.6) 式.

基于以上命题, 接下来证明主要定理.

定理 3.1 的证明\vec{u} 满足 Ginzburg-Landau 方程组 (2.1), \vec{\nu} 满足非线性薛定谔方程组 (2.2), 则差值 \vec{w}=\vec{u}-\vec{\nu} 满足

\partial_{_t}\vec{w}=(a+i\eta)\Delta\vec{w}+a\Delta\vec{\nu}-(b+i\mu)(f(\vec{u})-f(\vec{\nu}))-bf(\vec{\nu}),
(4.7)

其中, f(\vec{u})=\left|\vec{u}\right|^{2}\vec{u}. 在 (4.7) 式两边乘 2\overline{\vec{w}}\phi_{R}^{2}, 后进行积分取实部可得

\begin{split}\partial_t\int\phi_R^2\left|\vec{w}\right|^2&=2\operatorname{Re}\int\phi_R^2\partial_t\vec{w}\overline{\vec{w}}\\&=2\operatorname{Re}\Big((a+i\eta)(\phi_R^2\Delta \vec{w},\vec{w})\Big)+2a\operatorname{Re}(\phi_R^2\Delta \vec{\nu},\vec{w})\\&\quad -2\operatorname{Re}\Big((b+i\mu)(\phi_{R}^{2}(f(\vec{u})-f(\vec{\nu})),\vec{w})\Big)-2b\operatorname{Re}(\phi_{R}^{2}f(\vec{\nu}),\vec{w})\\&:=\textbf{I}+\textbf{II}+\textbf{III}+\textbf{IV}.\end{split}
(4.8)

接下来, 分别对 \textbf{I}, \textbf{II}, \textbf{III}, \textbf{IV} 进行估计.

(1) 显然

\textbf{I}=-4 \mathrm{Re}\Big((a+i\eta)(\phi_{R}\nabla\vec{w},\vec{w}\nabla\phi_{R})\Big)-2 \mathrm{Re}\Big((a+i\eta)(\phi_{R}^{2}\nabla\vec{w},\nabla\vec{w})\Big),

\begin{aligned} |\mathbf{I}| & \leq 4 \operatorname{Re}(a+i \eta) \int \phi_{R} \nabla \vec{w} \overline{\vec{w}} \nabla \phi_{R}-2 a\left\|\phi_{R} \nabla \vec{w}\right\|_{L^{2}}^{2} \\ & \leq 2 \int\left(\frac{\left(2 \frac{\sqrt{a^{2}+\eta^{2}}}{\sqrt{a}} \vec{w} \nabla \phi_{R}\right)^{2}}{2}+\frac{\left(\sqrt{a} \phi_{R} \nabla \vec{w}\right)^{2}}{2}\right)-2 a\left\|\phi_{R} \nabla \vec{w}\right\|_{L^{2}}^{2} \\ & \leq a\left\|\phi_{R} \nabla \vec{w}\right\|_{L^{2}}^{2}+4 \frac{a^{2}+\eta^{2}}{a}\left\|\vec{w} \nabla \phi_{R}\right\|_{L^{2}}^{2}-2 a\left\|\phi_{R} \nabla \vec{w}\right\|_{L^{2}}^{2}, \\ |\mathbf{I I}| & \leq 4 a \operatorname{Re} \int \nabla \vec{\nu} \phi_{R} \nabla \phi_{R} \overline{\vec{w}}+2 a \operatorname{Re} \int \phi_{R}^{2} \nabla \vec{\nu} \nabla \overline{\vec{w}} \\ & \leq \varepsilon\left\|\nabla \vec{\nu} \phi_{R}\right\|_{L^{2}}^{2}+\int \frac{\left(4 a \nabla \phi_{R} \overline{\vec{w}}\right)^{2}}{4 \varepsilon}+a\left\|\phi_{R} \nabla \overline{\vec{w}}\right\|_{L^{2}}^{2}+a\left\|\phi_{R} \nabla \vec{\nu}\right\|_{L^{2}}^{2} \\ & \leq(a+\varepsilon)\left\|\phi_{R} \nabla \vec{\nu}\right\|_{L^{2}}^{2}+4 a^{2} \varepsilon^{-1}\left\|\vec{w} \nabla \phi_{R}\right\|_{L^{2}}^{2}+a\left\|\phi_{R} \nabla \vec{w}\right\|_{L^{2}}^{2} \end{aligned}

由此可得

\left|\textbf{I}\right|+\left|\textbf{II}\right|\leq(a+\varepsilon)\left\|\phi_{R}\nabla\vec{\nu}\right\|_{L^{2}}^{2}+\left(4\frac{a^{2}+\eta^{2}}{a}+4a^{2}\varepsilon^{-1}\right)R^{-2}\left\|\nabla\phi\right\|_{L^{\infty}}^{2}\left\|\vec{w}\right\|_{L^{2}}^{2},
(4.9)

这里利用了 \left\|\nabla\phi_{R}\right\|_{L^{\infty}}\leq R^{-1}\left\|\nabla\phi\right\|_{L^{\infty}}.

(2) 在假设条件 \left|1+i \frac{\mu}{b}\right|\leq2 下, 可证

\textbf{III}=-2\operatorname{Re}\Big((b+i\mu)(\phi_R^2(f(\vec{u})-f(\vec{\nu})),\vec{w})\Big)\le0.
(4.10)

f(\vec{u})-f(\vec{\nu})=\int_0^1{[2(\vec{u}-\vec{\nu})|Z|^{2}+(\overline{\vec{u}}-\overline{\vec{\nu}})|Z|^{2}]} {\rm d}\lambda,

其中 Z=\lambda\vec{u}+(1-\lambda)\vec{\nu}, 则有

\begin{align} \textbf{III}&=-2\operatorname{Re}\Bigg((b+i\mu)\int_0^1{\rm d}\lambda\int{\phi_R^2\big[2|\vec{w}|^2|Z|^2+\overline{\vec{w}}^2|Z|^2\big]}{\rm d}x\Bigg)\notag\\ &\leq2b\max\left\{0,\left|1+i\frac{\mu}{b}\right|-2\right\}\int_0^1{\rm d}\lambda\int\phi_R^2 \left|\vec{w}\right|^2\left|Z\right|^2{\rm d}x=0.\notag \end{align}

(3) 对于 \textbf{IV}, 利用 Young 不等式可得

\begin{split}\left|\textbf{IV}\right|&=2b\left|(\phi_R^2f(\vec{\nu}),\vec{w})\right|=2\int\left(b^{\frac{3}{16}}\phi_R^{\frac{2}{3}}\vec{\nu}\right)^3\left(b^{\frac{7}{16}}\vec{w}\right){\rm d}x\\&\leq2\int\frac{\left(b^{\frac{3}{16}}\phi_R^{\frac{2}{3}}\vec{\nu}\right)^4}{\frac{4}{3}}+\frac{\left(b^{\frac{7}{16}}\vec{w}\right)^4}{4}{\rm d}x\\&\leq\frac{3}{2}b^{\frac{3}{4}}\left\|\phi_{R}^{\frac{2}{3}}\vec{\nu}\right\|_{L^{4}}^{4}+\frac{1}{2}b^{\frac{7}{4}}\left\|\vec{w}\right\|_{L^{4}}^{4}.\end{split}
(4.11)

将上述 (4.9)-(4.11) 式的估计相加, 令 R\to\infty, \varepsilon\to0, 可得

\partial_t\int\left|\vec w\right|^2\leq a\left\|\nabla\vec{\nu}\right\|_{L^2}^2+\frac{3}{2}b^{\frac{3}{4}}\left\|\vec {\nu}\right\|_{L^4}^4+\frac{1}{2}b^{\frac{7}{4}}\left\|\vec w\right\|_{L^4}^4.
(4.12)

利用命题 4.1 中的估计, 对 t 进行积分可得

\left\|\vec{w}\right\|_{L^{2}}^{2}\leq\left\|\vec{u}_{0}-\vec{\nu}_{0}\right\|_{L^{2}}^{2}+a\wp(\vec{\nu}_{0})t+C_{1}b^{\frac{3}{4}}(1+b)\psi(\vec{\nu}_{0})t+C_{2}b^{\frac{3}{4}}\left(b\int_{0}^{t}\left\|\vec{u}(s)\right\|_{L^{4}}^{4} {\rm d}s\right),
(4.13)

其中 C_1,C_2 是常数.

由 (2.4) 式可知

b\int_0^t\left\|\vec{u}(s)\right\|_{L^4}^4{\rm d}s\leq\left\|\vec{u}_0\right\|_{L^2}^2,

将其代入 (4.13) 式中最后一项, 即可得 (3.2) 式.

定理 3.2 的证明 如果 \vec{\nu}_{0}\in H^{2}(\mathbb{R}^{n})\times H^{2}(\mathbb{R}^{n}), 则具有初值 \vec{\nu}_{0} 的非线性薛定谔方程组的解 \vec{\nu}\in C\Big([0,T);H^{2}\Big)\times C\Big([0,T);H^{2}\Big), 且满足定理 2.4 中的估计 (2.7), 因此可以对 \textbf{II}, \textbf{IV} 进行估计, 可得

\begin{split}\left|\textbf{II}\right|=2a\left|\mathrm{Re}(\phi_R^2\Delta\vec{\nu},\vec{w})\right|\leq\left\|\phi_R\vec{w}\right\| _{L^2}^2+a^2\left\|\phi_R\Delta\vec{\nu}\right\|_{L^2}^2,\\\left|\textbf{IV}\right|=2b\int\phi_R^2\left|f(\vec{\nu})\right|\left|\vec{w}\right|\leq\left\|\phi_R\vec{w}\right\|_{L^2}^2+b^2\left\|\vec{\nu}\right\|_{L^6}^6.\end{split}
(4.14)

\left\|\vec{\nu}\right\|_{L^{6}}^{6} 应用 Gagliardo-Nirenberg 不等式, 则有

\left\|\vec{\nu}\right\|_{L^6}\leq C\left\|\Delta\vec{\nu}\right\|_{L^2}^\theta\left\|\vec{\nu}\right\|_{L^2}^{1-\theta},

其中 \theta\geq0, \theta=\frac n6. 显然可见, 如果 n\leq6,\theta\leq1. 因此, 对于 \textbf{I}, \textbf{III} 的估计保持不变, 同样处理可得

\partial_{t}\int\left|\vec{w}\right|^{2}\leq2\left\|\vec{w}\right\|_{L^{2}}^{2}+a^{2}\left\|\Delta\vec{\nu}\right\|_{L^{2}}^{2}+b^{2}C\left\|\Delta\vec{\nu}\right\|_{L^{2}}^{n}\left\|\vec{\nu}\right\|_{L^{2}}^{6-n}.
(4.15)

利用 (2.7) 式, 对 t\leq T,

\left\|\Delta\vec{\nu}\right\|_{L^{2}}^{2}\leq K^{2}\left\|\vec{\nu}_{0}\right\|_{H^{2}}^{2}\equiv\Theta(\vec{\nu}_{0}),
(4.16)

其中 K 是与 T, \wp(\vec{\nu}_0) 有关的界. 令

\Gamma(\vec{\nu}_0)\equiv C\Theta(\vec{\nu}_{0})^{\frac{n}{2}}\left\|\vec{\nu}_{0}\right\|_{L^2}^{6-n},
(4.17)

对 (4.15) 式关于 t 进行积分, 可得

\begin{align} \left\|\vec{w}(t)\right\|_{L^2}^2&\leq\left\|\vec{w}_0\right\|_{L^2}^2+2\int_0^t\left\|\vec{w}(s)\right\|_{L^2}^2{\rm d}s+a^2\int_0^t\Theta(\vec{\nu}_{0}){\rm d}s+b^2\int_0^t\Gamma(\vec{\nu}_{0}){\rm d}s\notag\\ &\leq\left\|\vec{w}_{0}\right\|_{L^2}^2+2\left\|\vec{w}_{0}\right\|_{L^2}^2\int_0^t{\rm e}^{2s}{\rm d}s+a^2\Theta(\vec{\nu}_{0})\int_0^t{\rm e}^{2s}{\rm d}s+b^2\Gamma(\vec{\nu}_{0})\int_0^t{\rm e}^{2s}{\rm d}s\notag\\ &\leq {\rm e}^{2t}\left\|\vec{w}_{0}\right\|_{L^2}^2+\frac{a^2}{2}\Theta(\vec{\nu}_{0})({\rm e}^{2t}-1)+\frac{b^2}{2}\Gamma(\vec{\nu}_{0})({\rm e}^{2t}-1)\notag. \end{align}

定理 3.3 的证明 差值 \vec{w}=\vec{u}-\vec{\nu} 满足方程

\partial_t\vec{w}=(a+i\eta)\Delta\vec{w}+a\Delta\vec{\nu}-(b+i\mu)(f(\vec{u})-f(\vec{\nu}))-bf(\vec{\nu}),

其中 f(\vec{u})=\left|\vec{u}\right|^{2}\vec{u}, 类似可得

\begin{matrix} \partial_{t}\int\phi_{R}^{2}\left|\nabla\vec{w}\right|^{2}&=2\operatorname{Re}(a+i\eta)\int\phi_{R}^{2}\Delta(\nabla\vec{w})\nabla\overline{\vec{w}}+2a\operatorname{Re}\int\phi_{R}^{2}\Delta(\nabla\vec{\nu})\nabla\overline{\vec{w}}\notag\\ &\quad -2\operatorname{Re}(b+i\mu)\int\phi_{R}^{2}\nabla\left(f(\vec{u})-f(\vec{\nu})\right)\nabla\overline{\vec{w}}-2b\operatorname{Re}\int\phi_{R}^{2}\nabla f(\vec{\nu})\nabla\overline{\vec{w}}\\ &:=\textbf{I}+\textbf{II}+\textbf{III}+\textbf{IV}.\notag \end{matrix}
(4.18)

与前面的处理方法一样, 分别对上述四项进行估计.

(1) 通过简单计算可得

\textbf{I}=-2a\int\phi_R^2\left|\Delta\vec w\right|^2-4\operatorname{Re}(a+i\eta)\int\phi_R\Delta \vec{w}(\nabla\phi_R\nabla\overline{\vec w}),
\textbf{II}=-2a\operatorname{Re}\int\phi_R^2\Delta\vec{\nu}\Delta\overline{\vec {w}}-4a\operatorname{Re}\int\phi_R\Delta\vec{\nu}(\nabla\phi_R\nabla\overline{\vec{w}}).

类似于定理 3.1 的证明方法, 利用 Young 不等式可得

\begin{split}\left|\textbf{I}\right|+\left|\textbf{II}\right|&\leq-a\left\|\phi_R\Delta\vec{w}\right\|_{L^2}^2+(2a+\varepsilon)\left\|\phi_R\Delta\vec{\nu}\right\|_{L^2}^2\\&\quad +8\Bigg(\frac{a^2+\eta^2}{a}+a^2\varepsilon^{-1}\Bigg)R^{-2}\left\|\nabla\phi\right\|_{L^\infty}^2\left\|\nabla\vec {w}\right\|_{L^2}^2.\end{split}
(4.19)

其中 {\boldsymbol{\varepsilon}} 很小.

(2) 对 \textbf{III}, \textbf{IV}, 分部积分可得

\textbf{III}=2\operatorname{Re}(b+i\mu)\int\phi_R^2\left(f(\vec{u})-f(\vec{\nu})\right)\Delta\overline{\vec{w}}+4\operatorname{Re}(b+i\mu)\int\phi_R\left(f(\vec{u})-f(\vec{\nu})\right)\nabla\phi_R\nabla\overline{\vec{w}},
\textbf{IV}=2b\operatorname{Re}\int\phi_R^2f(\vec{\nu})\Delta\overline{\vec{w}}+4b\operatorname{Re}\int\phi_Rf(\vec{\nu})\nabla\phi_R\nabla\overline{\vec{w}},

因此

\begin{aligned} |\mathbf{I I I}| \leq & \int\left(\frac{\left(2 \frac{\sqrt{b^{2}+\mu^{2}}}{\sqrt{a}} \phi_{R}(f(\vec{u})-f(\vec{\nu}))\right)^{2}}{2}+\frac{\left(\sqrt{a} \phi_{R} \Delta \overline{\vec{w}}\right)^{2}}{2}\right) \\ & +4|b+i \mu| \int \phi_{R}(f(\vec{u})-f(\vec{\nu})) \nabla \phi_{R} \nabla \overline{\vec{w}} \\ \leq & 2 \frac{b^{2}+\mu^{2}}{a} \int \phi_{R}^{2}(f(\vec{u})-f(\vec{\nu}))^{2}+\frac{a}{2} \int \phi_{R}^{2}|\Delta \vec{w}|^{2} \\ & +4|b+i \mu|\left\|\nabla \phi_{R}\right\|_{L^{2}}\left(\int\left(|f(\vec{u})|^{2}+|f(\vec{\nu})|^{2}\right)\right)^{\frac{1}{2}}\left(\int|\nabla \vec{w}|^{2}\right)^{\frac{1}{2}} \\ \leq & 2 \frac{b^{2}+\mu^{2}}{a}\left(\int\left(\phi_{R}^{2} f(\vec{u})^{2}+\phi_{R}^{2} f(\vec{\nu})^{2}\right)\right)+\frac{a}{2} \int \phi_{R}^{2}|\Delta \vec{w}|^{2} \\ & +4|b+i \mu|\left\|\nabla \phi_{R}\right\|_{L^{2}}\left(\int\left(|f(\vec{u})|^{2}+|f(\vec{\nu})|^{2}\right)\right)^{\frac{1}{2}}\left(\int|\nabla \vec{w}|^{2}\right)^{\frac{1}{2}} \\ |\mathbf{I V}| \leq & \frac{2 b^{2}}{a} \int \phi_{R}^{2} f(\vec{\nu})^{2}+\frac{a}{2} \int \phi_{R}^{2}|\Delta \vec{w}|^{2} \\ & +4|b+i \mu|\left\|\nabla \phi_{R}\right\|_{L^{2}}\left(\int\left(|f(\vec{u})|^{2}+|f(\vec{\nu})|^{2}\right)\right)^{\frac{1}{2}}\left(\int|\nabla \vec{w}|^{2}\right)^{\frac{1}{2}} \end{aligned}

由此可得

\begin{split}\left|\textbf{III}+\textbf{IV}\right|&\leq a\int\phi_R^2\left|\Delta\vec{w}\right|^2+2a^{-1}(b^2+\mu^2)\int\phi_R^2\left|f(\vec{u})\right|^2\\&\quad +2a^{-1}(2b^2+\mu^2)\int\phi_R^2\left|f(\vec{\nu})\right|^2\\&\quad +8\left|b+i\mu\right|R^{-1}\left\|\nabla\phi\right\|_{L^\infty}\left(\int\left(\left|f(\vec{u})\right|^2+\left|f(\vec{\nu})\right|^2\right)\right)^{\frac12}\left(\int\left|\nabla\vec{w}\right|^2\right)^{\frac12}.\end{split}
(4.20)

将 (4.19), (4.20) 式相加, 对 t 积分, 令 R\to\infty, \varepsilon\to0 可得

\begin{split}\int\left|\nabla\left(\vec{u}-\vec{\nu}\right)\right|^2&\leq\int\left|\nabla\left(\vec{u}_0-\vec{\nu}_0\right)\right|^2+2a\int_0^t\left\|\Delta\vec{\nu}(s)\right\|_{L^2}^2{\rm d}s\\&\quad +4a^{-1}(b^2+\mu^2)\int_0^t\left\|\vec{\nu}(s)\right\|_{L^6}^6{\rm d}s+2a^{-1}(b^2+\mu^2)\int_0^t\left\|\vec{u}(s)\right\|_{L^6}^6{\rm d}s.\end{split}
(4.21)

在定理 3.2 的证明中有

\left\|\Delta\vec{\nu}\right\|_{L^2}^2\leq\Theta(\vec{\nu}_{0}),\quad \left\|\vec{\nu}(t)\right\|_{L^6}^6\leq\Gamma(\vec{\nu}_{0}).
(4.22)

在命题 4.2 的证明中给出了 \left\|\vec{u}\right\|_{L^6}^6 的估计

\left\|\vec{u}\right\|_{{L^{6}}}^{6}\leq C\left\|\Delta\vec{u}\right\|_{{L^{2}}}^{n}\left\|\vec{u}\right\|_{{L^{2}}}^{6-n}.

因此有

\int_0^t\left\|\vec{u}(s)\right\|_{L^6}^6{\rm d}s\leq C\left\|\vec{u}_0\right\|_{L^2}^{6-n}\left(\int_0^t\left\|\Delta\vec{ u}(s)\right\|_{L^2}^2{\rm d}s\right)^{\frac n2}t^{1-\frac n2}.
(4.23)

由命题 4.2 可知, 如果 n=2, \left\|\vec{u}_0\right\|_{L^2} 很小, 则

\int_0^t\left\|\vec{u}(s)\right\|_{L^6}^6{\rm d}s\leq C\left\|\vec{u}_0\right\|_{L^2}^{6-n}\left\|\nabla\vec{u}_0\right\|_{L^2}^2\left(a-Ca^{-1}(b^2+\mu^2)\left\|\vec{u}_0\right\|_{L^2}^{6-n}\right)^{-1},
(4.24)

如果 n<2, 则

\int_{0}^{t}\left\|\vec{u}(s)\right\|_{{L^{6}}}^{6}{\rm d}s\leq\max\left\{Ca^{{-\frac{n}{2}}}\left\|\nabla\vec{u}_{0}\right\|_{{L^{2}}}^{n}\left\|\vec{u}_{0}\right\|_{{L^{2}}}^{6-n}t^{{1-\frac{n}{2}}},C(a^{-2}(b^{2}+\mu^{2}))^{{\frac{n}{2-n}}}\left\|\vec{u}_{0}\right\|_{{L^{2}}}^{{2+\frac{8}{2-n}}}t\right\}.
(4.25)

在 (4.24) 与 (4.25) 式中的界限用 \Psi(\vec{\nu}_0,a,b,t) 来表示. 如果 b^2+\mu^2=O(a^2),

\Psi(\vec{\nu}_{0},a,b,t)=O(a^{-\frac n2}).

利用上述的 (4.22)-(4.25) 式可得

\begin{align} (4.21)&\leq\left\|\nabla \vec{w}_{0}\right\|_{L^2}^2+2a\Theta(\vec{\nu}_{0})\int_0^t1{\rm d}s+4a^{-1}(b^2+\mu^2)\Gamma(\vec{\nu}_{0})\int_0^t1{\rm d}s+2a^{-1}(b^2+\mu^2)\Psi(\vec{\nu}_{0},a,b,t)\notag\\ &\leq\left\|\nabla \vec{w}_{0}\right\|_{{L^{2}}}^{2}+2a\Theta(\vec{\nu}_{0})t+4a^{-1}(b^{2}+\mu^{2}) \Gamma(\vec{\nu}_{0})t+2a^{-1}(b^{2}+\mu^{2})\Psi(\vec{\nu}_{0},a,b,t).\notag \end{align}

参考文献

Guo B, Jiang M, Li Y. Ginzburg-Landau Equations. Beijing: Science Press, 2020

[本文引用: 1]

Li Y S, Guo B L.

Global existence of solutions to the derivative 2D Ginzburg-Landau equation

J Math Anal Appl, 2000, 249: 412-432

[本文引用: 1]

Wu J.

The inviscid limit of the complex Ginzburg-Landau equation

J Differential Equations, 1998, 142(2): 413-433

[本文引用: 8]

Bechouche P, Jungel A.

Inviscid limits of the complex Ginzburg-Landau equation

Comm Math Phys, 2000, 214(1): 201-226

[本文引用: 1]

Wang B.

The limit behavior of solutions for the Cauchy problem of the complex Ginzburg-Landau equation

Comm Pure Appl Math, 2002, 55(4): 481-508

[本文引用: 1]

Huang C, Wang B.

Inviscid limit for the energy-critical complex Ginzburg-Landau equation

J Funct Anal, 2008, 255(3): 681-725

[本文引用: 1]

Nouaili N, Zaag H.

Construction of a blow-up solution for the complex Ginzburg-Landau equation in a critical case

Arch Ration Mech Anal, 2018, 228(3): 995-1058

[本文引用: 1]

Porretta A.

A note on the Sobolev and Gagliardo-Nirenberg inequality when p>N

Adv Nonlinear Stud, 2020, 20(2): 361-371

DOI:10.1515/ans-2020-2086      [本文引用: 1]

It is known that the Sobolev space W-1,W-P(R-N) is embedded into LNP/(N-P)(R-N) if p < N and into L-infinity(R-N) if p > N. There is usually a discontinuity in the proof of those two different embeddings since, for p > N, the estimate parallel to u parallel to(infinity) <= C parallel to Du parallel to(N/P)(p)parallel to u parallel to(1-N/p)(p) is commonly obtained together with an estimate of the Holder norm. In this note, we give a proof of the L-infinity-embedding which only follows by an iteration of the Sobolev-Gagliardo-Nirenberg estimate parallel to u parallel to(N/(N-1)) <= C parallel to Du parallel to(1). This kind of proof has the advantage to be easily extended to anisotropic cases and immediately exported to the case of discrete Lebesgue and Sobolev spaces; we give sample results in case of finite differences and finite volumes schemes.

/