Processing math: 11%

数学物理学报, 2025, 45(1): 31-43

带有渐近概周期系数的次线性热方程解的存在唯一性

任琛琛,*, 杨苏丹,

江西师范大学数学与统计学院 南昌 330022

Existence and Uniqueness of Solutions for Sub-Linear Heat Equations with Almost Periodic Coefficients

Ren Chenchen,*, Yang Sudan,

School of Mathematics and Statistics, Jiangxi Normal University, Nanchang 330022

通讯作者: * 任琛琛, E-mail:nihal524@163.com

收稿日期: 2024-05-16   修回日期: 2024-08-7  

基金资助: 国家自然科学基金(12361023)
江西省双千计划(jxsq2019201001)
江西省自然科学基金重点项目(20242BAB26001)

Received: 2024-05-16   Revised: 2024-08-7  

Fund supported: NSFC(12361023)
Two Thousand Talents Program of Jiangxi Province(jxsq2019201001)
Key Project of Jiangxi Provincial NSF(20242BAB26001)

作者简介 About authors

杨苏丹,E-mail:2353692672@qq.com

摘要

在自然界中, 概周期函数要比周期函数 "多得多". 而概周期函数的一个重要推广就是著名数学家 M Fréchet 研究带扰动的概周期运动时提出的渐近概周期函数. 得益于这一扰动项, 渐近概周期函数的适用范畴也更加广泛. 该文研究系数具有渐近概周期性的次线性热方程渐近概周期解的存在唯一性.

关键词: 渐近概周期解; 弱解; 次线性热方程

Abstract

In nature, almost periodic functions are "much more" than periodic functions, and an influential generalization of almost periodic functions is the asymptotic almost periodic function proposed by the famous mathematician M Fréchet in the study of almost periodic motions with perturbations. Thanks to this perturbative term, asymptotically almost periodic functions have a wider range of applications. In this paper, we study the existence and uniqueness of asymptotically almost periodic solutions of sub-linear heat equations with asymptotically almost periodic coefficients.

Keywords: asymptotically almost periodic solutions; weak solutions; sub-linear heat equations

PDF (558KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

任琛琛, 杨苏丹. 带有渐近概周期系数的次线性热方程解的存在唯一性[J]. 数学物理学报, 2025, 45(1): 31-43

Ren Chenchen, Yang Sudan. Existence and Uniqueness of Solutions for Sub-Linear Heat Equations with Almost Periodic Coefficients[J]. Acta Mathematica Scientia, 2025, 45(1): 31-43

1 引言

每隔一段时间会重复出现的现象称为周期现象, 这是自然界中一类常见的现象, 如海水的潮汐现象、钟表上的时针和四季变化现象等等. 但是, 我们发现两个周期函数相加, 未必是周期函数, 如 cosx+cosπx. 在二十世纪二、三十年代, H Bohr 建立了概周期函数的理论. Zheng 等在文献 [29] 中证明了连续周期函数空间是概周期函数空间中的第一纲集. 从而说明了概周期函数要比周期函数 "多得多".关于概周期的相关文献,我们还可以参考文献[2,3,5-9,11].

当微分方程系数为概周期时, 次线性热方程的结果有很多,我们可以参考文献[1,4,12-17,20,21,23,25-27]. 1973 年 Rao 在文献[18]中研究了

ddtu(t)Bu(t)=f(t),t(,+),
(1.1)

其中 B是 Banach 空间的有界线性算子, 证明了当 p>1时, 对连续的 Sp 概周期函数 f(t), 方程 (1:1) 的 Sp有界解是概周期解. 2017年Xie和Lei在文献 [22] 中研究了满足狄利克雷边界条件的次线性热方程

{utΔu=f(x,t)uq(x,t),(x,t)Ω×R,u(x,t)=0,(x,t)Ω×R,
(1.2)

其中有界域 ΩRN, Ω 是光滑的, 0<q<1.f(x,t) 具有概周期性时, 则方程 (1.2) 的 L(Ω) 全局有界解是概周期解. 2009年Rossi在文献 [19] 中研究了

utLu=f(x,t),xRN,tR,
(1.3)

其中 Lu=aij(x,t)iju+bi(x,t)iu+c(x,t)u. 结果表明若 f(x,t) 是概周期的, 且 λp(L)0, λpL 的周期主特征值, 则方程(1.3)的有界解是概周期解. 2019年Xie和Lei在文献 [23] 研究了在整个实值上半线性抛物方程狄利克雷边界问题

{utΔu=g(x,t,u),(x,t)Ω×R,u(x,t)=0,(x,t)Ω×R,
(1.4)

其中有界域 ΩR, 边界 ΩC1, gΩ×R×R 上是可测函数. 定义函数

σ(x,t,u)={g(x,t,u)g(x,t,0)u,(x,t)Ω×R, 0uR,gu(x,t,0),(x,t)Ω×R, u=0,

作者证明了若 σ(,t,)g(,t,0) 具有概周期性, 在 g 满足一定的条件下, 则方程(1.4)存在概周期解. 而且Xie和Lei还考虑了线性情况

{utΔu=λu+f(x,t),(x,t)Ω×R,u(x,t)=0,(x,t)Ω×R,

其中 λR, 且 fL2loc(R;L2(Ω)). 证明了若 f(x,t) 是概周期的, 则方程 (1.5) 的 L2(Ω) 全局有界解是概周期解.

综上所述, f(x,t)是否具有概周期性, 对微分方程是否存在概周期解的影响很大. 在自然科学和社会科学中, 为满足科学研究和实践的需要, 概周期函数理论有一个非常重要的推广, 即 MFréchet[10,11] 在研究带扰动的概周期运动时提出的渐近概周期函数. 渐近概周期函数是概周期函数加上 C0 扰动项形成的, 这使得其相似于概周期函数性质的研究更加复杂, 如渐近概周期函数的有界原函数是否是渐近概周期的研究. 然而, 得益于这一扰动项, 渐近概周期函数的适用范畴也更加广泛, 如其和微分方程以及稳定性理论相结合的研究.

受此启发, 在文献[22]的基础上, 若 f(x,t) 的条件更弱, 即 f(x,t) 具有渐近概周期性时, 本文研究了次线性热方程 (1.2) 渐近概周期解的存在唯一性.

我们得到如下主要结果

定理1.1f(x,t)L(Ω×R), L:=inf, 若 f(x,t) 具有渐近概周期性, 则方程 (1.2) 存在唯一的渐近概周期解.

全文主要分为两部分:第一部分为预备知识和主要引理, 第二部分为主要定理的证明.

2 预备知识和主要引理

定义 2.1[28]P\subset \mathbb{R}, 若存在 l>0, 使得对任给的 a \in \mathbb{R}, [a, a+l] \cap P \neq \phi, 则称 P\mathbb{R}上的一个相对稠密子集.

定义 2.2[28] 假设 u:\mathbb{R} \to X 是连续函数, 若对于任意的 \varepsilon>0, 存在 \mathbb{R} 中的一个相对稠密子集 P_{\varepsilon} 和一个有界子集 C_{\varepsilon} 满足

\begin{equation} \|u(t+\tau)-u(t)\|_{X}<\varepsilon \qquad (\tau \in P_{\varepsilon}, \quad t,\ t+\tau \in \mathbb{R} \backslash C_{\varepsilon}),\nonumber \end{equation}

则称 u 为渐近概周期函数, 记作 u \in AAP(\mathbb{R},X).

注 2.1 本文主要结果中研究的空间为 L^{\alpha}(\Omega), 其中 \alpha>\frac{1}{1-q}.

对于

\begin{equation} \left\{\begin{array}{ll}\label{6.4} \frac{\partial u}{\partial t}-\Delta u=h(x,t), & \quad (x,t) \in \Omega \times[T], \\ u=0,&\quad (x,t)\in \partial \Omega\times [T],\\ u=g, &\quad (x,t) \in \Omega \times\{{t=0}\}. \end{array}\right. \end{equation}
(2.1)

给出上述方程弱解的定义之前, 我们先定义映射 u:[T]\to H_{0}^{1}(\Omega)

[u(t)](x):=u(x,t)\quad (x\in \Omega, \ 0\leq t\leq T).

换句话说, 不把 u 看成 (x,t) 的函数, 而是看成 tx 的函数空间 H_{0}^{1}(\Omega) 上的映射 u. 下面给出弱解的定义

定义 2.3[8] 如果 u 满足

(i) u\in L^{2}(0,T;H_{0}^{1}(\Omega)),\ \frac{\partial u}{\partial t}\in L^{2}(0,T;H^{-1}(\Omega));

(ii) 对任意 v\in H_{0}^{1}(\Omega), 对 {\rm a.e.}\ t\in [T], 有

\begin{equation} \int_{\Omega}\frac{\partial [u(t)](x)}{\partial t}v+\nabla[u(t)](x)\nabla vdx=\int_{\Omega} h(x,t)v{\rm d}x,\nonumber \end{equation}

并且 [u(0)](x)=g(x), 则称 u 是方程(2.1)的弱解.

引理 2.1[8]h(x,t)\in L^{2}(0,T;L^{2}(\Omega)),\ g(x)\in L^{2}(\Omega), 则方程(2.1)存在唯一弱解 u(x,t), 并且 u(x,t) 满足以下估计

\begin{equation} \begin{aligned} &\max\limits_{0\leq t\leq T}\|[u(t)](x)\|_{L^{2}(\Omega)}+\|u\|_{L^{2}(0,T;H_{0}^{1}(\Omega))}+\|\frac{\partial u}{\partial t}\|_{L^{2}(0,T;H^{-1}(\Omega))}\\ \leq\,& C(\|h(x,t)\|_{L^{2}(0,T;L^{2}(\Omega))}+\|g\|_{L^{2}(\Omega)}),\nonumber \end{aligned} \end{equation}

其中 C 仅依赖于 \Omega,\ T.

我们首先考虑如下时间变量在有限区间上的非线性问题

\begin{equation} \left\{\begin{array}{ll}\label{nq1} \frac{\partial u}{\partial t}-\Delta u=f(x,t)u^{q}(x,t), & \quad (x,t) \in \Omega \times[T], \\ u=0,&\quad (x,t)\in \partial \Omega\times [T],\\ u=g, &\quad (x,t) \in \Omega \times\{{t=0}\}, \end{array}\right. \end{equation}
(2.2)

其中, g(x)\in L^2(\Omega) 在后面的证明中待定.

引理 2.2f(x,t)\in L^{\infty}(\Omega \times \mathbb{R}), L:=\inf \limits_{\Omega\times \mathbb{R}}f(x,t)>0, 则方程 (2.2)存在弱解.

(i) 记开球 B_{r}(0):=\{x\in\mathbb{R}^{N}|\ |x|<r\}. 选择充分大 r>0, 使得 \Omega \subset\subset B_{r}(0). \lambda_{1}, \lambda_{r1} 分别是 Laplace 算子 -\Delta\OmegaB_{r}(0) 上的第一特征值, 其对应的特征函数分别是 \psi_{1}(x),\ \psi_{r1}(x). 并且 \sup \limits _{x\in \Omega}|\psi_{1}(x)|=\sup \limits _{x\in \Omega}|\psi_{r1}(x)|=1, 由强极值原理可知 \gamma:=\inf\limits _{x\in \Omega}|\psi_{r1}(x)|>0. 构造以下函数

\begin{equation} N(x)=\eta_{1} \psi_{1}(x),\qquad M(x)=\eta_{2} \psi_{ r1}(x), \nonumber \end{equation}

其中

\begin{equation} \eta_{1}=\left(\frac{L}{\lambda_{1}}\right)^{\frac{1}{1-q}}, \qquad \eta_{2}=\max \left\{\frac{1}{\gamma}\left(\frac{F}{\lambda_{r1}}\right)^{\frac{1}{1-q}}, \frac{\eta_{1}}{\gamma}\right\}, \qquad F=\mathop{\rm esssup}\limits_{\Omega\times \mathbb{R}}f(x,t).\nonumber \end{equation}

直接计算, 得到了以下结果

\begin{equation}\label{3.9} \frac{\partial N(x)}{\partial t}-\Delta N(x)\leq f(x, t) N^{q}(x), \end{equation}
(2.3)
\begin{equation}\label{3.10} \frac{\partial M(x)}{\partial t}-\Delta M(x)\geq f(x, t) M^{q}(x), \end{equation}
(2.4)

并且

\begin{equation}\label{6.16} 0<N(x)\leq M(x)\leq \eta_{2}. \end{equation}
(2.5)

u_{0}=N(x), h(x,t)=f(x,t)u_{0}^{q}, 由于 f(x,t)\in L^{\infty}(Q_{-\infty}^{+\infty}), 可得 f(x,t)u_{0}^{q}\in L^{2}(0,T;L^{2}(\Omega)).g(x)=N(x), 由于 \sup \limits _{x\in \Omega}|N(x)|\le \eta_{2}, 因此 N(x)\in L^{2}(\Omega). 由引理 2.1, 方程(2.1)存在唯一弱解 u_{1}(x,t), 并且

\begin{equation}\label{nf1} \begin{aligned} &\max\limits_{0\leq t\leq T}\|[u_{1}(t)](x)\|_{L^{2}(\Omega)}+\|u_{1}\|_{L^{2}(0,T;H_{0}^{1}(\Omega))}+\|\frac{\partial u}{\partial t}\|_{L^{2}(0,T;H^{-1}(\Omega))}\\ \leq \,&C(\|f(x,t)u_{0}^{q}\|_{L^{2}(0,T;L^{2}(\Omega))}+\|N(x)\|_{L^{2}(\Omega)})\leq C. \end{aligned} \end{equation}
(2.6)

相同地, 令 h(x,t)=f(x,t)u_{1}^{q}, 由 (2.6) 式可得 f(x,t)u_{1}^{q}\in L^{2}(0,T;L^{2}(\Omega)), 再次应用引理 2.1, 方程 (2.1) 存在唯一弱解 u_{2}(x,t), 且使得 f(x,t)u_{2}^{q}\in L^{2}(0,T;L^{2}(\Omega)). 以此方式迭代, 得到 \{u_{n}\}_{n=1}^{+\infty} 满足

\begin{equation}\label{3.19} \left\{\begin{array}{ll} \frac{\partial u_{n}}{\partial t}-\Delta u_{n}=f(x, t) u_{n-1}^{q}, & (x, t) \in \Omega\times[T],\\ u_{n}=0,& (x, t) \in \partial \Omega \times[T],\\ u_{n}=N(x), & x \in \Omega\times\{t=0\}. \end{array}\right. \end{equation}
(2.7)

即对于所有 n=1, 2, \cdots, 对任意 v\in H_{0}^{1}(\Omega), 有

\begin{equation}\label{6.10} \int_{\Omega}\frac{\partial [u_{n}(t)](x)}{\partial t}v+\nabla [u_{n}(t)](x)\nabla v{\rm d}x=\int_{\Omega} f(x,t)[u_{n-1}^{q}(t)](x)v{\rm d}x,\qquad {\rm a.e.}\ t\in [T]. \end{equation}
(2.8)

(ii) 下面证明, 对 {\rm a.e.}\ t\in [T], 有

\begin{equation}\label{7.15} N(x)=u_{0}\leq [u_{1}(t)](x)\leq [u_{2}(t)](x)\leq \cdots \leq [u_{n}(t)](x)\leq \cdots, \qquad {\rm a.e.}\ x\in \Omega. \end{equation}
(2.9)

先证明

u_{0}\leq [u_{1}(t)](x),\qquad {\rm a.e.}\ t\in [T].

由 (2.3), (2.8) 式可知, 对任意 v\in H_{0}^{1}(\Omega), 有

\begin{align*} &\int_{\Omega}\frac{\partial u_{0}}{\partial t}v+\nabla u_{0}\nabla v {\rm d}x\leq \int_{\Omega} f(x,t)u_{0}^{q}v{\rm d}x,\nonumber \\[1mm] &\int_{\Omega}\frac{\partial [u_{1}(t)](x)}{\partial t}v+\nabla[u_{1}(t)](x)\nabla v{\rm d}x=\int_{\Omega} f(x,t)[u_{0}^{q}(t)](x)v{\rm d}x.\nonumber \end{align*}

两式相减, 取 v:=\big(u_{0}-[u_{1}(t)](x)\big)^{+}\in H_{0}^{1}(\Omega)

\begin{equation} \int_{\Omega}\frac{\partial \big(u_{0}-[u_{1}(t)](x)\big)}{\partial t}\big(u_{0}-[u_{1}(t)](x)\big)^{+}+\nabla\big(u_{0}-[u_{1}(t)](x)\big) \nabla\big(u_{0}-[u_{1}(t)](x)\big)^{+}{\rm d}x\leq 0,\nonumber \end{equation}

由于

\begin{equation} \nabla\big(u_{0}-[u_{1}(t)](x)\big)^{+}=\left\{\begin{array}{ll} \nabla\big(u_{0}-[u_{1}(t)](x)\big), &{\rm a.e.}\text{于}\ \{u_{0}\geq [u_{1}(t)](x)\},\\ 0,&{\rm a.e.}\text{于}\ \{u_{0}\leq [u_{1}(t)](x)\},\nonumber \end{array}\right. \end{equation}

因此

\begin{equation}\label{7.9} \int_{\{u_{0}\geq [u_{1}(t)](x)\}}\frac{\partial \big(u_{0}-[u_{1}(t)](x)\big)}{\partial t}\big(u_{0}-[u_{1}(t)](x)\big)+|\nabla\big(u_{0}-[u_{1}(t)](x)\big)|^{2}{\rm d}x\leq 0, \end{equation}
(2.10)

可得

\begin{equation} \frac{1}{2}\frac{\rm d}{{\rm d}t}\int_{\{u_{0}\geq [u_{1}(t)](x)\}}|\big(u_{0}-[u_{1}(t)](x)\big)|^{2}{\rm d}x+\int_{\{u_{0}\geq [u_{1}(t)](x)\}}|\nabla\big(u_{0}-[u_{1}(t)](x)\big)|^{2}{\rm d}x\leq 0.\nonumber \end{equation}

将上式在 [T] 上对 t 积分得

\begin{equation} \frac{1}{2}\int_{\{u_{0}\geq [u_{1}(T)](x)\}}|\big(u_{0}-[u_{1}(T)](x)\big)|^{2}{\rm d}x+\int_{0}^{T}\int_{\{u_{0}\geq [u_{1}(t)](x)\}}|\nabla\big(u_{0}-[u_{1}(t)](x)\big)|^{2}{\rm d}x{\rm d}t\leq 0.\nonumber \end{equation}

因此, 对 {\rm a.e.}\ t\in [T], 有

\begin{equation} u_{0}\leq [u_{1}(t)](x),\qquad {\rm a.e.}\text{于}\ \Omega,\nonumber \end{equation}

特别地

\begin{equation} u_{0}\leq [u_{1}(T)](x),\qquad {\rm a.e.}\text{于}\ \Omega.\nonumber \end{equation}

假设对 {\rm a.e.}t\in [T], 成立

[u_{n-1}(t)](x)\leq[ u_{n}(t)](x),\qquad {\rm a.e.}\text{于}\ \Omega.

由 (2.8)式可知, 对任意 v\in H_{0}^{1}(\Omega), 有

\begin{equation}\label{7.1} \int_{\Omega}\frac{\partial [u_{n}(t)](x)}{\partial t}v+\nabla[u_{n}(t)](x)\nabla v{\rm d}x=\int_{\Omega} f(x,t)[u_{n-1}^{q}(t)](x)v{\rm d}x, \end{equation}
(2.11)
\begin{equation} \int_{\Omega}\frac{\partial [u_{n+1}(t)](x)}{\partial t}v+\nabla[u_{n+1}(t)](x)\nabla v{\rm d}x=\int_{\Omega} f(x,t)[u_{n}^{q}(t)](x)v{\rm d}x,\nonumber \end{equation}

两式相减, 并取 v=\big([u_{n}(t)](x)-[u_{n-1}(t)](x)\big)^{+}\in H_{0}^{1}(\Omega), 有

\begin{equation} \begin{aligned} &\int_{\Omega}\frac{\partial \big([u_{n}(t)](x)-[u_{n+1}(t))](x)}{\partial t}\big([u_{n}(t)](x)-[u_{n-1}(t)](x)\big)^{+}\\ &+\nabla\big([u_{n}(t)](x)-[u_{n-1}(t)](x)\big) \nabla\big([u_{n}(t)](x)-[u_{n-1}(t)](x)\big)^{+}{\rm d}x\\ =\,&\int_{\Omega}f(x,t)\big([u_{n-1}^{q}(t)](x)-[u_{n}^{q}(t)](x)\big) \big([u_{n}(t)](x)-[u_{n-1}(t)](x)\big)^{+}{\rm d}x\leq 0 \nonumber. \end{aligned} \end{equation}

同前面处理方法类似可得, 对 {\rm a.e.}\ t\in[T], 有

\begin{equation} [u_{n}(t)](x)\leq [u_{n+1}(t)](x),\qquad {\rm a.e.}\text{于}\ \Omega,\nonumber \end{equation}

以及

\begin{equation} [u_{n}(T)](x)\leq [u_{n+1}(T)](x),\qquad {\rm a.e.}\text{于}\ \Omega.\nonumber \end{equation}

由数学归纳法可知 (2.9)式成立.

接下来证明对所有 n=1, 2, \cdots, 对 {\rm a.e.}\ t\in [T], 有

\begin{equation}\label{10} [u_{n}(t)](x)\leq M(x),\qquad {\rm a.e.}\text{于}\ \Omega, \end{equation}
(2.12)

n=0 时, 由 (2.5) 式可知上式成立, 假设 [u_{n-1}(t)](x)\leq M(x), {\rm a.e.}\Omega, 由 (2.4) 式和 (2.11) 式, 取 v:=\big([u_{n}(t)](x)-M(x)\big)

\begin{equation}\label{666} \begin{aligned} &\int_{\{[u_{n}(t)](x)\geq M(x)\}}\frac{\partial \big([u_{n}(t)](x)\!-\!M(x)\big)}{\partial t}\big([u_{n}(t)](x)\!-\!M(x)\big)\!+\!| \nabla\big([u_{n}(t)](x)\!-\!M(x)\big)|^{2}{\rm d}x\\ =\,&\int_{\{[u_{n}(t)](x)\geq M(x)\}}f(x,t)\big([u_{n-1}^{q}(t)](x)-M^{q}(x)\big) \big([u_{n}(t)](x)-M(x)\big){\rm d}x\leq 0. \end{aligned} \end{equation}
(2.13)

与之前处理 (2.10) 式方法相同, 对 {\rm a.e.}\ t\in [T], 有

\begin{equation}\label{6.20} [u_{n}(t)](x)\leq M(x),\qquad {\rm a.e.}\text{于}\ \Omega,\nonumber \end{equation}

以及

\begin{equation}\label{6.21} [u_{n}(T)](x)\leq M(x),\qquad {\rm a.e.}\text{于}\ \Omega.\nonumber \end{equation}

由 (2.12), (2.9)式得, 对 {\rm a.e.}\ t\in (0,T), 包含端点 t=0t=T, 有

\begin{equation} N(x)=u_{0}\leq [u_{1}(t)](x)\leq [u_{2}(t)](x)\leq \cdots \leq [u_{n}(t)](x)\leq \cdots \leq M(x),\qquad {\rm a.e.}\,\text{于}\ \Omega.\nonumber \end{equation}

因此存在函数 u^{(0)}, 对 {\rm a.e.}\ t\in [T], 有

\begin{align*} & u_{n}\to u^{(0)},\qquad\qquad\qquad\qquad\ \ \, {\rm a.e.}\ \text{于}\ \Omega,\nonumber \\ & [u_{n}(T)](x)\to [u^{(0)}(T)](x),\qquad {\rm a.e.}\ \text{于}\ \Omega.\nonumber \end{align*}

由 Lebesgue 控制收敛定理可知

\begin{array}{ll} u_{n} \rightarrow u^{(0)}, & \text { 于 } L^{2}\left(0, T ; L^{2}(\Omega)\right), \\ {\left[u_{n}(T)\right](x) \rightarrow\left[u^{(0)}(T)\right](x),} & \text { 于 } L^{2}(\Omega). \end{array}
(2.14)

直接计算可知, \{u_{n}\}_{n=1}^{+\infty}L^{2}(0,T;H_{0}^{1}(\Omega)) 中有界, \{\frac{\partial u_{n}}{\partial t}\}_{n=1}^{+\infty}L^{2}(0,T;H^{-1}(\Omega)) 中有界, 于是存在子列 \{u_{n_{k}}\}_{k=1}^{+\infty} 使得

u_{n_{k}} \rightharpoonup u^{(0)}, \quad \text { 于 } L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right),.
(2.15)
\frac{\partial u_{n_{k}}}{\partial t} \rightharpoonup \frac{\partial u^{(0)}}{\partial t}, \quad \text { 于 } L^{2}\left(0, T ; H^{-1}(\Omega)\right) \text {. }.
(2.16)

(iii) 下面证明 u^{(0)} 满足定义 2.3中的积分等式. 由弱解定义知, 对任意 v\in H_{0}^{1}(\Omega)

\begin{equation}\label{7.11} \int_{\Omega}\frac{\partial [u_{n_{k}}(t)](x)}{\partial t}v+\nabla[u_{n_{k}}(t)](x)\nabla v{\rm d}x=\int_{\Omega}f(x,t)[u_{n_{k}-1}^{q}(t)](x)v{\rm d}x, \quad {\rm a.e.}\ t\in [T]. \end{equation}
(2.17)

任取 \varphi(t)\in C_{0}^{\infty}(0,T), 用 \varphi(t) 乘以上式, 然后在 [T] 上关于 t积分得

\begin{equation} \int_{0}^{T}\int_{\Omega}\frac{\partial [u_{n_{k}}(t)](x)}{\partial t}v \varphi(t) +\nabla[u_{n_{k}}(t)](x)\nabla v \varphi (t){\rm d}x{\rm d}t=\int_{0}^{T}\int_{\Omega}f(x,t)[u_{n_{k}-1}^{q}(t)](x)v \varphi(t) {\rm d}x{\rm d}t.\nonumber \end{equation}

使用 (2.14), (2.15) 和 (2.16)式可知当 k\to \infty时, 有

\begin{equation} \int_{0}^{T}\int_{\Omega}\frac{\partial[ u^{(0)}(t)](x)}{\partial t}v \varphi(t) +\nabla[u^{(0)}(t)](x)\nabla v \varphi (t) {\rm d}x{\rm d}t=\int_{0}^{T}\int_{\Omega}f(x,t)[u^{(0)^{q}}(t)](x)v \varphi(t) {\rm d}x{\rm d}t,\nonumber \end{equation}

\varphi(t) 的任意性, 以及 C_{0}^{\infty}(0,T)L^{2}(0,T) 中的稠密性可知

\begin{equation}\label{6.31} \int_{\Omega}\frac{\partial [u^{(0)}(t)](x)}{\partial t}v+\nabla[u^{(0)}(t)](x)\nabla vdx=\int_{\Omega}f(x,t)[u^{(0)^{q}}(t)](x)v{\rm d}x, \quad {\rm a.e.}\ t\in [T]. \end{equation}
(2.18)

(iv) 下证 [u^{(0)}(0)](x)=N(x). 任取 \varphi(t)\in C^{1}(0,T), 并且 \varphi(T)=0. 在(2.18)式两边同乘 \varphi(t), 并在 [T] 上对 t积分有

\begin{equation}\label{6.32} \begin{aligned} &\int_{0}^{T}\int_{\Omega}-[u^{(0)}(t)](x)v \frac{\partial\varphi }{\partial t}(t)+\nabla[u^{(0)}(t)](x)\nabla v\varphi(t) {\rm d}x{\rm d}t \\ =\,&\int_{0}^{T}\int_{\Omega}f(x,t)[u^{(0)^{q}}(t)](x)v\varphi(t) {\rm d}x{\rm d}t+([u^{(0)}(0)](x), \varphi(0) v), \end{aligned} \end{equation}
(2.19)

同理由 (2.17)式可得

\begin{equation} \begin{aligned} &\int_{0}^{T}\int_{\Omega}-[u_{n_{k}}(t)](x)v\frac{\partial \varphi}{\partial t}(t)+\nabla[u_{n_{k}}(t)](x)\nabla v\varphi (t) {\rm d}x{\rm d}t\\ =\,&\int_{0}^{T}\int_{\Omega}f(x,t)[u_{n_{k}-1}^{q}(t)](x)v\varphi(t) {\rm d}x{\rm d}t+(N(x), \varphi(0)v),\nonumber \end{aligned} \end{equation}

由 (2.15)式可得

\begin{equation}\label{7.10} \begin{aligned} &\int_{0}^{T}\int_{\Omega}-[u^{(0)}(t)](x)v\frac{\partial \varphi}{\partial t}(t)+\nabla[u^{(0)}(t)](x)\nabla v\varphi(t){\rm d}x{\rm d}t\\ =\,&\int_{0}^{T}\int_{\Omega}f(x,t)[u^{{(0)}^{q}}(t)](x)v\varphi(t) {\rm d}x{\rm d}t+(N(x), \varphi(0)v), \end{aligned} \end{equation}
(2.20)

由(2.19), (2.20)式以及 \varphi(0)v 的任意性可知 [u^{(0)}(0)](x)=N(x).

接下来我们将 u^{(0)} 延拓至 \Omega\times[T,2T] 上. 实际上, 我们需考虑非线性问题

\begin{equation} \left\{\begin{array}{ll} \frac{\partial u}{\partial t}-\Delta u=f(x,t) u^{q}, & \quad (x,t) \in \Omega \times[T,2T], \\ u=0,&\quad (x,t)\in \partial \Omega\times [T,2T],\\ u=[u^{(0)}(T)](x), &\quad (x,t) \in \Omega \times\{{t=T}\}.\nonumber \end{array}\right. \end{equation}

u^{(T)}(x,t)=u(x,t+T), f^{(T)}(x,t)=f(x,t+T), 将上述问题重新表述为

\begin{equation} \left\{\begin{array}{ll}\label{7.2} \frac{\partial u^{(T)}}{\partial t}-\Delta u^{(T)}=f^{(T)}(x,t) u^{(T)^{q}}, & \quad (x,t) \in \Omega \times[T], \\ u^{(T)}=0,&\quad (x,t)\in \partial \Omega\times [T],\\ u^{(T)}=[u^{(0)}(T)](x), &\quad (x,t) \in \Omega \times\{{t=0}\}. \end{array}\right. \end{equation}
(2.21)

比较问题 (2.2), 区别仅在初值条件的性质有差异, 由于 N(x)\leq [u^{(0)}(T)](x)\leq M(x), {\rm a.e.}\Omega, 由引理 2.2, 可以得到问题 (2.21) 的弱解. 因此以同样地方式, u^{(0)} 可以延拓至 \Omega\times[3T] 上, 由于该延拓过程与 T 的大小无关, 故这样的延拓可以无限次地进行下去, 进而推得 u^{(0)} 可以延拓至 \Omega\times \mathbb{R}. 因此, 我们得到如下引理

引理 2.3f(x,t)\in L^{\infty}(\Omega \times R), L:=\inf\limits_{\Omega\times R}f(x,t)>0, 则方程 (1.2) 存在弱解 u\in L^{\infty}\big(-\infty,+\infty;L^{\infty}(\Omega)\big)\cap C\big((-\infty,+\infty);L^{2}(\Omega)\big)\cap L_{\rm loc}^{2}\big(-\infty,+\infty;H_{0}^{1}(\Omega)\big).

引理 2.4 方程 (1.2) 至多存在一个弱解.

反证, 若 u\bar{u}均是方程 (1.2) 的弱解, 记

\begin{equation} \omega (x,t)=u^{1-q}(x,t)-\bar{u}^{1-q}(x,t).\nonumber \end{equation}

对于 \alpha>\frac{1}{1-q}, 有

\begin{equation}\label{3.3} \begin{aligned} \frac{\rm d}{{\rm d} t} \left\|\omega(\cdot, t)\right\|_{L^{\alpha}(\Omega)} ^{\alpha}& =\int_{\Omega} \frac{\rm d}{{\rm d} t} | \omega(\cdot, t)|^{\alpha}{\rm d}x \\ &=\alpha(1-q) \int_{\Omega}|\omega|^{\alpha-2} \omega\left(u^{-q} u_{ t}-\bar{u}^{-q} \bar{u}_{ t}\right){\rm d}x \\ &=\alpha(1-q) \int_{\Omega}|\omega|^{\alpha-2} \omega\left(u^{-q} \Delta u-\bar{u}^{-q} \Delta \bar{u}\right){\rm d}x \\ & =\alpha(1-q) \int_{\Omega}|\omega|^{\alpha-2} \omega \nabla\left(u^{-q} \nabla u-\bar{u}^{-q} \nabla\bar{u}\right){\rm d}x\\ &\quad-\alpha(1-q) \int_{\Omega}|\omega|^{\alpha-2} \omega\left(\nabla u^{-q} \nabla u-\nabla\bar{u}^{-q} \nabla\bar{u}\right){\rm d}x,\\ &=-\alpha(1-q) \int_{\Omega} \nabla\left(|\omega|^{\alpha-2} \omega\right)\left(u^{-q} \nabla u-\bar{u}^{-q} \nabla\bar{u}\right){\rm d}x\\ &\quad-\alpha(1-q) \int_{\Omega}|\omega|^{\alpha-2}\omega\left(\nabla u^{-q} \nabla u-\nabla\bar{u}^{-q} \nabla\bar{u}\right){\rm d}x,\nonumber \end{aligned} \end{equation}

注意到

\begin{matrix}\label{3.6} \nabla(|\omega|^{\alpha-2} \omega )\cdot (u^{-q}\nabla u-\bar{u}^{-q}\nabla\bar{u})&=\nabla\left(|\omega|^{\alpha-2} \omega\right) \cdot \frac{1}{1-q} \nabla\omega\\ &=\frac{\alpha-1}{1-q}|\omega|^{\alpha-2}|\nabla\omega|^{2} =\frac{4(\alpha-1)}{\alpha^{2}(1-q)}\bigg|\nabla\big( |\omega|^{\frac{\alpha-2}{2}}\omega\big)\bigg|^{2}. \end{matrix}
(2.22)

由 Cauchy 不等式知

\begin{equation} \begin{aligned} &~~~~-\omega\left(\nabla u^{-q} \nabla u-\nabla\bar{u}^{-q} \nabla\bar{u}\right) \\ &=\left(\bar{u}^{1-q}-u^{1-q}\right)\left(-q u^{-q-1}\left|\nabla u\right|^{2}+q \bar{u}^{-q-1}\left|\nabla\bar{u}\right|^{2}\right) \\ &=q\left(\bar{u}^{-2 q}\left|\nabla\bar{u}\right|^{2}+u^{-2 q}\left|\nabla u\right|^{2}\right)-q\left(\bar{u}^{1-q} \cdot u^{-q-1}\left|\nabla u\right|^{2}+u^{1-q} \cdot \bar{u}^{-q-1}\left|\nabla\bar{u}\right|^{2}\right) \\ &\leq q\left(u^{-2 q}\left|\nabla u\right|^{2}+\bar{u}^{-2 q}\left|\nabla\bar{u}\right|^{2}\right)-2 q \bar{u}^{\frac{1-q}{2}} \cdot u^{\frac{-q-1}{2}}\left|\nabla u\right| \cdot u^{\frac{1-q}{2}} \cdot\bar{u}^{\frac{-q-1}{2}}\left|\nabla\bar{u}\right| \\ &=q\left(u^{-q} \nabla u-\bar{u}^{-q} \nabla\bar{u}\right)^{2} =\frac{q}{(1-q)^{2}}|\nabla\omega|^{2},\nonumber \end{aligned} \end{equation}

因此

\begin{equation}\label{3.4} -|\omega|^{\alpha-2}\omega\left(\nabla u^{-q} \nabla u-\nabla\bar{u}^{-q} \nabla\bar{u}\right)\leq\frac{4 q}{\alpha^{2}(1-q)^{2}}\left|\nabla\left(|\omega|^{\frac{\alpha-2}{2}}\omega\right)\right|^{2}. \end{equation}
(2.23)

结合 (2.22), (2.23) 式知

\begin{equation} \frac{\rm d}{{\rm d} t}\|\omega(\cdot, t)\|_{L^{\alpha}(\Omega)}^{\alpha}\leq\frac{-4(-q \alpha+\alpha-1)}{\alpha(1-q)} \int_{\Omega}\left|\nabla\left(|\omega|^{\frac{\alpha-2}{2}} \omega\right)\right|^{2}{\rm d}x, \end{equation}
(2.24)

由Poincaré不等式得

\int_{\Omega}|\omega(\cdot, t)|^{\alpha}{\rm d}x \leq C_{0} \int_{\Omega}\left|\nabla\left(|\omega|^{\frac{\alpha-2}{2}} \omega \right)\right|^{2}{\rm d}x,

其中 C_{0}>0 仅与 N,\ \Omega 相关

\begin{equation}\label{3.5} \begin{aligned} \frac{\rm d}{{\rm d} t}\|\omega(\cdot, t)\|_{L^{\alpha}(\Omega)}^{\alpha}&\leq \frac{-4(-q \alpha+\alpha-1)}{\alpha(1-q)} \int_{\Omega}\left|\nabla\left(|\omega|^{\frac{\alpha-2}{2}} \omega\right)\right|^{2}{\rm d}x\\ &\leq -C_{1}\|\omega (\cdot,t)\|_{L^{\alpha}(\Omega)}^{\alpha}, \qquad t\in \mathbb{R}.\nonumber \end{aligned} \end{equation}

现证唯一性. 假设 u\neq\bar{u}, 不妨设 u\geq \bar{u}, 则存在 (x,t_{0})\in \Omega \times \mathbb{R} , 使得 u(x,t_{0})>\bar{u}(x,t_{0}), 则

\begin{equation} \|\omega (\cdot,t_{0})\|_{L^{\alpha}(\Omega)}^{\alpha}= \int_{\Omega}|\omega(\cdot,t_{0})|^{\alpha}{\rm d}x>0,\nonumber \end{equation}

考虑常微分方程

\begin{equation} \left\{\begin{array}{ll} \frac{{\rm d}y}{{\rm d}t}=-C_{1}y,\qquad\qquad\qquad &t\leq t_{0},\\ y(t_{0})=\|\omega (\cdot,t_{0})\|_{L^{\alpha}(\Omega)}^{\alpha},\nonumber \end{array}\right. \end{equation}

解得

\begin{equation} y(t)=y(t_{0}){\rm e}^{C_{1}(t_{0}-t)}=\|\omega (\cdot,t_{0})\|_{L^{\alpha}(\Omega)}^{\alpha}{\rm e}^{C_{1}(t_{0}-t)}, \qquad t\leq t_{0}.\nonumber \end{equation}

由常微分比较原理可得

\begin{equation} \lim _{t\to -\infty}\|\omega (\cdot,t)\|_{L^{\alpha}(\Omega)}^{\alpha}=+\infty,\nonumber \end{equation}

\|\omega(\cdot,t)\|_{L^{\alpha}(\Omega)}^{\alpha} 的有界性不一致, 则 u=\bar{u}.

3 主要结果的证明

下面寻找方程 (1.2) 的渐近概周期解, 由渐近概周期的定义, 需证明对任意 \varepsilon>0, 存在有界子集 C_{\varepsilon}, 使得 P_{\varepsilon}=\{\tau\in \mathbb{R}|\sup\limits _{t \in \mathbb{R} \backslash C_{\varepsilon}}\|u(\cdot,t+\tau)-u(\cdot,t)\|_{L^{\alpha}(\Omega)}<\varepsilon, \ \ t,\ t+\tau\in \mathbb{R}\backslash C_{\varepsilon}\}\mathbb{R} 中相对稠密, 再由 f(x,t) 的渐近概周期性导出弱解 u(x,t)的渐近概周期性, 为此, 设 G\subset \mathbb{R} 有界, 下面需要构造估计 \sup\limits _{t \in \mathbb{R} \backslash G}\|u( \cdot,t+\tau)-u( \cdot,t)\|_{L^{\alpha}(\Omega)} \leq C\sup\limits _{t \in \mathbb{R} \backslash G }\|f( \cdot,t+\tau)-f(\cdot,t)\|_{L^{\alpha}(\Omega)}.

定理1.1的证明u(x,t) 是方程 (1.2) 的弱解, 记 v(x, t)=u(x, t+\tau), 其中 \tau 是参量, v(x,t)是下面方程的弱解

\begin{equation} \left\{\begin{array}{ll} \frac{\partial v}{\partial t}-\Delta v=f(x, t+\tau) v^{q}(x, t), & (x, t) \in \Omega \times \mathbb{R}, \\ v(x, t)=0,&(x, t) \in \partial \Omega \times \mathbb{R}.\nonumber \end{array}\right. \end{equation}

\xi(x,t)=v^{1-q}(x, t)-u^{1-q}(x, t),

对于 \alpha>\frac{1}{1-q}, 有

\begin{align*} \quad\qquad\frac{\rm d}{{\rm d} t}\|\xi(\cdot,t)\|_{L^{\alpha}(\Omega)}^{\alpha}&=\alpha(1-q) \int_{\Omega}|\xi|^{\alpha-2} \xi\left(v^{-q} v_{t}-u^{-q} u_{t}\right){\rm d}x \\ &=\alpha(1-q) \int_{\Omega}|\xi|^{\alpha-2} \xi\left(v^{-q} \Delta v-u^{-q} \Delta u+f(x, t+\tau)-f(x, t)\right){\rm d}x \\ &=\alpha(1-q) \int_{\Omega}|\xi|^{\alpha-2} \xi \nabla\left(v^{-q} \nabla v-u^{-q} \nabla u\right){\rm d}x\\ &\quad-\alpha(1-q) \int_{\Omega}|\xi|^{\alpha-2} \xi\left(\nabla v^{-q} \nabla v-\nabla u^{-q} \nabla u\right){\rm d}x\\ &\quad+\alpha(1-q) \int_{\Omega}|\xi|^{\alpha-2} \xi(f(x, t+\tau)-f(x, t)){\rm d}x \\ &=-\alpha(1-q) \int_{\Omega} \nabla\left(|\xi|^{\alpha-2} \xi\right)\left(v^{-q} \nabla v-u^{-q} \nabla u\right){\rm d}x\\ &\quad-\alpha(1-q) \int_{\Omega}|\xi|^{\alpha-2} \xi\left(\nabla v^{-q}\nabla v-\nabla u^{-q} \nabla u\right){\rm d}x \nonumber\\ &\quad+\alpha(1-q) \int_{\Omega}|\xi|^{\alpha-2} \xi(f(x, t+\tau)-f(x, t)){\rm d}x. \end{align*}

\mathbb{R} 中任意有界子集 G, 记

\begin{equation} F_{\tau, G}=\sup \limits_{t \in \mathbb{R} \backslash G}\|f( \cdot,t+\tau)-f( \cdot,t)\|_{L^{\alpha}(\Omega)},\nonumber \end{equation}

类似于(2.22)和 (2.23)式, 有

\begin{equation} \begin{aligned} & \nabla\left(|\xi|^{\alpha-2}\xi\right)\left(v^{-q} \nabla v-u^{-q} \nabla u\right)=\frac{4(\alpha-1)}{\alpha^{2}(1-q)}\left|\nabla\left(|\xi|^{\frac{\alpha-2}{2}} \xi\right)\right|^{2},\\ & -|\xi|^{\alpha-2} \xi \left(\nabla v^{-q} \nabla v-\nabla u^{-q} \nabla u\right)=\frac{4q}{\alpha^{2}(1-q)^{2}}\left| \nabla\left(|\xi|^{\frac{\alpha-2}{2}} \xi\right) \right|^{2},\nonumber \end{aligned} \end{equation}

于是

\begin{aligned} \frac{\rm d}{{\rm d} t}\|\xi( \cdot,t)\|_{L^{\alpha}(\Omega)}^{\alpha} &\leq\frac{-4(-q \alpha+\alpha-1)}{\alpha(1-q)} \int_{\Omega} \left|\nabla\left(|\xi|^{\frac{\alpha-2}{2}} \xi\right)\right|^{2}{\rm d}x\\ &\quad+\alpha(1-q) \int_{\Omega}|\xi|^{\alpha-2} \xi\left(f(x, t+\tau)-f(x, t)\right){\rm d}x\\ &\leq \frac{-4(-q\alpha+\alpha-1)}{\alpha(1-q)} \int_{\Omega}\left|\nabla\left(|\xi|^{\frac{\alpha-2}{2}} \xi\right)\right|^{2}{\rm d}x\\ &\quad+\alpha(1-q)\left(\int_{\Omega}|\xi|^{\alpha-1 \cdot\frac{\alpha}{\alpha-1}}{\rm d}x\right)^{\frac{\alpha-1}{\alpha}}\left(\int_{\Omega}|f(x, t+\tau)-f(x, t)|^{\alpha}{\rm d}x\right)^{\frac{1}{\alpha}}\\ &\leq \frac{-4(-q \alpha+\alpha-1)}{C_{0}(1-q)} \int_{\Omega}|\xi(x, t)|^{\alpha}{\rm d}x+\alpha(1-q) F_{\tau, G}\|\xi\|_{L^{\alpha}(\Omega)}^{\alpha-1}\\ &=\|\xi\|_{L^{\alpha}(\Omega)}^{\alpha-1}\left(\frac{-4(-q \alpha+\alpha-1)}{C_{0} \alpha(1-q)}\|\xi\|_{L^{\alpha}(\Omega)}+\alpha(1-q) F_{\tau, G}\right). \end{aligned}

C_{1}=\frac{4(-q \alpha+\alpha-1)}{C_{0} \alpha(1-q)},\ C_{2}=\alpha(1-q), 则

\begin{equation} \begin{aligned} \frac{\rm d}{{\rm d} t}\|\xi( \cdot,t)\|_{L^{\alpha}(\Omega)}^{\alpha} \leq\|\xi\|_{L^{\alpha}(\Omega)}^{\alpha-1}\left(-C_{1}\|\xi\|_{L^{\alpha}(\Omega)}+C_{2} F_{\tau,G}\right),\qquad \forall t\in \mathbb{R}\setminus G.\nonumber \end{aligned} \end{equation}

下面证明

\begin{equation}\label{4.4} \sup\limits _{t \in \mathbb{R}\setminus G}\|\xi( \cdot,t)\|_{L^{\alpha}(\Omega)} \leq \frac{C_{2}}{C_{1}} F_{\tau, G}. \end{equation}
(3.1)

我们使用反证法. 假设上式不成立, 则存在 t_{0} \in \mathbb{R} \setminus G, 使得

\begin{equation}\label{4.5} \left\|\xi\left(\cdot,t_{0}\right)\right\|_{L^{\alpha}(\Omega)}>\frac{C_{2}}{C_{1}} F_{\tau, G}. \end{equation}
(3.2)

考虑常微分方程

\begin{equation} \left\{\begin{array}{ll} \frac{{\rm d}y}{{\rm d}t}=(-C_{1}y^{\frac{1}{\alpha}}+C_{2}F_{\tau,G})y^{\frac{\alpha-1}{\alpha}}, &\qquad t\leq t_{0},\\ \nonumber y(t_{0})=\|\xi(\cdot,t_{0})\|_{L^{\alpha}(\Omega)}^{\alpha}. \end{array}\right.\nonumber \end{equation}

\delta_{0}=-C_{1}y^{\frac{1}{\alpha}}(t_{0})+C_{2}F_{\tau,G}, 由(3.2)式有

\begin{equation} \delta_{0}<-C_{1}y^{\frac{1}{\alpha}}(t_{0})+C_{2}\frac{C_{1}}{C_{2}}\left\|\xi(\cdot,t_{0})\right\|_{L^{\alpha}(\Omega)}=0,\nonumber \end{equation}

解得

\begin{equation} y^{\frac{1}{\alpha}}(t)=\frac{\delta_{0} \cdot {\rm e}^{\frac{C_{1}(t_{0}-t)}{\alpha}}-C_{2}F_{\tau,G}}{-C_{1}}.\nonumber \end{equation}

t \leq t_{0} 时, 由常微分比较原理有

\begin{equation} y^{\frac{1}{\alpha}}(t) \geq \frac{\delta_{0} \cdot {\rm e}^{\frac{C_{1}\left(t_{0}-t\right)}{\alpha}}-C_{2} F_{\tau,G}}{-C_{1}},\nonumber \end{equation}

所以 \frac{{\rm d}y}{{\rm d}t} \leq \delta_{0} \cdot y^{\frac{\alpha-1}{\alpha}}.\nonumber 对上式两边在 (t,t_{0}) 上积分, 有

\begin{equation} \int_{t}^{t_{0}} y^{\frac{1-\alpha}{\alpha}}{\rm d} y\leq \int_{t}^{t_{0}} \delta_{0}{\rm d} t,\nonumber \end{equation}

得到

\begin{equation} \alpha y^{\frac{1}{\alpha}}(t) \geq \alpha y^{\frac{1}{\alpha}}\left(t_{0}\right)-\delta_{0}\left(t_{0}-t\right), \quad t \leq t_{0}, \nonumber \end{equation}

\begin{equation} \lim _{t \rightarrow-\infty} y(t)=+\infty, \nonumber \end{equation}

\begin{equation} \lim _{t \rightarrow-\infty}\|\xi( \cdot,t)\|_{L^{\alpha}(\Omega)}^{\alpha}=+\infty. \nonumber \end{equation}

这与 \|\xi(\cdot,t)\|_{L^{\alpha}(\Omega)}^{\alpha} 的有界性矛盾, (3.1)式得证. 由微分中值定理有

\begin{equation}\label{010} \begin{aligned} |\xi|=\left|v^{1-q}-u^{1-q}\right| &=(1-q)[\theta v+(1-\theta) u]^{-q}|v-u| \\ & \geq(1-q)\|u\|_{L^{\infty}(\Omega \times R)}^{-q}|v-u|\\ &\geq \frac{1-q}{\eta_{2}^{q}}|v-u|.\nonumber \end{aligned} \end{equation}

因此有

\begin{equation} \begin{aligned} \|\xi( \cdot,t)\|_{L^{\alpha}(\Omega)}&=\Big(\int_{\Omega}|v^{1-q}(\cdot,t)-u^{1-q}(\cdot,t)|^{\alpha}{\rm d}x\Big)^{\frac{1}{\alpha}}\\ &\geq\frac{1-q}{\eta_{2}^{q}}\Big(\int_{\Omega}|v(\cdot,t)-u(\cdot,t)|^{\alpha}{\rm d}x\Big)^{\frac{1}{\alpha}}\\ &=\frac{1-q}{\eta_{2}^{q}}\|u(\cdot,t+\tau)-u(\cdot,t)\|_{L^{\alpha}(\Omega)},\nonumber \end{aligned} \end{equation}

C^{\prime}=\frac{\eta_{2}^{q}}{1-q}\cdot \frac{C_{2}}{C_{1}}>0, 即得到

\begin{equation} \begin{aligned} \sup _{t \in \mathbb{R} \backslash G}\|u( \cdot,t+\tau)-u( \cdot,t)\|_{L^{\alpha}(\Omega)} &\leq C^{\prime}\sup _{t \in \mathbb{R} \backslash G }\|f( \cdot,t+\tau)-f(\cdot,t)\|_{L^{\alpha}(\Omega)}. \nonumber \end{aligned} \end{equation}

f(x,t) 是渐近概周期函数, 由定义 2.2, 对于任意 \varepsilon>0, 存在有界集 C_\frac{\varepsilon} {C^{\prime}}\subset \mathbb{R}, 使得 P_{\frac{\varepsilon} {C^{\prime}}}\mathbb{R} 中相对稠密, 其中

\begin{equation} P_{\frac{\varepsilon} {C^{\prime}}}=\Big\{\tau\in \mathbb{R}|\sup _{t \in \mathbb{R} \backslash C_{\frac{\varepsilon} {C^{\prime}}}}\|f(\cdot,t+\tau)-f(\cdot,t)\|_{L^{\alpha}(\Omega)}<\frac{\varepsilon} {C^{\prime}}, \ \ t,\ t+\tau\in \mathbb{R}\backslash C_{\frac{\varepsilon} {C^{\prime}}}\Big\}.\nonumber \end{equation}

\bar{C_{\varepsilon}}=G=C_{\frac{\varepsilon} {C^{\prime}}}, 令

\begin{equation} \bar{P_{\varepsilon}}=\Big\{\tau\in \mathbb{R}|\sup _{t \in \mathbb{R} \backslash \bar{C}_{\varepsilon}}\|u(\cdot,t+\tau)-u(\cdot,t)\|_{L^{\alpha}(\Omega)}<\varepsilon, \ \ t,\ t+\tau\in \mathbb{R}\backslash \bar{C}_{\varepsilon}\Big\},\nonumber \end{equation}

对于任意 \tau\in P_{\frac{\varepsilon} {C^{\prime}}}, 有 t, t+\tau\in \mathbb{R}\setminus\bar{C}_{\varepsilon}, 并且有

\begin{equation} \begin{aligned} \sup _{t \in \mathbb{R}\setminus\bar{C}_{\varepsilon}}\|u( \cdot,t+\tau)-u( \cdot,t)\|_{L^{\alpha}(\Omega)} &\leq C^{\prime}\sup _{t \in \mathbb{R}\setminus C_{\frac{\varepsilon}{C^{\prime}}}}\|f( \cdot,t+\tau)-f(\cdot,t)\|_{L^{\alpha}(\Omega)}\\ &\leq C^{\prime}\frac{\varepsilon}{C^{\prime}}=\varepsilon. \nonumber \end{aligned} \end{equation}

因此 P_{\frac{\varepsilon}{C^{\prime}}}\subset \bar{P}_{\varepsilon}, 由于 P_{\frac{\varepsilon}{C^{\prime}}}\mathbb{R}中相对稠密, 则 \bar{P}_{\varepsilon}也在 \mathbb{R} 中相对稠密, 即 u 是渐近概周期解.

注 3.1f 具有渐近概周期性时, 我们证明了方程 (1.2) 弱解是渐近概周期解. 又因为方程 (1.2) 的弱解是唯一的, 则得到的方程 (1.2) 的渐近概周期解也是唯一的.

参考文献

Adimy M, Elazzouzi A, Ezzinbi K.

Bohr-Neugebauer type theorem for some partial neutral functional differential equations. Nonlinear Analysis: Theory

Methods and Applications, 2007, 66(5): 1145-1160

[本文引用: 1]

Amerio L, Prouse G. Almost-Periodic Functions and Functional Equations. New York: Springer, 1971

[本文引用: 1]

Beltramo A, Hess P.

On the principal eigenvalue of a periodic-parabolic operator

Communications in Partial Differential Equations, 1984, 9(9): 919-941

[本文引用: 1]

Benkhalti R, Bouzahir H, Ezzinbi K.

Existence of a periodic solution for some partial functional differential equations with infinite delay

Journal of Mathematical Analysis and Applications, 2001, 256(1): 257-280

[本文引用: 1]

Corduneanu C. Almost Periodic Oscillations and Waves. New York: Springer, 2009

[本文引用: 1]

Esteban M J.

A remark on the existence of positive periodic solutions of superlinear parabolic problems

Proceeding of the American Mathematical Society, 1988, 102(1): 131-136

[本文引用: 1]

Esteban M J.

On periodic solutions of superlinear parabolic problems

Transactions of the American Mathematical Society, 1986, 293(1): 171-189

[本文引用: 2]

Evans L C. Partial Differential Equations, Providence, RI: American Mathmatical Society, 2010

[本文引用: 3]

Fink A M. Almost Periodic Differential Equations, Berlin: Springer-Verlag, 1974

[本文引用: 1]

Fréchet M.

Les fonctions asymptotiquement presque-périodiques

Revue Sei, 1941, 79: 341-354

[本文引用: 1]

Fréchet M.

Les fonctions asymptotiquement presque-périodiques continues

CR Acad Sei Paris, 1941, 213: 520-522

[本文引用: 2]

Furumouchi T, Naito T, Minh N V.

Boundedness and almost periodicity of solutions of partial functional differential equations

Journal of Differential Equations, 2002, 180(1): 125-152

[本文引用: 1]

Hu Z, Mingarelli A B.

Almost periodicity of solutions for almost periodic evolutions equations equations

Differential Intergral Equations, 2005, 18(4): 469-480

[本文引用: 1]

Nee J.

Almost periodic solutions to systems of parabolic equations

Journal of Applied Mathematics and Stochastic Analysis, 1994, 7(4): 581-586

[本文引用: 1]

Ji S, Yin J, Li Y.

Positive periodic solutions of the weighted p-Laplacian with nonlinear sources

Discrete and Continuous Dynamical Systems, 2018, 38(5): 2411-2439

[本文引用: 1]

Levitan B M, Zhikov V V. Almost Periodic Functions and Differential Equations. translated from the Russian by L W Longdon. Cambridge-NewYork: Cambridge University Press, 1983

[本文引用: 1]

Quittner P.

Multiple equilibria, periodic solutions and a priori bounds for solutions in superlinear parabolic problems

Nonlinear Differential Equations & Applications NoDEA, 2004, 11(2): 237-258

[本文引用: 1]

Rao S.

On differential operators with Bohr-Neugebauer type property

Journal of Differential Equations, 1973, 13(3): 490-494

[本文引用: 1]

Rossi L.

Liouville type results for periodic and almost periodic linear operators

Annales de l'Institut Henri Poincaré C, Analyse non Linéaire, 2009, 26(6): 2481-2502

[本文引用: 1]

Schmitt K, Ward J.

Almost periodic solutions of nonlinear second order differential equations

Results in Mathematics, 1992, 21(1/2): 190-199

[本文引用: 1]

Wang Y, Yin J, Wu Z.

Periodic solutions of evolution p-Laplacian equations with nonlinear sources

Journal of Mathematical Analysis & Applications, 1998, 219(1): 76-96

[本文引用: 1]

Xie Y, Lei P.

Almost periodic solutions of sublinear heat equations

Proceeding of the American Mathematical Society, 2017, 146(1): 233-245

[本文引用: 2]

Xie Y, Lei P.

On global boundedness, stability and almost periodicity of solutions for heat equations

Funkcialaj Ekvacioj, 2019, 62(2): 191-208

[本文引用: 2]

Xie Y, Lei P, Yin J.

Boundedness and stability of global solutions for some superlinear and nonautonomous heat equations

J Differential Equations, 2023, 370: 167-201

Yang Y.

Almost periodic solutions of nonlinear parabolic equation

Bulletin of the Australian Mathematical Society, 1988, 38(2): 231-238

[本文引用: 1]

Yin J, Jin C.

Periodic solutions of the evolutionary p-Laplacian with nonlinear sources

Journal of Mathematical Analysis & Applications, 2010, 368(2): 604-622

[本文引用: 1]

Yoshizawa T, Singh V.

Stability theory and the existence of periodic solutions and almost periodic solutions

IEEE Transactions on Systems Man & Cybernetics, 1979, 9(5): 314-314

[本文引用: 1]

Zhang C. Almost Periodic Type Functions and Ergodicity. Beijing: Science Press, 2003

[本文引用: 2]

Zheng Z, Ding H, N'Guérékata G M.

The space of continuous periodic functions is a set of first category in AP(X)

J Funct Spaces, 2013, 2013(1): 275702

[本文引用: 1]

/