2×2分块对角算子矩阵拟谱的精细刻画
The Fine Pseudo-spectra of2×2Diagonal Block Operator Matrices
通讯作者:
收稿日期: 2022-11-30 修回日期: 2023-05-15
基金资助: |
|
Received: 2022-11-30 Revised: 2023-05-15
Fund supported: |
|
作者简介 About authors
申润拴,E-mail:
设A,B为可分 Hilbert 空间X中的稠定闭线性算子,M0=(A00B)表示2×2分块算子矩阵. 文中精细刻画算子矩阵M0在对角扰动情形下的拟点谱、拟剩余谱与拟连续谱, 所得结论与点谱、剩余谱和连续谱的结果进行了比较, 并用例子进行了辅证. 最后, 采用空间分解技巧, 用主对角元的信息刻画M0在上三角扰动情形下的拟点谱分布.
关键词:
LetA,Bbe densely closed linear operators in a separable Hilbert spaceXandM0=(A00B)be the corresponding2×2block operator matrices. In this paper, we establish the fine pseudo-spectra ofM0including the pseudo-point spectrum, the pseudo-residual spectrum, and the pseudo-continuous spectrum under diagonal perturbation, which are, respectively, compared with its point spectrum, residual spectrum, and continuous spectrum. And a concrete example is constructed to justify the proved result. Finally, we obtain the pseudo-point spectrum ofM0under the upper-triangular perturbation by using the technology of space decomposition.
Keywords:
本文引用格式
申润拴, 侯国林.
Shen Runshuan, Hou Guolin.
1 引言
线性算子谱理论是泛函分析的重要组成部分, 它作为算子特征的一项衡量指标, 在航空学、量子力学、生态学等许多学科中有重要应用. 在相关应用中, 线性算子谱仍存在一些亟需解决的问题, 比如, 线性算子的谱不易精确计算, 往往通过误差分析对其进行近似估计; 线性算子谱对扰动非常敏感等. 为了解决这些问题, 人们提出了拟谱的概念, 拟谱能够更好地刻画非正规系统的稳定性[1⇓⇓⇓-5], 学者们从不同方面对拟谱进行了刻画, 并得到较好的结论. 文献[6]研究了线性算子的和、差与乘积之拟谱的保持问题. 文献[7]研究了非自伴算子在广义强预解意义下拟谱的局部收敛性. 文献[8⇓⇓-11]论述了线性算子的本质拟谱、本质近似拟谱与拟亏谱. 文献[12]探讨了带有最小拟谱的算子与算子正规性之间的关系. 针对双结构分块矩阵, 文献[13]研究了拟谱与结构拟谱的等价关系, 将[14]中结构矩阵的一些结论推广到了双结构情形. 文献[15]讨论了分块算子矩阵对角扰动下的本质拟谱在一定条件下与其对角元本质拟谱的包含关系. 文献[16,17]利用分块矩阵对角元的拟谱刻画了整个分块矩阵拟谱的上下界. 对于拟谱的更多结论请参阅[1,18,19]及其引用文献.
算子矩阵是以算子为元素的矩阵, 在数学物理、应用力学、最优控制等领域有重要应用. 近二十年来,2×2上三角算子矩阵和2×2算子矩阵的谱分析和谱补问题取得了丰富的成果, 参见[20⇓⇓⇓-24]和塞尔维亚学者 Dragana S. 最近出版的专著[25]. 鉴于拟谱良好的稳定性, 类比于线性算子谱分析的研究方法, 文献[26]对拟谱作了细化, 讨论了闭线性算子与其共轭算子的拟点谱、拟剩余谱、拟连续谱之间的关系, 进而给出了 Hamilton 算子的拟谱结构, 将 Hamilton 矩阵的谱对称性推广到拟谱情形, 并在一定条件下用对角元的拟谱刻画了整体算子的拟谱分布. 受文献[15,17,26]的启发, 本文从分块算子矩阵角度出发, 尝试利用对角元的拟点谱、拟剩余谱、拟连续谱刻画整个分块算子矩阵的拟点谱、拟剩余谱、拟连续谱. 算子矩阵的扰动算子形式较复杂,2×2对角算子矩阵的扰动算子可能是对角的, 也可能是上 (下) 三角的, 也可以为一般2×2形式, 这给拟谱的精细研究带来了困难, 本文剖析2×2对角算子矩阵在对角扰动下的拟点谱、拟剩余谱和拟连续谱的分布, 所得结论与谱分析的结论进行了对比, 进一步还得到2×2分块对角算子矩阵在上三角扰动下的拟点谱分布. 文中构造的一些实例辅证了结论的有效性.
2 预备知识
在下文中, 始终用X表示无穷维复可分的 Hilbert 空间. 符号B(X),C(X)分别表示X上的有界线性算子全体构成的集合和X中稠定闭线性算子全体构成的集合. 设T是X中的稠定线性算子, 用T∗,D(T),N(T),R(T)和R(T)⊥分别表示T的共轭算子、 定义域、 零子空间、 值域和值域的正交补. 用T∣M表示T在空间M上的限制. 统一用I表示给定空间上的单位算子. 若T∈C(X), 我们用σ(T),ρ(T),σp(T),σr(T)和σc(T)分别表示T的谱集、预解集、点谱、剩余谱和连续谱.
下面给出稠定闭线性算子的拟谱、拟点谱、拟剩余谱与拟连续谱定义.
定义 2.1[1] 令T∈C(X). 对于任意的ε>0,算子T的拟谱σε(T)定义如下
利用扰动原理, 等价地可得到[2],
定义 2.2[26] 令T\in \mathcal{C}(X). 对于任意的\varepsilon>0, 定义
称\sigma_{\varepsilon, p}(T),\sigma_{\varepsilon, r}(T)和\sigma_{\varepsilon, c}(T)分别为T的拟点谱、 拟剩余谱和拟连续谱.
注 2.1 容易看出
当\varepsilon\rightarrow 0时, 拟点谱、拟剩余谱和拟连续谱分别退化为点谱、剩余谱和连续谱; 但对较大的正数\varepsilon, 拟点谱、拟剩余谱、拟连续谱之间可能是有交集的 (参见文献[26]).
定义 2.3 设T\in\mathcal{C}(X), 对于任意的\varepsilon>0,T的拟预解集\rho_{\varepsilon}(T)定义为
注 2.2 设\varepsilon>0, 则\rho_{\varepsilon}(T)=\mathbb{C}\setminus \sigma_{\varepsilon}(T)且\rho_{\varepsilon}(T)\subset\rho(T).
注 2.3 文中考虑的算子矩阵M_{0}为对角算子矩阵, 在研究其精细拟谱时, 扰动算子E应为一般的2\times 2分块算子矩阵. 本文采用从简单到复杂的思路, 首先探讨\sigma^{D}_{\varepsilon, p}(M_{0}),\sigma^{D}_{\varepsilon, r}(M_{0})和\sigma^{D}_{\varepsilon, c}(M_{0})的分布, 接着给出了\sigma^{T}_{\varepsilon, p}(M_{0})的刻画, 这为精细拟谱\sigma_{\varepsilon, p}(M_{0}),\sigma_{\varepsilon, r}(M_{0})和\sigma_{\varepsilon, c}(M_{0})的最终描述奠定了基础. 这里的记号\sigma^{D}_{\varepsilon, \ast}(M_{0})和\sigma^{T}_{\varepsilon, \ast}(M_{0}) (\ast\in\{p, r, c\})分别表示M_{0}在对角扰动和上三角扰动情形下的精细拟谱.
定义 2.4 假设T\in\mathcal{C}(X)且\varepsilon>0. 定义T的\varepsilon-零子空间\mathcal{N}_{\varepsilon}(T)和\varepsilon-值域\mathcal{R}_{\varepsilon}(T)分别为
并称\alpha_{\varepsilon}(T)=\dim\mathcal{N}_{\varepsilon}(T)为T的\varepsilon-零度,\beta_{\varepsilon}(T)=\dim\mathcal{R}_{\varepsilon}(T)^{\perp}为T的\varepsilon-余维数.
3 主要结论及其证明
本节主要讨论2\times 2分块算子矩阵在不同扰动情形下的拟点谱、拟剩余谱和拟连续谱, 用对角元的信息给出它们的精细刻画. 首先, 我们考虑扰动算子为对角情形, 即
其中E_{ii}\in\mathcal{B}(X), \|E_{ii}\|<\varepsilon, i=1, 2, 并且\|E\|:=\max\limits_{i=1, 2}\{\|E_{ii}\|\}<\varepsilon.
对于拟点谱而言, 我们可得到类似于点谱的性质.
定理 3.1 设A, B\in\mathcal{C}(X),M_{0}=\left( \begin{array} {cc}{A} & {0}\\ {0}& {B} \end{array} \right)是2\times2分块对角算子矩阵, 则
证 若\lambda\in\sigma_{\varepsilon, p}(A), 则存在E_{1}\in\mathcal{B}(X),\| E_{1}\|<\varepsilon, 使得\lambda\in\sigma_{p}(A+E_{1}), 即存在非零元素x _{0}\in \mathcal{D}(A), 使得(A+E_{1}-\lambda I)x_{0}=0. 令x=\left( \begin{array} {c}{x_{0}} \\ {0} \end{array} \right)\neq0且E=\left( \begin{array} {cc}{E_{1}} & {0}\\ {0}& {0} \end{array} \right).显然,E\in\mathcal{B}(X\oplus X), \| E\|=\| E_{1}\|<\varepsilon, 并且有
因此,\lambda\in\sigma_{\varepsilon, p}^{D}(M_{0}).
同理,\sigma_{\varepsilon, p}(B)\subset\sigma_{\varepsilon, p}^{D}(M_{0}).
若\lambda\in\sigma_{\varepsilon, p}^{D}(M_{0}),则存在E=\left( \begin{array} {cc}{E_{11}} & {0}\\ {0}& {E_{22}} \end{array} \right)\in\mathcal{B}(X\oplus X), \|E\|<\varepsilon,使得\lambda\in\sigma_{p}(M_{0}+E).故存在不全为零的元素f, g, 使得
若f=0, 则g\neq0, 进而得到\lambda\in\sigma_{\varepsilon, p}(B).若f\neq0, 则\lambda\in\sigma_{\varepsilon, p}(A).因此, 我们得到\lambda\in\sigma_{\varepsilon, p}(A)\cup\sigma_{\varepsilon, p}(B). 证毕.
关于对角算子矩阵的剩余谱, 我们引用如下结论.
命题 3.1[20] 设A, B\in\mathcal{C}(X),M_{0}=\left( \begin{array} {cc}{A} & {0}\\ {0}& {B} \end{array} \right)是2\times2分块对角算子矩阵, 则
由于拟剩余谱和拟点谱在一定条件下是有交集的, 因此上述关于剩余谱的结论不能完全类推到拟剩余谱情形, 我们得到如下包含关系.
命题 3.2 设A, B\in\mathcal{C}(X),M_{0}=\left( \begin{array} {cc}{A} & {0}\\ {0}& {B} \end{array} \right)是2\times2分块对角算子矩阵, 则
证 首先证明\sigma_{\varepsilon, r}(A)\setminus\sigma_{\varepsilon, p}(B)\subseteq\sigma_{\varepsilon, r}^{D}(M_{0}).假设\lambda\in\sigma_{\varepsilon, r}(A)\setminus\sigma_{\varepsilon, p}(B), 则存在E_{1}\in\mathcal{B}(X),\|E_{1}\|<\varepsilon,使得\mathcal{N}(A+E_{1}-\lambda I)=\{0\},\overline{\mathcal{R}(A+E_{1}-\lambda I)}\neq X且对于任意的E_{2}\in\mathcal{B}(X),\|E_{2}\|<\varepsilon,使得\mathcal{N}(B+E_{2}-\lambda I)=\{0\}.令
则\|E\|<\varepsilon且
这表明\lambda\in\sigma_{\varepsilon, r}^{D}(M_{0}).
同理可证(\sigma_{\varepsilon, r}(B)\setminus\sigma_{\varepsilon, p}(A))\subseteq\sigma_{\varepsilon, r}^{D}(M_{0}).
下证\sigma_{\varepsilon, r}^{D}(M_{0})\subseteq\sigma_{\varepsilon, r}(A)\cup\sigma_{\varepsilon, r}(B).若\lambda\in\sigma_{\varepsilon, r}^{D}(M_{0}),根据定义 2.2 可知, 存在E=\left( \begin{array} {cc}{E_{11}} & {0}\\ {0}& {E_{22}} \end{array} \right)\in\mathcal{B}(X\oplus X), 使得
于是,
又由\overline{\mathcal{R}(M_{0}+E-\lambda I)}\neq X\oplus X知,\overline{\mathcal{R}(A+E_{11}-\lambda I)}\neq X或\overline{\mathcal{R}(B+E_{22}-\lambda I)}\neq X.所以, 当\overline{\mathcal{R}(A+E_{11}-\lambda I)}\neq X时, 有\lambda\in\sigma_{\varepsilon, r}(A);当\overline{\mathcal{R}(B+E_{22}-\lambda I)}\neq X时, 我们得到\lambda\in\sigma_{\varepsilon, r}(B).证毕.
然而,\sigma_{\varepsilon, r}^{D}(M_{0})\subseteq(\sigma_{\varepsilon, r}(A)\setminus\sigma_{\varepsilon, p}(B))\cup(\sigma_{\varepsilon, r}(B)\setminus\sigma_{\varepsilon, p}(A))是不一定成立的, 见下例.
例 1 设M_{0}=\left( \begin{array} {cc}{A} & {0}\\ {0}& {B} \end{array} \right)表示2\times2分块对角算子矩阵, 其中A, B分别是 Hilbert 空间X=l^{2}中给定的有界线性算子,
对任意的x=(x_{1}, x_{2}, x_{3}, x_{4}, \cdots )\in X.
根据文献[26,例 2.3], 我们得到: 当\varepsilon>\frac{\sqrt{5}}{2}时,
下面验证当\varepsilon>\frac{\sqrt{5}}{2}时, 同样有\frac{1}{2}\in\sigma_{\varepsilon, p}(B)\cap\sigma_{\varepsilon, r}(B). 为此, 对于任意的x=(x_{1}, x_{2}, \cdots )\in X, 选取扰动算子E_{1}如下,
经计算得,\|E_{1}\|\leq\frac{\varepsilon}{2}<\varepsilon.
显然,\frac {1}{2}I-B-E_{1}是单射. 为了说明\frac {1}{2}\in\sigma_{\varepsilon, r}(B), 只需验证\overline{\mathcal{R}(\frac {1}{2}I-B-E_{1})}\neq X.
对于任意的x=(x_{1}, x_{2}, x_{3}, x_{4}, \cdots )\in X, 经计算得到
进而
令(\frac {1}{2}I-B^{\ast}-E^{\ast}_{1})x=0,我们有
其中c为非零常数. 经验证x\in X, 因此\mathcal{N}(\frac {1}{2}I-B^{\ast}-E^{\ast}_{1})\neq \{0\},即\overline{\mathcal{R}(\frac {1}{2}I-B-E_{1})}\neq X.故\frac {1}{2}\in\sigma_{r}(B+E_{1}),亦即\frac {1}{2}\in\sigma_{\varepsilon, r}(B).
对任意的x\in X, 取另一个有界扰动算子E_{2}, 使得E_{2}x=(\frac {1}{2}x_{1}, -x_{1}, 0, \cdots ). 经计算
这意味着\frac{1}{2}\in\sigma_{p}(B+E_{2}),故当\varepsilon>\frac{\sqrt{5}}{2}时,\frac{1}{2}\in\sigma_{\varepsilon, p}(B),进而\frac{1}{2}\in\sigma_{\varepsilon, p}(B)\cap\sigma_{\varepsilon, r}(B).
对于任意的x=(x_{1}, x_{2}, \cdots )\in X, 取扰动算子E_{3}为
令
可以验证\frac{1}{2}I-M_{0}-E是单射, 且\overline{\mathcal{R}(\frac{1}{2}I-M_{0}-E)}\neq X\oplus X. 由此可得\frac{1}{2}\in\sigma_{\varepsilon, r}^{D}(M_{0}).
综上所述,\frac{1}{2}\not\in(\sigma_{\varepsilon, r}(A)\setminus\sigma_{\varepsilon, p}(B))\cup(\sigma_{\varepsilon, r}(B)\setminus\sigma_{\varepsilon, p}(A))且\frac{1}{2}\in\sigma_{\varepsilon, r}^{D}(M_{0}).
通过对拟剩余谱定义的进一步分析, 我们得到了如下结论.
定理 3.2 设A, B\in\mathcal{C}(X),M_{0}=\left( \begin{array} {cc}{A} & {0}\\ {0}& {B} \end{array} \right)是2\times2分块对角算子矩阵, 则
证 设\lambda\in\sigma_{\varepsilon, r}^{D}(M_{0})\setminus\sigma_{p}(M_{0}),根据定义 2.2 可知, 存在算子E=\left( \begin{array} {cc}{E_{11}} & {0}\\ {0}& {E_{22}} \end{array} \right)\in\mathcal{B}(X\oplus X), 使得
从而, 有
由\overline{\mathcal{R}(M_{0}+E-\lambda I)}\neq X\oplus X知,\overline{\mathcal{R}(A+E_{11}-\lambda I)}\neq X或\overline{\mathcal{R}(B+E_{22}-\lambda I)}\neq X.因为\lambda\not\in\sigma_{p}(M_{0}), 故\mathcal{N}(A-\lambda I)=\{0\}且\mathcal{N}(B-\lambda I)=\{0\}.所以,当\overline{\mathcal{R}(A+E_{11}-\lambda I)}\neq X时, 有
当\overline{\mathcal{R}(B+E_{22}-\lambda I)}\neq X时, 我们得到
因此,\lambda\in(\sigma_{\varepsilon, r}(A)\cup\sigma_{\varepsilon, r}(B))\backslash(\sigma_{p}(A)\cup\sigma_{p}(B)).
下面我们证明当\lambda\in(\sigma_{\varepsilon, r}(A)\cup\sigma_{\varepsilon, r}(B))\backslash(\sigma_{p}(A)\cup\sigma_{p}(B))时,\lambda\in\sigma_{\varepsilon, r}^{D}(M_{0})\setminus\sigma_{p}(M_{0}).
事实上, 当\lambda\in\sigma_{\varepsilon, r}(A)\backslash(\sigma_{p}(B)\cup\sigma_{p}(A))时, 存在E_{1}\in\mathcal{B}(X), \|E_{1}\|<\varepsilon,使得
且
令E=\left( \begin{array} {cc}{E_{1}} & {0}\\ {0}& {0} \end{array} \right)\in\mathcal{B}(X\oplus X), 可得
是单射且\overline{\mathcal{R}(M_{0}+E-\lambda I)}\neq X\oplus X.因此\lambda\in\sigma_{\varepsilon, r}^{D}(M_{0})\backslash\sigma_{p}(M_{0}).
同理, 当\lambda\in\sigma_{\varepsilon, r}(B)\backslash(\sigma_{p}(B)\cup\sigma_{p}(A))时,\lambda\in\sigma_{\varepsilon, r}^{D}(M_{0})\setminus\sigma_{p}(M_{0}).
综上所述,
证毕.
同样, 对于分块对角算子矩阵而言, 我们也不能将连续谱的性质直接推广到拟连续谱上. 为了说明这个问题, 先陈述一个结论.
命题 3.3[20] 设A, B\in\mathcal{C}(X),M_{0}=\left( \begin{array} {cc}{A} & {0}\\ {0}& {B} \end{array} \right)是2\times2分块对角算子矩阵, 则
对于分块对角算子矩阵的拟连续谱, 我们可得到如下类似于连续谱的包含关系.
命题 3.4 设A, B\in\mathcal{C}(X),M_{0}=\left( \begin{array} {cc}{A} & {0}\\ {0}& {B} \end{array} \right)是2\times2分块对角算子矩阵, 则
证 如果\lambda\in\sigma_{\varepsilon, c}(A)\cap\sigma_{\varepsilon, c}(B), 那么存在E_{1}, E_{2}\in\mathcal{B}(X), \|E_{1}\|<\varepsilon, \|E_{2}\|<\varepsilon,使得A+E_{1}-\lambda I和B+E_{2}-\lambda I是单射,\overline{\mathcal{R}(A+E_{1}-\lambda I)}=X, \overline{\mathcal{R}(B+E_{2}-\lambda I)}=X且\mathcal{R}(A+E_{1}-\lambda I)\neq X, \mathcal{R}(B+E_{2}-\lambda I)\neq X.令
可得
即\lambda\in\sigma_{\varepsilon, c}^{D}(M_{0}).
下面证明(\sigma_{\varepsilon, c}(A)\cap\rho_{\varepsilon}(B))\subseteq\sigma_{\varepsilon, c}^{D}(M_{0}).
设\lambda\in\sigma_{\varepsilon, c}(A)\cap\rho_{\varepsilon}(B), 因为\lambda\in\sigma_{\varepsilon, c}(A), 即存在E_{3}\in\mathcal{B}(X), \|E_{3}\|<\varepsilon,使得
又由于\lambda\in\rho_{\varepsilon}(B), 故对于任意的E_{4}\in\mathcal{B}(X), \|E_{4}\|<\varepsilon,都有
令
可得\|E\|=\max\limits_{i=3, 4}\{\|E_{i}\|\}<\varepsilon,并且
这表明\lambda\in\sigma_{\varepsilon, c}^{D}(M_{0}).
同理可证(\sigma_{\varepsilon, c}(B)\cap\rho_{\varepsilon}(A))\subseteq\sigma_{\varepsilon, c}^{D}(M_{0}).
通过以上的分析,\sigma_{\varepsilon, c}^{D}(M_{0})\subseteq(\sigma_{\varepsilon, c}(A)\cup\sigma_{\varepsilon, c}(B))是显然的. 证毕.
经过对拟连续谱定义的进一步剖析, 我们得到如下结论.
定理 3.3 设A, B\in\mathcal{C}(X),M_{0}=\left( \begin{array} {cc}{A} & {0}\\ {0}& {B} \end{array} \right)是2\times2分块对角算子矩阵, 则
证 如果\lambda\in\sigma_{\varepsilon, c}^{D}(M_{0})\cap(\rho(A)\cap\rho(B)), 那么存在算子E=\left( \begin{array} {cc}{E_{11}} & {0}\\ {0}& {E_{22}} \end{array} \right)\in\mathcal{B}(X\oplus X), 使得
于是A+E_{11}-\lambda I和B+E_{22}-\lambda I是单射,\overline{\mathcal{R}(A+E_{11}-\lambda I)}=X且\overline{\mathcal{R}(B+E_{22}-\lambda I)}=X,\mathcal{R}(A+E_{11}-\lambda I)\neq X或\mathcal{R}(B+E_{22}-\lambda I)\neq X.以下三种情形分别进行讨论.
(i) 当\mathcal{R}(A+E_{11}-\lambda I)\neq X且\mathcal{R}(B+E_{22}-\lambda I)\neq X时, 由于\lambda\in\rho(A)\cap\rho(B),有
(ii) 当\mathcal{R}(A+E_{11}-\lambda I)\neq X, \mathcal{R}(B+E_{22}-\lambda I)=X时, 由于\lambda\in\rho(A)\cap\rho(B),我们有
(iii) 当\mathcal{R}(A+E_{11}-\lambda I)=X, \mathcal{R}(B+E_{22}-\lambda I)\neq X时, 由于\lambda\in\rho(A)\cap\rho(B),我们有
结合情形 (i)-(iii), 可以断言
下证反包含关系成立, 即证明
事实上, 若\lambda\in(\sigma_{\varepsilon, c}(A)\cap\sigma_{\varepsilon, c}(B))\cap(\rho(A)\cap\rho(B)), 那么存在E_{1}, E_{2}\in\mathcal{B}(X),\|E_{1}\|<\varepsilon,\|E_{2}\|<\varepsilon,使得A+E_{1}-\lambda I和B+E_{2}-\lambda I是单射,\overline{\mathcal{R}(A+E_{1}-\lambda I)}=X, \overline{\mathcal{R}(B+E_{2}-\lambda I)}=X,且\mathcal{R}(A+E_{1}-\lambda I)\neq X, \mathcal{R}(B+E_{2}-\lambda I)\neq X.令
则\|E\|=\max\limits_{i=1, 2}\{\|E_{i}\|\}<\varepsilon,M_{0}+E_{0}-\lambda I是单射, 且
进而, 得
如果\lambda\in\sigma_{\varepsilon, c}(A)\cap\rho(B),那么存在E_{3}\in\mathcal{B}(X), \|E_{3}\|<\varepsilon,使得
而\lambda\in\rho(B)意味着\mathcal{N}(B-\lambda I)=\{0\}且\overline{\mathcal{R}(B-\lambda I)}=X.令\hat{E}=\left( \begin{array} {cc}{E_{3}} & {0}\\ {0}& {0} \end{array} \right)\in\mathcal{B}(X\oplus X), \|\hat{E}\|=\|E_{3}\|<\varepsilon,故
因此, 有\lambda\in\sigma_{\varepsilon, c}^{D}(M_{0})\cap(\rho(A)\cap\rho(B)).
同理可得\sigma_{\varepsilon, c}(B)\cap\rho(A)\subseteq\sigma_{\varepsilon, c}^{D}(M_{0})\cap(\rho(A)\cap\rho(B)).证毕.
接下来考虑扰动算子为上三角情形, 即
其中E_{ij}\in\mathcal{B}(X), \|E_{ij}\|<\varepsilon, i=1, j=1, 2.下三角扰动情形类似, 本文不再讨论. 在下文中出现的常数\gamma满足0<\gamma<\varepsilon,并且\gamma J表示有界线性算子J的数乘. 为了表述的方便, 记
首先我们陈述下列重要结论.
定理 3.4 设T\in\mathcal{C}(X), 则\mathcal{N}_{\varepsilon}(T)是闭的.
证 先证明\mathcal{N}_{\varepsilon}(T)=(\bigcap\limits_{\substack{E\in\mathcal{B}(X)\\\| E\|<\varepsilon}}\mathcal{R}(T^{\ast}+E^{\ast}))^{\perp}.
任取x\in\mathcal{N}_{\varepsilon}(T), 则存在E\in\mathcal{B}(X), \|E\|<\varepsilon,有(T+E)x=0.从而对于任意的y\in \mathcal{D}(T^{\ast}),有
这说明x\in\mathcal{R}(T^{\ast}+E^{\ast})^{\perp},即x\in\bigcup\limits_{\substack{E\in\mathcal{B}(X)\\\| E\|<\varepsilon}}\mathcal{R}(T^{\ast}+E^{\ast})^{\perp},反之也成立. 于是, 我们首先得到
若x_{0}\in\bigcup\limits_{\substack{E\in\mathcal{B}(X)\\\|E\|<\varepsilon}}\mathcal{R}(T^{\ast}+E^{\ast})^{\perp},则存在E_{1}\in\mathcal{B}(X), \| E_{1}\|<\varepsilon,使得x_{0}\in\mathcal{R}(T^{\ast}+E_{1}^{\ast})^{\perp},从而x_{0}\bot\mathcal{R}(T^{\ast}+E_{1}^{\ast}), 进而, 得x_{0}\bot\bigcap\limits_{\substack{E\in\mathcal{B}(X)\\\| E\|<\varepsilon}}\mathcal{R}(T^{\ast}+E^{\ast}).因此,x_{0}\in(\bigcap\limits_{\substack{E\in\mathcal{B}(X)\\\| E\|<\varepsilon}}\mathcal{R}(T^{\ast}+E^{\ast}))^{\perp},反之亦然.故
综上所述,\mathcal{N}_{\varepsilon}(T)=(\bigcap\limits_{\substack{E\in\mathcal{B}(X)\\\| E\|<\varepsilon}}\mathcal{R}(T^{\ast}+E^{\ast}))^{\perp}, 进而\mathcal{N}_{\varepsilon}(T)是闭的.证毕.
结合空间分解技巧, 我们可得到如下结论.
定理 3.5 设A, B\in\mathcal{C}(X),M_{0}=\left( \begin{array} {cc}{A} & {0}\\ {0}& {B} \end{array} \right)是2\times2分块对角算子矩阵, 则
证 先证明\sigma_{\varepsilon, p}(A)\cup\Delta_{0}\cup\Delta_{1}\cup\Delta_{2}\subseteq\sigma_{\varepsilon, p}^{T}(M_{0}).类似于定理 3.1 的证明, 可得\sigma_{\varepsilon, p}(A)\subseteq\sigma_{\varepsilon, p}^{T}(M_{0}).下证\Delta_{0}\setminus\sigma_{\varepsilon, p}(A)\subseteq\sigma_{\varepsilon, p}^{T}(M_{0}).
设\lambda\in\Delta_{0}\setminus\sigma_{\varepsilon, p}(A),由于注意到\beta_{\varepsilon}(A-\lambda I)<\infty, 其隐含着\mathcal{R}_{\varepsilon}(A-\lambda I)是闭的. 现将空间X\oplus X分解为:X\oplus X=X\oplus\mathcal{N}_{\varepsilon}(B-\lambda I)\oplus\mathcal{N}_{\varepsilon}(B-\lambda I)^{\perp}=\mathcal{R}_{\varepsilon}(A-\lambda I)^{\perp}\oplus\mathcal{R}_{\varepsilon}(A-\lambda I)\oplus X.下面分两种情形进行讨论.
(i) 如果存在E_{12}, E_{22}\in\mathcal{B}(X), \|E_{12}\|<\varepsilon, \|E_{22}\|<\varepsilon,使得E_{12}, E_{22}中的每一个扰动算子, 都有\mathcal{N}(E_{12})\cap\mathcal{N}(B+E_{22}-\lambda I)\neq\{0\},那么必存在非零元素x\in \mathcal{D}(B),满足E_{12}x=0且(B+E_{22}-\lambda I)x=0. 故取0\neq y_{0}=\left( \begin{array} {c}{0} \\ {x} \end{array} \right)\in \mathcal{D}(A)\oplus \mathcal{D}(B),对于任意的E_{11}\in\mathcal{B}(X), \|E_{11}\|<\varepsilon,取
故\|E\|=\max\limits_{i, j}\{\|E_{ij}\|\}<\varepsilon, 并且
因此, 我们有\lambda\in\sigma_{\varepsilon, p}^{T}(M_{0}).
(ii) 如果对任意两个扰动算子E_{12}, E_{22},都有\mathcal{N}(E_{12})\cap\mathcal{N}(B+E_{22}-\lambda I)=\{0\},那么, 很容易得出E_{12}\mid_{\mathcal{N}_{\varepsilon}(B-\lambda I)}是单射. 这样,
定义可逆算子
与下方有界算子
使得Z_{1}\oplus Z_{2}=\mathcal{N}_{\varepsilon}(B-\lambda I), \dim Z_{2}=\alpha_{\varepsilon}(B-\lambda I)-\beta_{\varepsilon}(A-\lambda I).取定
显然,\|E_{12}\|=\max\{\|\gamma J_{1}\|, \|\gamma J_{2}\|\}=\gamma<\varepsilon. 根据\mathcal{R}_{\varepsilon}(A-\lambda I)的闭性, 我们很容易得到, 存在E_{11}, E_{22}\in\mathcal{B}(X), \|E_{ii}\|<\varepsilon, i=1, 2, 满足
取
故存在x_{1}\in \mathcal{D}(A), x_{2}\in Z_{2}\subseteq \mathcal{D}(B)使得
在这里,A_{1}+(E_{11})_{1}-\lambda I=(A+E_{11}-\lambda I)\mid_{\mathcal{N}_{\varepsilon}(A-\lambda I)^{\perp}}. 由于y\neq 0, 所以x_{1}\neq0, x_{2}\neq0.这样
在这里,B_{1}+(E_{22})_{1}-\lambda I=(B+E_{22}-\lambda I)\mid_{\mathcal{N}_{\varepsilon}(B-\lambda I)^{\perp}}.因此, 我们有\lambda\in\sigma_{\varepsilon, p}^{T}(M_{0}).
下证\Delta_{1}\cup\Delta_{2}\subseteq\sigma_{\varepsilon, p}^{T}(M_{0}).现将空间X\oplus X分解为
考虑以下两种情形.
(a)\lambda\in\{\lambda\in\mathbb{C}:1=\alpha_{\varepsilon}(B-\lambda I)=\beta_{\varepsilon}(A-\lambda I)\}.
因为1=\beta_{\varepsilon}(A-\lambda I)<\infty,所以\mathcal{R}_{\varepsilon}(A-\lambda I)闭的. 现定义一下方有界算子
取
显然, 存在\widehat{E_{11}}, \widehat{E_{22}}\in\mathcal{B}(X), \|\widehat{E_{ii}}\|<\varepsilon, i=1, 2, 满足
这样, 如同\lambda\in\Delta_{0}的情形(ii), 容易得到\lambda\in\sigma_{\varepsilon, p}^{T}(M_{0}),这里从略.
(b)\lambda\in(\Delta_{1}\cup\Delta_{2})\setminus\{\lambda\in\mathbb{C}:1=\alpha_{\varepsilon}(B-\lambda I)=\beta_{\varepsilon}(A-\lambda I)\}.
定义一非下方有界算子
取
使得E' _{12}\mathcal{N}_{\varepsilon}(B-\lambda I)=\{0\}. 故对于任意的0\neq y_{1}\in\mathcal{N}_{\varepsilon}(B-\lambda I),必存在E' _{22}\in\mathcal{B}(X), \|E' _{22}\|<\varepsilon,使得(B+E' _{22}-\lambda I)y_{1}=0.进而,E' _{12}y_{1}=0. 对于任意的E' _{11}\in\mathcal{B}(X), \|E' _{11}\|<\varepsilon,令
我们有\|E' \|=\max\limits_{i, j}\{\|E' _{ij}\|\}<\varepsilon,
因此,\lambda\in\sigma_{\varepsilon, p}^{T}(M_{0}).
假设\lambda\not\in\sigma_{\varepsilon, p}(A)\cup\Delta_{0}\cup\Delta_{1}\cup\Delta_{2},以下分两种情形来讨论.
i)\lambda\not\in\sigma_{\varepsilon, p}(A)和\lambda\in\{\lambda\in\mathbb{C}:\alpha_{\varepsilon}(B-\lambda I)=\beta_{\varepsilon}(A-\lambda I)=0\}.
对于任意的
假设\left(\begin{array} {c}{y_{2}} \\ {y_{3}} \end{array} \right)\in \mathcal{D}(A)\oplus \mathcal{D}(B), 满足
由于\alpha_{\varepsilon}(B-\lambda I)=\beta_{\varepsilon}(A-\lambda I)=0, 所以y_{3}=0.又由于\lambda\not\in\sigma_{\varepsilon, p}(A), 因而对于任意的扰动算子E_{11}\in\mathcal{B}(X), \|E_{11}\|<\varepsilon, A+E_{11}-\lambda I是单射, 故y_{2}=0.这表明M_{0}+E-\lambda I是单射, 再结合E的任意性, 可得\lambda\not\in\sigma_{\varepsilon, p}^{T}(M_{0}).
ii)\lambda\not\in\sigma_{\varepsilon, p}(A)和\lambda\in\{\lambda\in\mathbb{C}: \alpha_{\varepsilon}(B-\lambda I)=0且0<\beta_{\varepsilon}(A-\lambda I)\}.
\alpha_{\varepsilon}(B-\lambda I)=0意味着\mathcal{N}_{\varepsilon}(B-\lambda I)=\{0\}. 即对于任意的E_{22}\in\mathcal{B}(X),\|E_{22}\|<\varepsilon,B+E_{22}-\lambda I是单射. 又因为\lambda\not\in\sigma_{\varepsilon, p}(A), 所以对于任意的E_{11}\in\mathcal{B}(X), \|E_{11}\|<\varepsilon, A+E_{11}-\lambda I是单射.这样, 对于任意的
都有M_{0}+E-\lambda I是单射, 因此\lambda\not\in\sigma_{\varepsilon, p}^{T}(M_{0}).证毕.
注 3.1 设\varepsilon>0,
为上三角扰动. 当\lambda\in\sigma_{\varepsilon, p}^{T}(M_{0}),\lambda\notin\sigma_{\varepsilon, p}(A)且E_{12}=0时, 可得\alpha_ {\varepsilon}(B-\lambda I)>0且\Delta_{0}\cup\Delta_{1}\cup\Delta_{2}\subseteq \sigma_{\varepsilon, p}(B), 由定理 3.5 可导出\lambda\in\sigma_{\varepsilon, p}(B). 另一方面, 当\lambda\in\sigma_{\varepsilon, p}(B)\setminus\sigma_{\varepsilon, p}(A)且E_{12}=0, 我们有\lambda\in\Delta_{0}\cup\Delta_{1}\cup\Delta_{2},再结合由定理 3.5 得到\lambda\in\sigma_{\varepsilon, p}^{D}(M_{0}). 因此, 定理 3.5 是定理 3.1 的进一步推广.
参考文献
On the pseudospectra of matrix polynomials
DOI:10.1137/S0895479804441420 URL [本文引用: 1]
Pseudospectra of semigroup generators
DOI:10.1112/blms/bdq062 URL [本文引用: 1]
Properties and preservers of the pseudospectrum
DOI:10.1016/j.laa.2011.03.044 URL [本文引用: 1]
Local convergence of spectra and pseudospectra
DOI:10.4171/jst URL [本文引用: 1]
The essential pseudo-spectra of a sequence of linear operators
DOI:10.1007/s11785-018-0776-7 [本文引用: 1]
A characterization of the essential approximation pseudospectrum on a Banach space
DOI:10.2298/FIL1711599A
URL
[本文引用: 1]
One impetus for writing this paper is the issue of approximation\n pseudospectrum introduced by M. P. H.Wolff in the journal of approximation\n theory (2001). The latter study motivates us to investigate the essential\n approximation pseudospectrum of closed, densely defined linear operators on a\n Banach space. We begin by defining it and then we focus on the\n characterization, the stability and some properties of these pseudospectra.
Some description of essential structured approximate and defect pseudospectrum
Essential pseudospectra and essential norms of band-dominated operators
DOI:10.1016/j.jmaa.2015.11.060 URL [本文引用: 1]
Operators with minimal pseudospectra and connections to normality
A note on structured pseudospectra of block matrices
DOI:10.1016/j.cam.2017.03.020 URL [本文引用: 1]
Eigenvalues, pseudospectrum and structured perturbations
DOI:10.1016/j.laa.2005.06.009 URL [本文引用: 1]
A note on the essential pseudospectra and application
DOI:10.1080/03081087.2015.1091436 URL [本文引用: 2]
Approximation of pseudospectra of block triangular matrices
DOI:10.1016/j.laa.2020.08.008 URL [本文引用: 1]
From pseudospectra of diagonal blocks to pseudospectrum of a full matrix
Infinite-Dimentional features of matrices and pseudospectra
DOI:10.1016/j.jmaa.2016.09.064 URL [本文引用: 1]
Pseudospectrum enclosures by discretization
DOI:10.1007/s00020-020-02616-2
[本文引用: 1]
The abstract issue of ‘Krylov solvability’ is extensively discussed for the inverse problem Af=g\n \n A\n f\n =\n g\n \n where A is a (possibly unbounded) linear operator on an infinite-dimensional Hilbert space, and g is a datum in the range of A. The question consists of whether the solution f can be approximated in the Hilbert norm by finite linear combinations of g,Ag,A^2g,\\dots \n \n g\n,\n A\n g\n,\n \n A\n 2\n \n g\n,\n ⋯\n \n, and whether solutions of this sort exist and are unique. After revisiting the known picture when A is bounded, we study the general case of a densely defined and closed A. Intrinsic operator-theoretic mechanisms are identified that guarantee or prevent Krylov solvability, with new features arising due to the unboundedness. Such mechanisms are checked in the self-adjoint case, where Krylov solvability is also proved by conjugate-gradient-based techniques.
Continuous spectrum, point spectrum and residual spectrum of operator matrices
DOI:10.1016/j.laa.2010.03.036 URL [本文引用: 1]
Browder spectra of upper-triangular operator matrices
DOI:10.1016/j.jmaa.2005.10.073 URL [本文引用: 1]
The intersection of essential approximate point spectra of operator matrices
DOI:10.1016/j.jmaa.2005.11.032 URL [本文引用: 1]
Perturbations of spectra and property (R) for upper triangular operator matrices
DOI:10.1016/j.jmaa.2022.126797 URL [本文引用: 1]
On the pseudo-spectra and the related properties of infinite-dimensional Hamiltonian operators
/
〈 |
|
〉 |
