数学物理学报, 2023, 43(5): 1529-1558

考虑一般投资收益和时间相依索赔情形下二维带扰动风险模型的有限时间破产概率渐近估计

程铭,, 王定成,*

电子科技大学数学科学学院 成都 611731

Asymptotic Finite-Time Ruin Probability for a Bidimensional Perturbed Risk Model with General Investment Returns and Time-Dependent Claim Sizes

Cheng Ming,, Wang Dingcheng,*

School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731

通讯作者: * 王定成,Email: wangdc@uestc.edu.cn

收稿日期: 2021-06-21   修回日期: 2022-07-5  

基金资助: 国家自然科学基金(71271042)
云南师范大学博士科研启动项目(2020ZB014)
云南省基础研究青年项目(202201AU070051)

Received: 2021-06-21   Revised: 2022-07-5  

Fund supported: NSFC(71271042)
Yunnan Normal University(2020ZB014)
Yunnan Province Science and Technology Department(202201AU070051)

作者简介 About authors

程铭,Email:chming@std.uestc.edu.cn

摘要

考虑具有一般投资收益过程的二维带扰动保险风险模型, 假定保险公司盈余的投资收益过程由右连左极随机过程刻画, 且两种索赔额与索赔到达时间间隔服从 Sarmanov 相依结构. 当索赔额分布属于正则变化尾分布族时, 得到有限时间破产概率的渐近公式. 当描述投资收益过程的右连左极过程分别取 Lévy 过程, Vasicek 利率模型, Cox-Ingersoll-Ross(CIR) 利率模型, Heston 模型时, 得到相应投资收益情形下破产概率的渐近公式.

关键词: 风险模型; 投资收益; 时间相依; 破产概率

Abstract

The paper considers a bi-dimensional perturbed insurance risk model with general investment returns. Assume that the investment return is described by a càdlàg process, and two classes of claims and the inter-arrival times follow the Sarmanov dependence structure. When the claim-size distribution has a regularly varying tail, the paper derives the asymptotic formula of the finite-time ruin probability. When the càdlàg process describing investment returns is chosen as the Lévy process, Vasicek interest rate model, Cox-Ingersoll-Ross (CIR) interest rate model, or Heston model, the paper derives the asymptotic estimates for ruin probabilities under the corresponding investment returns.

Keywords: Risk model; Investment return; Time-dependence; Ruin probability

PDF (810KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

程铭, 王定成. 考虑一般投资收益和时间相依索赔情形下二维带扰动风险模型的有限时间破产概率渐近估计[J]. 数学物理学报, 2023, 43(5): 1529-1558

Cheng Ming, Wang Dingcheng. Asymptotic Finite-Time Ruin Probability for a Bidimensional Perturbed Risk Model with General Investment Returns and Time-Dependent Claim Sizes[J]. Acta Mathematica Scientia, 2023, 43(5): 1529-1558

1 引言

近年来, 一维风险模型破产概率的研究成果丰硕[1,8,10,11,19,21,23]. 对于保险公司来说, 只经营一种业务是不大可能的, 因此多维保险风险模型的研究被提上日程, 而二维保险风险模型作为一维保险风险模型的自然推广及高维保险风险模型的特例具有重要意义, 见文献 [3,4,5,6,7,9,12,16,17,18,20,25,27]. 随着我国财富日益增多和金融活动日益频繁, 保险公司资产的投资收益对其风险具有越来越重要的影响, 故在度量保险公司的破产概率时须考虑到资产的投资收益这一重要因素. 很多学者假设保险公司资产的投资收益是常数, 但即使保险公司在债券市场投资, 其收益率也是变化的, 这一理想化假设只是为了方便在数学上处理. 在金融活动日益频繁的今天, 保险公司通常会将投资组合的一部分资产购买可能获得较高回报的风险资产, 因此, 保险公司资产的投资收益具有不确定性与风险性. 也有学者假设保险公司资产的对数投资收益过程由 Lévy 过程刻画, 但对保险公司来说, 其投资收益过程并非全是由平稳独立过程刻画, 例如, CIR 利率模型刻画的投资收益过程是 Markov 过程, 基于分形布朗运动的随机波动性模型刻画的投资收益过程甚至不能由 Markov 过程刻画. 为保证保险公司破产概率的估计不会过低或过高, 如何选择随机过程描述保险公司资产的投资收益具有挑战性, 为解决这一问题, 假设保险公司的对数投资收益过程由一般的右连左极随机过程刻画, 本文研究二维带扰动保险风险模型破产概率的渐近估计.

设右连左极随机过程 $\{\xi(t), t\geq0\}$ 描述保险公司的对数投资收益过程且 $\xi(0)=0$.$\{B_1(t),$$t\geq0\}$$\{B_2(t),t\geq0\}$ 是标准布朗运动且满足

$\begin{align*} B_2(t)=\rho B_1(t)+\sqrt{1-\rho^2}B_3(t), \end{align*}$

其中, $\rho\in[-1,1]$, $B_3(t)$ 是标准布朗运动且与 $B_1(t)$ 独立. 于是, 截止时间 $t\geq0$ 保险公司的盈余过程 $(U_{1}(t),U_{2}(t))$

$ \begin{matrix} \begin{pmatrix} U_{1}(t) \\ U_{2}(t) \end{pmatrix} = \mathrm{e}^{\xi(t)}\left[ \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} c_1 \int_0^t \mathrm{e}^{-\xi(s)} \mathrm{d}s \\ c_2 \int_0^t \mathrm{e}^{-\xi(s)} \mathrm{d}s \end{pmatrix} + \begin{pmatrix} \sigma_1 \int_0^t \mathrm{e}^{-\xi(s)} \mathrm{d}B_1(s) \\ \sigma_2 \int_0^t \mathrm{e}^{-\xi(s)} \mathrm{d}B_2(s) \end{pmatrix} - \begin{pmatrix} \sum\limits_{i=1}^{N(t)} X_{i}\mathrm{e}^{-\xi(\tau_i)} ] \sum\limits_{j=1}^{N(t)} Y_{j}\mathrm{e}^{-\xi(\tau_j)} \end{pmatrix} \right], \end{matrix} $

其中, $(x,y)$ 是初始准备金向量; $(c_1, c_2)$ 是常数保费率向量且 $c_1, c_2>0$; $\sigma_i\geq0$, $i=1,2$, 是扰动系数; $\{(X_i, Y_i), i\geq1\}$ 是索赔额向量序列, 其共同到达时间间隔 $\theta_1$, $\theta_2$, $\cdots $ 是独立同分布且参数为 $\lambda>0$ 的指数分布随机变量; 到达时间 $\tau_n=\sum\limits_{i=1}^n \theta_i$, $n\geq1$ 构成更新函数为 $\lambda_t=\lambda t$ 的齐次泊松过程 $\{N(t):N(t)=\sum\limits_{i=1}^\infty\mathbb{I}_{[\tau_i\leq t]}, t\geq0\}$, 其中 $\mathbb{I}_{[A]}$ 表示集合 $A$ 的示性函数. 针对模型 (1.1), 本文定义有限时间破产概率为

$\begin{align*} \Psi \left(x,y;t\right) =P\left(T_{\text{max}}\leq t \mid U_{1}(0)=x, U_{2}(0)=y \right), \end{align*}$

其中 $T_{\text{max}}=\inf{\left\{t>0: \max{(U_{1}(t), U_{2}(t))}<0 \right\}}$ 是破产时间.

本文的行文组织架构如下. 第 2 节介绍一些预备知识并呈现本文主要结果; 当描述投资收益的随机过程分别取 Lévy 过程, Vasicek 利率模型, CIR 利率模型, Heston 模型时, 在第 3 节得到相应投资收益情形下破产概率的渐近公式; 第 4 节证明了本文主要结果.

2 准备知识及主要结果

本文约定 $C$ 总是表示一个正的常数, 且其在每处的大小可能不同. 对于实数 $a$$b$, 记 $a \vee b=\max\{a,b\}$, $a \wedge b=\min\{a,b\}$. 对于满足关系

$\begin{align*} l_1 =\liminf_{(x,y)\rightarrow(\infty,\infty)} \frac{f(x,y)}{g(x,y)} \leq \limsup\limits_{(x,y)\rightarrow(\infty,\infty)} \frac{f(x,y)}{g(x,y)} = l_2, \end{align*}$

的两个正函数 $f(\cdot,\cdot)$$g(\cdot,\cdot)$, 当 $l_2\leq1$ 时, 称 $f(x,y)\lesssim g(x,y)$ 成立; 当 $l_1\geq1$ 时, 称$f(x,y)\gtrsim g(x,y)$ 成立; 当 $l_1=l_2=1$ 时, 称 $f(x,y)\sim g(x,y)$ 成立; 当 $0<l_1 \leq l_2< \infty$ 时, 称 $f(x,y)\asymp g(x,y)$ 成立.

定义2.1 称定义在 $[0,\infty)$ 上的分布函数 $F$ 是指数为 $-\alpha$ 的正则变化尾分布, 记作 $F\in\mathcal{R}_{-\alpha}$, $\alpha\geq0$, 若其生存函数 $\bar{F}(x)$ 满足

$ \begin{matrix} \lim\limits_{x\rightarrow\infty} \frac{ \bar{F}(xy) }{ \bar{F}(x) } =y^{-\alpha} \end{matrix} $

对任意的 $y>0$ 成立.

本文假设索赔额及其共同到达时间间隔服从三元 Sarmanov 相依结构, 即

假设2.1 $(X, Y, \theta)$ 是独立同分布随机序列 $\left\{(X_i, Y_i, \theta_i), i\geq1\right\}$ 的独立复制, 其边际分布函数分别为定义在$[0,\infty)$ 上的 $F$, $G$$H$ 且满足

$ \begin{matrix} &P(X \in \mathrm{d}x, Y \in \mathrm{d}y, \theta\in \mathrm{d}z)\nonumber\\ =\ &(1+\eta_{12}\varphi_{1}(x)\varphi_{2}(y)+\eta_{13}\varphi_{1}(x)\varphi_{3}(z) +\eta_{23}\varphi_{2}(y)\varphi_{3}(z))\mathrm{d}F(x)\mathrm{d}G(y)\mathrm{d}H(z), \end{matrix} $

其中, 参数 $\eta_{12}$, $\eta_{13}$$\eta_{23}$ 皆为实数; 核函数 $\varphi_{1}(x)$, $\varphi_{2}(y)$$\varphi_{3}(z)$ 满足

$ \begin{equation} E \left( \varphi_{1}(X)\right) =E \left( \varphi_{2}(Y)\right) =E \left( \varphi_{3}(Z)\right) =0, \end{equation} $
$ \begin{equation} \lim\limits_{x\rightarrow\infty} \varphi_1(x)=d_1<\infty,\quad \lim\limits_{y\rightarrow\infty} \varphi_2(y)=d_2<\infty,\quad \widetilde{C}_d:=1+\eta_{12}d_1d_2>0, \end{equation} $
$ \begin{equation} 1+\eta_{12}\varphi_{1}(x)\varphi_{2}(y)+\eta_{13}\varphi_{1}(x)\varphi_{3}(z)+\eta_{23}\varphi_{2}(y)\varphi_{3}(z)\geq0, \quad \text{对} \ x,y,z\geq0. \end{equation} $

微分等式 (2.2) 两边关于 $z$ 在区间 $[0,\infty)$ 取积分, 根据 (2.3) 式得

$ \begin{equation} P(X \in \mathrm{d}x, Y \in \mathrm{d}y) =\left(1+\eta_{12}\varphi_{1}(x)\varphi_{2}(y)\right) \mathrm{d}F(x)\mathrm{d}G(y), \end{equation} $

即随机向量 $(X,Y)$ 服从二元 Sarmanov 分布. 类似地,

$ \begin{matrix} P(X \in \mathrm{d}x, \theta\in \mathrm{d}z) =(1+\eta_{13}\varphi_{1}(x)\varphi_{3}(z)) \mathrm{d}F(x)\mathrm{d}H(z), \end{matrix} $
$ \begin{matrix} P(Y \in \mathrm{d}y, \theta\in \mathrm{d}z) =(1+\eta_{23}\varphi_{2}(y)\varphi_{3}(z)) \mathrm{d}G(y)\mathrm{d}H(z). \end{matrix} $

根据文献[26], 存在常数 $b_1$, $b_2$$b_3$ 使得

$ \begin{matrix} \vert \varphi_1(x)\vert\leq b_1,\quad \vert \varphi_2(y)\vert\leq b_2,\quad \vert \varphi_3(z)\vert\leq b_3, \qquad \text{对} \ x,y,z\geq 0. \end{matrix} $

接下来首先引入一些记号. 由 (2.4) 式, 对 $s>0$, 定义 $\varphi_{31}(s)$, $\varphi_{32}(s)$$\varphi_{33}(s)$,

$ \begin{matrix} &\varphi_{31}(s) := 1+\eta_{13}d_1\varphi_{3}(s)\geq0, \quad \varphi_{32}(s) := 1+\eta_{23}d_2\varphi_{3}(s)\geq0, \end{matrix} $
$ \begin{matrix} \varphi_{33}(s) := 1+\varphi_3(s)(\eta_{13}d_1+\eta_{23}d_2)/\widetilde{C}_d\geq0. \end{matrix} $

根据 $\varphi_3(\cdot)$ 的有界性, 存在正的常数 $b_{31}$, $b_{32}$$b_{33}$ 使得 $\varphi_{31}(\cdot)\leq b_{31}$, $\varphi_{32}(\cdot)\leq b_{32}$$\varphi_{33}(\cdot)\leq b_{33}$ 成立. 令 $\widehat{\theta}_1$, $\widehat{\theta}_2$$\widehat{\theta}_3$ 是独立的随机变量, 且分布函数分别为 $\widehat{H}_1$, $\widehat{H}_2$$\widehat{H}_3$, 即

$ \begin{matrix} \mathrm{d}\widehat{H}_1(s)=\varphi_{31}(s)\mathrm{d}H(s),\quad \mathrm{d}\widehat{H}_2(s)=\varphi_{32}(s)\mathrm{d}H(s),\quad \mathrm{d}\widehat{H}_3(s)=\varphi_{33}(s)\mathrm{d}H(s). \end{matrix} $

设随机向量 $(X^{\,*}, Y^{\,*}, \theta^*)$ 是随机向量 $(X, Y, \theta)$ 的独立版本, 也就是说, 随机向量 $(X^{\,*}, Y^{\,*}, \theta^*)$ 与随机向量 $(X, Y, \theta)$ 具有相同的分布且随机向量 $(X^{\,*}, Y^{\,*}, \theta^*)$ 的元素之间相互独立. 同时, 设 $\{(X_k^{\,*},$$ Y_k^{\,*}, \theta_k^*), k\geq1\}$ 是独立复制版本为 $(X^{\,*}, Y^{\,*}, \theta^*)$ 的独立同分布的随机向量序列. 于是, 本节构造下列更新过程,

$ \begin{matrix} \widehat{N}_t^{(m)} =\sum\limits_{k=1}^{\infty} \mathbb{I}_{(\widehat{\tau}_{k}^{(m)}\leq t)},\ \ \widehat{\tau}_{1}^{(m)}=\widehat{\theta}_m,\ \widehat{\tau}_{k}^{(m)}=\widehat{\theta}_m+\sum\limits_{i=2}^{k}\theta_i^*,\ k\geq 2,\ m=1,2,3;\end{matrix} $
$ \begin{matrix}\widehat{N}_t^{(4)}=\sum\limits_{k=1}^{\infty}\mathbb{I}_{(\widehat{\tau}_{k}^{(4)}\leq t)},\ \ \widehat{\tau}_{1}^{(4)}=\widehat{\theta}_1,\ \widehat{\tau}_{2}^{(4)}=\widehat{\theta}_1+\widehat{\theta}_2,\ \widehat{\tau}_{k}^{(4)}=\widehat{\theta}_1+\widehat{\theta}_2+\sum\limits_{i=3}^{k}\theta_i^*, \ k\geq 3;\end{matrix} $
$ \begin{matrix}\widehat{N}_t^{(5)}=\sum\limits_{k=1}^{\infty}\mathbb{I}_{(\widehat{\tau}_{k}^{(5)}\leq t)},\ \ \widehat{\tau}_{1}^{(5)}=\widehat{\theta}_2,\ \widehat{\tau}_{2}^{(5)}=\widehat{\theta}_2+\widehat{\theta}_1,\ \widehat{\tau}_{k}^{(5)}=\widehat{\theta}_2+\widehat{\theta}_1+\sum\limits_{i=3}^{k}\theta_i^*, \ k\geq 3. \end{matrix} $

且更新函数为

$ \begin{matrix} \widehat{\lambda}_{t}^{(m)} =E\widehat{N}_{t}^{(m)} =\sum\limits_{k=1}^{\infty}P(\widehat{\tau}_k^{(m)}\leq t),\qquad m=1,2,3,4,5. \end{matrix} $

本文假设随机量 $\left\{(X_i, Y_i, \theta_i), i\geq1\right\}$, $\left\{(X_i^{\,*}, Y_i^{\,*}, \theta_i^*), i\geq1\right\}$, $\left\{\xi(t), t\geq0\right\}$, $\left\{(B_1(t),B_2(t)), t\geq0\right\}$$(\widehat{\theta}_1, \widehat{\theta}_2, \widehat{\theta}_3)$ 独立.

定理2.1 考虑二维保险风险模型 (1.1). 设 $F\in\mathcal{R}_{-\alpha}$, $G \in \mathcal{R}_{-\beta}$, 其中 $\alpha>0$, $\beta>0$. 在假设 2.1 成立的条件下, 若存在常数 $\kappa > \max\{ \alpha+\beta, 2 \}$, 使得 $\int_{0}^{T}E\mathrm{e}^{-\kappa\xi(s)}\mathrm{d}s<\infty$$0<T<\infty$ 成立, 则对 $0< t\leq T$, $ \Psi(x,y;t) \sim \bar{F}(x)\bar{G}(y)P(t), $ 其中

$\begin{align*} P(t) =\ & \widetilde{C}_d \int_{0}^{t}E\mathrm{e}^{-(\alpha+\beta)\xi(u)}\mathrm{d}\widehat{\lambda}_{u}^{(3)} \\ &+\iint_{u+v\leq t} E\mathrm{e}^{-\beta\xi(u)-\alpha\xi(u+v)} [\mathrm{d}\widehat{\lambda}_{u}^{(5)}\mathrm{d}\lambda_v+\mathrm{d}\widehat{H}_2(u)(\mathrm{d}\widehat{\lambda}_{v}^{(1)}-\mathrm{d}\lambda_v)] \\ & +\iint_{u+v\leq t} E\mathrm{e}^{-\alpha\xi(u)-\beta\xi(u+v)} [\mathrm{d}\widehat{\lambda}_{u}^{(4)}\mathrm{d}\lambda_v+\mathrm{d}\widehat{H}_1(u)(\mathrm{d}\widehat{\lambda}_{v}^{(2)}-\mathrm{d}\lambda_v)]. \end{align*}$

当对数投资收益过程 $\{\xi(t),t\geq0\}$ 是 Lévy 过程时, 显然有推论 2.1.

推论2.1 考虑二维保险风险模型 (1.1). 设 $\{\xi(t),t\geq0\}$ 是 Lévy 过程, $\phi(\cdot)$$\{\xi(t),t\geq0\}$ 的 Laplace 指数. 在定理 (2.1) 的条件下, 则对 $0< t\leq T$,

$ \Psi(x,y;t) \sim \bar{F}(x)\bar{G}(y)P'(t), $

其中

$\begin{align*} P'(t)&= \widetilde{C}_d \int_{0}^{t}\mathrm{e}^{u\phi(\alpha+\beta)}\mathrm{d}\widehat{\lambda}_{u}^{(3)} +\iint_{u+v\leq t} \mathrm{e}^{u\phi(\alpha+\beta)+v\phi(\alpha)} [\mathrm{d}\widehat{\lambda}_{u}^{(5)}\mathrm{d}\lambda_v+\mathrm{d}\widehat{H}_2(u)(\mathrm{d}\widehat{\lambda}_{v}^{(1)}-\mathrm{d}\lambda_v)] \nonumber\\ &\quad\ +\iint_{u+v\leq t} \mathrm{e}^{u\phi(\alpha+\beta)+v\phi(\beta)} [\mathrm{d}\widehat{\lambda}_{u}^{(4)}\mathrm{d}\lambda_v+\mathrm{d}\widehat{H}_1(u)(\mathrm{d}\widehat{\lambda}_{v}^{(2)}-\mathrm{d}\lambda_v)]. \end{align*}$

设随机向量 $(X,Y)$ 服从 (2.6) 式中的二元 Sarmanov 分布, 且 $(X,Y\,)$$\theta$ 独立, 即在 (2.2) 式中有 $\eta_{13}=\eta_{23}=0$, $\varphi_3(z)=0$. 于是由 (2.12) 式, $\widehat{H}_1=\widehat{H}_2=\widehat{H}_3=H$$\widehat{\lambda}_t^{(m)}=\lambda_t$, $m=1,2,3,4,5$, 对任意的 $t>0$ 成立. 故得到下面的推论.

推论2.2 考虑二维保险风险模型 (1.1). 设随机向量 $(X,Y)$ 服从 (2.6) 式中的二元 Sarmanov 分布且其边际分布为 $F,G\in\mathcal{R}_{-\alpha}$, $\alpha>0$. 设随机向量 $(X,Y\,)$ 与随机变量 $\theta$ 独立. 在假设 2.1 成立的条件下, 若存在常数 $\kappa > \max\{ 2\alpha, 2 \}$ 使得 $\int_{0}^{T}E\mathrm{e}^{-\kappa\xi(s)}\mathrm{d}s<\infty$$0<T<\infty$ 成立, 则对 $0<t\leq T$,

$\begin{align*} \Psi(x,y;t) \sim \bar{F}(x)\bar{G}(y) &\left\{ \lambda\widetilde{C}_d \int_{0}^{t}E\mathrm{e}^{-2\alpha\xi(u)}\mathrm{d}u +2\lambda^2\iint_{u+v\leq t} E\mathrm{e}^{-\alpha\xi(u)-\alpha\xi(u+v)} \mathrm{d}u\mathrm{d}v \right\}. \end{align*}$

3 两个应用

当对数投资收益过程 $\{\xi(t),t\geq0\}$ 是 Vasicek 模型、CIR 模型或 Heston 模型刻画的右连左极随机过程时, 本节将计算二维保险风险模型 (1.1) 的有限时间破产概率的渐近公式. 根据定理 (2.1), 计算有限时间破产概率渐近公式的关键是计算 $E\mathrm{e}^{-b\xi(u)-a\xi(u+v)}$, 其中 $a$, $b$ 为实数. 于是, 本节重点讨论 $E\mathrm{e}^{-b\xi(u)-a\xi(u+v)}$.

3.1 应用于 Vasicek 模型和 CIR 模型

设对数投资收益过程 $\{\xi(t),\ t\geq 0\}$ 满足

$ \begin{matrix} \xi(t)=\int_0^t r_s \mathrm{d}s, \quad \xi(0)=0, \end{matrix} $
$ \begin{matrix} \mathrm{d}r_t=m(l-r_t)\mathrm{d}t+\delta r_t^{\pi}\mathrm{d}W_t, \end{matrix} $

其中, $\{r_t,\ t\geq 0\}$ 是短期随机利率过程; $m$, $l$$\delta$ 皆为正的常数; $\pi=0$$1/2$; $\{W_t,\ t\geq 0\}$ 是标准布朗运动. 在金融数学中, 当 $\pi=0$ 时模型 (3.2) 被称为 Vasicek 模型, 当 $\pi=1/2$ 时模型 (3.2) 被称为 CIR 模型. 与 CIR 模型相比, Vasicek 模型中不存在平方根项, 于是 Vasicek 模型会出现负利率.

引理3.1 设右连左极随机过程 $\{\xi(t),t\geq 0\}$ 满足 (3.1) 和 (3.2) 式, 则对实数 $a$$b$,

(1) 当 $\pi=0$ 即 Vasicek 模型时, 有

$ \begin{matrix} E\mathrm{e}^{-b\xi(u)-a\xi(u+v)} &=\exp{\left\{ \widehat{A}_1(a,b)+\widehat{A}_2(a,b)v+\widehat{A}_3(a,b)\mathrm{e}^{-mv}\right\}}\nonumber\\ &\quad\cdot\exp{\left\{ \widehat{A}_4(a,b)u +\widehat{A}_5(a,b)\mathrm{e}^{-mu}+\widehat{A}_6(a,b)\mathrm{e}^{-2mu}\right\}}\nonumber\\ &\quad\cdot\exp{\left\{ \widehat{A}_7(a,b)\mathrm{e}^{-mu-mv}+\widehat{A}_8(a,b)\mathrm{e}^{-2mu-mv}+\widehat{A}_{9}(a,b)\mathrm{e}^{-2mu-2mv}\right\}}, \end{matrix} $

其中

$\widehat{A}_1(a,b)=\frac{a+b}{m}(l-r_0)-\frac{3a^2+3b^2+4ab}{4m^3}\delta^2, \ \widehat{A}_2(a,b)=-al+\frac{a^2\delta^2}{2m^2},\ \widehat{A}_3(a,b)=\frac{-ab\delta^2}{2m^3}, $
$\widehat{A}_4(a,b)=(a+b)\left(\frac{a+b}{2m^2}\delta^2-l\right),\ \widehat{A}_5(a,b)=\frac{b}{m}\left(r_0-l+\frac{(a+b)\delta^2}{m^2}\right),\ \widehat{A}_6(a,b)=-\frac{b^2\delta^2}{4m^3}, $
$\widehat{A}_7(a,b)=\frac{a}{m}\left(r_0-l+\frac{(a+b)\delta^2}{m^2}\right),\ \widehat{A}_8(a,b)=-\frac{ab\delta^2}{2m^3},\ \widehat{A}_9(a,b)=-\frac{a^2\delta^2}{4m^3}. $

(2) 当 $\pi=1/2$ 即 CIR 模型时, 若$m^2+2\delta^2[(a+b)\wedge a]>0$, 则

$ \begin{matrix} E\mathrm{e}^{-b\xi(u)-a\xi(u+v)} \\ =&\left(\frac{k_a\mathrm{e}^{mv/2}}{k_a\cosh(k_av)\!+\!\sinh(k_av)m/2}\right)^{2aml/\delta^2} \left(\frac{(\widehat{B}_1(v)\!-\!1)\mathrm{e}^{(m-2k_{a+b})u/2}}{\widehat{B}_1(v)\!-\!\mathrm{e}^{-2uk_{a+b}}}\right)^{2ml/\delta^2}\nonumber\\ & \cdot \exp{\left\{r_0\left[\frac{m-2k_{a+b}}{\delta^2}-\frac{4k_{a+b}}{\delta^2[\widehat{B}_1(v)\mathrm{e}^{2uk_{a+b}}-1]}\right]\right\}}, \end{matrix} $

其中 $k_s=\sqrt{m^2+2s\delta^2}/2$, $\widehat{B}_1(v) =1-\frac{4k_{a+b}}{(2k_{a+b}-m)-\widehat{B}_2(v)\delta^2}$, $\widehat{B}_2(v)=\frac{2a}{m+2k_a\coth(k_av)}$.

由 (3.1) 式,

$\begin{align*} E\mathrm{e}^{-b\xi(u)-a\xi(u+v)} =E\left(\mathrm{e}^{-(a+b)\int_0^u r_s\mathrm{d}s -a\int_u^{u+v}r_s\mathrm{d}s}\right) =E\left\{\mathrm{e}^{-(a+b)\int_0^u r_s\mathrm{d}s} E\left(\mathrm{e}^{-a\int_u^{u+v}r_s\mathrm{d}s}|\mathcal{F}_u\right)\right\}. \end{align*}$

本证明的总体思路是首先计算 $E\big(\mathrm{e}^{-a\int_u^{u+v}r_sds}|\mathcal{F}_u\big)$, 然后计算 $E\mathrm{e}^{-b\xi(u)-a\xi(u+v)}$. $r(t)$ 是由随机微分方程 (3.2) 确定, 故 $ r(t)$ 是马尔科夫过程, 且对$\widetilde{T}\geq t$$B(t,\widetilde{T}\,):=E\big(\mathrm{e}^{-a\int_t^{\widetilde{T}}r_sds}|\mathcal{F}_t\big)=f\,(t,r_t)$, 其中 $f\,(t,r)$ 是关于虚拟变量 $t$$r$ 的函数. 为得到 $E\big(\mathrm{e}^{-a\int_u^{u+v}r_sds}|\mathcal{F}_u\big)$, 先求解 $f\,(t,r)$的显式表达式. 根据文献 [22], 需通过"建立鞅, 取微分, 令 $\mathrm{d}t$ 项等于 $0$" 这三步找到函数 $f\,(t,r)$ 满足的偏微分方程, 通过求解偏微分方程得到 $ f\,(t,r)$ 的显式表达式. 对 $0\leq s\leq t \leq \widetilde{T}$, $E\left\{\mathrm{e}^{-a\xi(t)}\cdot B(t,\widetilde{T}\,)\Big|\mathcal{F}_s\right\} =E\left\{\mathrm{e}^{-a\int_0^tr_u\mathrm{d}u}\cdot E\big(\mathrm{e}^{-a\int_t^{\widetilde{T}}r_s\mathrm{d}s}|\mathcal{F}_t\big)|\mathcal{F}_s\right\} =E\left\{\mathrm{e}^{-a\int_0^{\widetilde{T}}r_u\mathrm{d}u}|\mathcal{F}_s\right\} =\mathrm{e}^{-a\xi(s)}\cdot B(s,\widetilde{T})$.$\mathrm{e}^{-a\xi(t)}\cdot B(t,\widetilde{T}\,)=\mathrm{e}^{-a\xi(t)}\cdot f\,(t,r_t)$ 是鞅. 鞅 $\mathrm{e}^{-a\xi(t)}\cdot f\,(t,r_t)$ 的微分为

$\begin{align*} \mathrm{d}\left(\mathrm{e}^{-a\xi(t)}\cdot f\,(t,r_t)\right) &=f\,(t,r_t)\mathrm{d}\mathrm{e}^{-a\xi(t)}+\mathrm{e}^{-a\xi(t)}\mathrm{d}f\,(t,r_t)\\ &=\mathrm{e}^{-a\xi(t)}\left\{-arf+f_t+m(l-r)f_r +f_{rr}\cdot\delta^2r^{2\pi}/2 \right\}\mathrm{d}t+\delta \mathrm{e}^{-a\xi(t)}f_r\,\mathrm{d}W_t. \end{align*}$

$\mathrm{d}t$ 项等于 $0$ 得到偏微分方程

$ \begin{matrix} f_t(t,r)+m(l-r)f_r(t,r)+f_{rr}(t,r)\cdot\delta^2r^{2\pi}/2 =arf\,(t,r), \end{matrix} $

且终端条件为

$ \begin{equation} f\,(\widetilde{T},r)=1,\quad \text{对任意的}\ r. \end{equation} $

(1) 当 $\pi=0$, 即 Vasicek 模型. 偏微分方程 (3.5) 成为

$ \begin{matrix} f_t(t,r)+m(l-r)f_r(t,r)+f_{rr}(t,r)\cdot\delta^2/2 =arf\,(t,r). \end{matrix} $

根据文献 [22], 该偏微分方程的解的形式为

$f\,(t,r)=\mathrm{e}^{-rC_1(t,\widetilde{T})-A_1(t,\widetilde{T})} $, 其中 $C_1(t,\widetilde{T})$ 和 $A_1(t,\widetilde{T})$ 是关于 $t\in[\widetilde{T}]$ 的函数. 将 $f\,(t,r)=\mathrm{e}^{-rC_1(t,\widetilde{T})-A_1(t,\widetilde{T})}$ 代入偏微分方程 (3.7) 得到

$ \begin{matrix} \left[\left( -C'_1(t,\widetilde{T})+ mC_1(t,\widetilde{T})- a\right)r -A'_1(t,\widetilde{T}) -mlC_1(t,\widetilde{T}) +\frac{\delta^2C_1^2(t,\widetilde{T})}{2}\right]f\,(t,r) =0. \end{matrix} $

对任意的 $r$, (3.8) 式总是成立的, 故 $-C'_1(t,\widetilde{T})+mC_1(t,\widetilde{T})-a=0$, 否则, 若改变 $r$ 的取值, (3.8) 式并不总是 $0$. 于是得到常微分方程

$ \begin{matrix} C'_1(t,\widetilde{T})=mC_1(t,\widetilde{T})-a. \end{matrix} $

从而,

$ \begin{equation} A'_1(t,\widetilde{T})=-mlC_1(t,\widetilde{T})+\delta^2C_1^2(t,\widetilde{T})/2. \end{equation} $

由终端条件 (3.6), $C_1(\widetilde{T},\widetilde{T})=A_1(\widetilde{T},\widetilde{T})=0$. 故根据 (3.9) 和 (3.10)} 式及终端条件可得

$ \begin{equation} C_1(t,\widetilde{T})=\frac{a}{m}\left(1-\mathrm{e}^{-m(\widetilde{T}-t)}\right), \end{equation} $
$ \begin{equation} A_1(t,\widetilde{T}) =\left(al-\frac{a^2\delta^2}{2m^2}\right)(\widetilde{T}-t) +\left(\frac{al}{m}-\frac{a^2\delta^2}{m^3}\right)\mathrm{e}^{-m(\widetilde{T}-t)} +\frac{a^2\delta^2}{4m^3}\mathrm{e}^{-2m(\widetilde{T}-t)} -\left(\frac{al}{m}-\frac{3a^2\delta^2}{4m^3}\right). \end{equation} $

于是, $B(t,\widetilde{T}\,)$的显式表达为 $B(t,\widetilde{T}\,)=f\,(t,r_t)=\mathrm{e}^{-r_tC_1(t,\widetilde{T})-A_1(t,\widetilde{T})}$, $0\leq t\leq \widetilde{T}$, 其中 $C_1(t,\widetilde{T})$$A_1(t,\widetilde{T})$ 分别由 (3.11) 和 (3.12) 式确定. 故

$ \begin{matrix} E\mathrm{e}^{-b\xi(u)-a\xi(u+v)} &=E\left\{\mathrm{e}^{-(a+b)\xi(u)}\cdot B(u,u+v)\right\}\nonumber\\ &=\mathrm{e}^{-A_1(u,u+v)}E\left\{\mathrm{e}^{-C_1(u,u+v)r_u-(a+b)\xi(u)}\right\}. \end{matrix} $

要得到 $ E\left\{\mathrm{e}^{-C_1(u,u+v)r_u-(a+b)\xi(u)}\right\} $, 只需考虑 $E\mathrm{e}^{p_1r_t+p_2\xi(t)}$, 其中 $p_1$, $p_2$ 是实数. 令 $D(p_1,p_2,t)=E\mathrm{e}^{p_1r_t+p_2\xi(t)}$, $r_t$ 是高斯随机变量, 由文献 [22,例 4.4.10] 知 $\xi(t)=\int_0^t r_s \mathrm{d}s=(mlt+r_0-r_t+\delta W_t)/m$ 也是高斯随机变量, 故对任意实数 $p_1$$p_2$, $D(p_1,p_2,t)$ 是有限的. 对 $\mathrm{e}^{p_1r_t+p_2\int_0^t r_s \mathrm{d}s}$ 应用 Itô 公式并取期望得

$D(p_1,p_2,t) =\mathrm{e}^{p_1r_0}+\left(p_1ml+\frac{p_1^2\delta^2}{2}\right)\int_0^tD(p_1,p_2,s)\,\mathrm{d}s+(p_2-p_1m)\int_0^t\frac{\partial D(p_1,p_2,s)}{\partial p_1 } \,\mathrm{d}s, $

其中上式用到了矩母函数的性质 $\partial D(p_1,p_2,s) /\partial p_1 =E(r_s\mathrm{e}^{p_1r_s+p_2\int_0^s r_v \mathrm{d}v})$. 于是得到 $D(p_1,p_2,t)$ 关于 $t$ 的积微分方程

$ \begin{matrix} \frac{\partial D(p_1,p_2,t)}{\partial t } + (p_1m-p_2)\frac{\partial D(p_1,p_2,t)}{\partial p_1} =\left(p_1ml+\frac{p_1^2\delta^2}{2}\right)D(p_1,p_2,t), \end{matrix} $

且初始条件为 $D(p_1,p_2,0)=\mathrm{e}^{p_1r_0}$. 要得到方程 (3.14) 的解, 首先要找到 (3.14) 式的特征线方程的解. 由特征线方程的定义,

$ \begin{matrix} \frac{\mathrm{d}p_1}{\mathrm{d}s}=(p_1m-p_2),\quad \frac{\mathrm{d}t}{\mathrm{d}s}=1,\quad p_1(0)=c,\quad t(0)=0. \end{matrix} $

于是, (3.15) 式的解为

$ \begin{matrix} p_1(s) =\frac{p_2}{m}+\left(c-\frac{p_2}{m}\right)\mathrm{e}^{ms},\quad t(s)=s. \end{matrix} $

$U(s)=D(p_1(s),p_2,t(s))$, 于是 (3.14) 式可转化为下面的常微分方程,

$\begin{align*} \frac{\mathrm{d}U}{\mathrm{d}s} =\frac{\partial D(p_1,p_2,t)}{\partial t}\frac{\mathrm{d}t}{\mathrm{d}s} +\frac{\partial D(p_1,p_2,t)}{\partial p_1}\frac{\mathrm{d}p_1}{\mathrm{d}s} = \frac{\partial D(p_1,p_2,t)}{\partial t}+(p_1m-p_2)\frac{\partial D(p_1,p_2,t)}{\partial p_1}. \end{align*}$

结合 (3.14) 式, 则 $\frac{\mathrm{d}U}{\mathrm{d}s} =\left(p_1ml+\frac{p_1^2\delta^2}{2}\right)U(s)$, 且初值条件为 $U(0)=D(p_1(0),p_2,t(0))=D(c,p_2,0)=\mathrm{e}^{cr_0}$. 于是,

$ \begin{matrix} U(s)=\exp{\left\{cr_0+ml\int_0^sp_1(v)\mathrm{d}v+\frac{\delta^2}{2}\int_0^sp_1^2(v)\mathrm{d}v\right\}}. \end{matrix} $

由 (3.16) 式, 根据 $p_1$$t$ 来表示 $c$$s$, 随后代入 (3.17) 式得

$ \begin{matrix} D(p_1,p_2,t) =\exp{\left\{\bar{A}_1(p_1,p_2)+\bar{A}_2(p_1,p_2)t+\bar{A}_3(p_1,p_2)\mathrm{e}^{-mt}+\bar{A}_4(p_1,p_2)\mathrm{e}^{-2mt}\right\}}, \end{matrix} $

其中 $\bar{A}_1(p_1,p_2) =\frac{p_2r_0}{m} +\left(l+\frac{p_2\delta^2}{m^2}\right) \left(p_1-\frac{p_2}{m}\right) +\left(p_1-\frac{p_2}{m}\right)^2\frac{\delta^2}{4m}$, $\bar{A}_2(p_1,p_2) =p_2l+\frac{p_2^2\delta^2}{2m^2}$, $\bar{A}_3(p_1,p_2)$$ =\left(r_0-l-\frac{p_2\delta^2}{m^2}\right) \left(p_1-\frac{p_2}{m}\right)$, $\bar{A}_4(p_1,p_2) =-\frac{\delta^2(p_1-p_2/m)^2}{4m}$. 事实上, 根据 (3.18) 式,

$ \begin{matrix} E\left\{\mathrm{e}^{-C_1(u,u+v)r_u-(a+b)\xi(u)}\right\} &=E\left\{\mathrm{e}^{\frac{-a(1-\mathrm{e}^{-mv})}{m}r_u-(a+b)\xi(u)}\right\}\nonumber\\ &=D\left(-a\left(1-\mathrm{e}^{-mv}\right)/m,-(a+b),u\right). \end{matrix} $

故将 (3.19) 式代入 (3.13) 式即可得到 (3.3) 式.

(2) 当 $\pi=1/2$, 即 CIR 模型. 偏微分方程 (3.5) 成为

$ \begin{matrix} f_t(t,r)+m(l-r)f_r(t,r)+\delta^2rf_{rr}(t,r)/2=arf\,(t,r). \end{matrix} $

该偏微分方程的解具有形式 $f\,(t,r)=\mathrm{e}^{-rC_2(t,\widetilde{T})-A_2(t,\widetilde{T})}$, 将其代入偏微分方程 (3.20) 得

$\begin{align*} f\,(t,r)\left[\left(-C'_2(t,\widetilde{T})+mC_2(t,\widetilde{T}) +\frac{\delta^2}{2}C_2^2(t,\widetilde{T})-a\right)r -A'_2(t,\widetilde{T})-mlC_2(t,\widetilde{T})\right]=0. \end{align*}$

类似地, 得到 $-C'_2(t,\widetilde{T})+mC_2(t,\widetilde{T}) +\frac{\delta^2}{2}C_2^2(t,\widetilde{T})-a=0$$-A'_2(t,\widetilde{T})-mlC_2(t,\widetilde{T})=0$, 即 $C'_2(t,\widetilde{T})=mC_2(t,\widetilde{T})+\delta^2C_2^2(t,\widetilde{T})/2-a$$A'_2(t,\widetilde{T})=-mlC_2(t,\widetilde{T})$. 而且, 该方程满足终端条件 $C_2(\widetilde{T},\widetilde{T})=A_2(\widetilde{T},\widetilde{T})=0$. 首先求解 $C_2(t,\widetilde{T})$.$Z(t,\widetilde{T})=C_2(t,\widetilde{T})+(m+2k_a)/\delta^2$, 其中 $k_a=\sqrt{m^2+2a\delta^2}/2$. 于是, $Z'(t,\widetilde{T}) =\frac{\delta^2}{2}Z^2(t,\widetilde{T})-2k_aZ(t,\widetilde{T})$ 是终端条件为 $Z(\widetilde{T},\widetilde{T})=(m+2k_a)/\delta^2$ 的伯努利微分方程, 故 $Z(t,\widetilde{T}) =\left(\frac{\delta^2}{4k_a} +\delta^2\left[\frac{1}{m+2k_a}-\frac{1}{4k_a}\right] \mathrm{e}^{-2k_a(\widetilde{T}-t)}\right)^{-1}$. 于是

$ \begin{matrix} C_2(t,\widetilde{T}) =\frac{a\sinh(k_a(\widetilde{T}-t))}{ k_a\cosh(k_a(\widetilde{T}-t)) +\frac{m}{2}\sinh(k_a(\widetilde{T}-t))}. \end{matrix} $

然后求解 $A_2(t,\widetilde{T})$. 对微分方程 $A'_2(t,\widetilde{T})=-mlC_2(t,\widetilde{T})$ 两端积分并利用终端条件$A_2(\widetilde{T},\widetilde{T})=0$

$ \begin{gather} A_2(t,\widetilde{T}) =-\frac{2mla}{\delta^2}\ln\left( \frac{k_a\mathrm{e}^{m(\widetilde{T}-t)/2}}{ k_a\cosh(k_a(\widetilde{T}-t)) +\frac{m}{2}\sinh(k_a(\widetilde{T}-t)) }\right). \end{gather} $

于是, CIR 模型中 $f\,(t,r_t)$ 的显式解为 $B(t,\widetilde{T}\,) =f\,(t,r_t) =\mathrm{e}^{-r_tC_2(t,\widetilde{T})-A_2(t,\widetilde{T})}$, $0\leq t\leq \widetilde{T}$, 其中 $C_2(t,\widetilde{T})$$A_2(t,\widetilde{T})$ 由 (3.21) 和 (3.22) 式确定. 故

$ \begin{matrix} E\left(\mathrm{e}^{-b\xi(u)-a\xi(u+v)}\right) &=E\left\{\mathrm{e}^{-(a+b)\xi(u)}\cdot B(u,u+v)\right\}\nonumber\\ &=\mathrm{e}^{-A_2(u,u+v)}E\left\{\mathrm{e}^{-C_2(u,u+v)r_u-(a+b)\xi(u)}\right\}. \end{matrix} $

为得到 $E\{\mathrm{e}^{-C_2(u,u+v)r_u-(a+b)\xi(u)}\}$, 设 $D'(p_1,p_2,t)=E\mathrm{e}^{p_1r_t+p_2\xi(t)}$, 其中 $p_1$$p_2$ 是实数. 由文献 [13], $r_t$$\xi(t)=\int_0^tr_s\mathrm{d}s$ 皆有矩母函数, 类似于上面与 $D(p_1,p_2,t)$ 有关的讨论知, 当 $m^2>2\delta^2p_2$ 时,

$ \begin{matrix} D'(p_1,p_2,t) =\exp{\left\{\hat{c}(p_1,p_2)r_0+\frac{[m-\Omega(p_2)]mlt}{\delta^2}- \frac{2ml}{\delta^2}\ln{\frac{\zeta(p_1,p_2)-\mathrm{e}^{-\Omega(p_2)t}}{\zeta(p_1,p_2)-1}}\right\}}, \end{matrix} $

其中$\Omega(p_2)=\sqrt{m^2-2\delta^2p_2}$, 且

$ \begin{matrix} \hat{c}(p_1,p_2) = \frac{m - \Omega(p_2)}{\delta^2} - \frac{2\Omega(p_2)} {\delta^2[\zeta(p_1,p_2)\mathrm{e}^{\Omega(p_2)t} - 1]},\ \zeta(p_1,p_2) = 1 - \frac{2\Omega(p_2)}{\Omega(p_2) - m + p_1\delta^2}. \end{matrix} $

事实上, 由引理 3.1 知 $m^2>-2\delta^2(a+b)$, 于是由 (3.24) 式有 $E\left\{\mathrm{e}^{-C_2(u,u+v)r_u-(a+b)\xi(u)}\right\}$, 从而得到 (3.23) 式. 引理得证.

定理3.1 考虑二维带扰动保险风险模型 (1.1). 设随机向量 $(X,Y)$ 的边际分布为 $F\in\mathcal{R}_{-\alpha}$$G\in\mathcal{R}_{-\beta}$, $\alpha, \beta>0$. 设随机向量 $(X,Y)$ 服从二元 Sarmanov 分布, 即 (2.6) 式. 设对数投资收益过程 $\{\xi(t),t\geq 0\}$ 由 (3.1) 和 (3.2) 式构造, 且 $\{\xi(t),t\geq 0\}$, $\{(X_i,Y_i),\ i\geq1 \}$, $\{\theta_i,i\geq1\}$$\{(B_1(t),B_2(t)),t\geq0\}$ 独立. 于是, 对任意的 $t>0$

$\begin{align*} \Psi(x,y;t) \sim\bar{F}(x)\bar{G}(y) &\left\{ \lambda\widetilde{C}_d\int_{0}^{t}E\mathrm{e}^{-(\alpha+\beta)\xi(u)}\mathrm{d}u + \lambda^2\iint_{u+v\leq t}E\mathrm{e}^{-\beta\xi(u)-\alpha\xi(u+v)}\right.\\&\left. +E\mathrm{e}^{-\alpha\xi(u)-\beta\xi(u+v)}\mathrm{d}u\mathrm{d}v \right\}, \end{align*}$

其中 $E\mathrm{e}^{-(\alpha+\beta)\xi(u)}$, $E\mathrm{e}^{-\beta\xi(u)-\alpha\xi(u+v)}$$E\mathrm{e}^{-\alpha\xi(u)-\beta\xi(u+v)}$ 可由引理 3.1 得到.

本定理的证明分成两部分. 首先证明 Vasicek 模型情形. 由 (3.3) 式有

$\begin{align*} E\mathrm{e}^{-\kappa\xi(t)} =\exp{\left\{\widetilde{A}_1(\kappa)+ \widetilde{A}_2(\kappa)t+\widetilde{A}_3(\kappa)\mathrm{e}^{-mt}+ \widetilde{A}_4(\kappa)\mathrm{e}^{-2mt}\right\}} \end{align*}$

其中 $\widetilde{A}_1(\kappa)=\frac{\kappa}{m}(l-r_0)-3\frac{\kappa^2\delta^2}{4m^3}$, $\widetilde{A}_2(\kappa)=\kappa\left(\frac{\kappa\delta^2}{2m^2}-l\right)$, $\widetilde{A}_3(\kappa)=\frac{\kappa}{m}\left(r_0-l+\frac{\kappa\delta^2}{m^2}\right)$, $\widetilde{A}_4(\kappa)=-\frac{\kappa^2\delta^2}{4m^3}$.$\int_0^tE\mathrm{e}^{-\kappa\xi(s)}\mathrm{d}s<\infty$对任意的$\kappa>0$ 成立, 于是由定理 (2.1) 即可证得结果.

其次证明 CIR 模型情形. 由 (3.4) 式得

$\begin{gather*} E\mathrm{e}^{-\kappa\xi(t)} =\Big(\frac{\mathrm{e}^{mt/2}}{ \cosh(k_{\kappa}t) +\frac{m}{2k_{\kappa}}\sinh(k_{\kappa}t) }\Big)^{2ml/\delta^2} \cdot\exp\Big\{ -\frac{2\kappa r_0}{m+2k_{\kappa}\coth{(k_{\kappa}t)}} \Big\}. \end{gather*}$

$\int_0^tE\mathrm{e}^{-\kappa\xi(s)}\mathrm{d}s<\infty$ 对任意的 $\kappa>0$ 成立, 于是由定理 (2.1) 得到结果. 定理 3.1 得证.

3.2 应用于 Heston 模型

1993 年, Steven Heston 建立了一类随机波动率模型, Heston 模型[14]. 与 Black-Scholes 模型相比, Heston 模型中波动率是任意的. 令投资收益过程 $\left\{S_t=\mathrm{e}^{\xi(t)},\ t\geq0 \right\}$ 由 Heston 模型描述, 即

$ \begin{equation} \mathrm{d}S_t =\mu S_t\mathrm{d}t+\sqrt{r_t}S_t\mathrm{d}W_t^{(1)}, \end{equation} $

其中, $\mu$ 是无风险利率; $\{W_t^{(1)}, t\geq0\}$ 是标准布朗运动; $\{r_t, t\geq0\}$ 是方差过程且

$ \begin{equation} \mathrm{d}r_t =m(l-r_t)\mathrm{d}t+\delta\sqrt{r_t}\mathrm{d}W_t^{(2)}. \end{equation} $

此处, $r_0>0$; $l>0$ 表示长期均值水平; $m>0$ 表示恢复到均值水平 $l$ 的速率; $\delta>0$ 反映了方差过程波动, 且满足 $2ml>\delta^2$; $\{W_t^{(2)}, t\geq0\}$ 是标准布朗运动且与布朗运动 $\{W_t^{(1)}, t\geq0\}$ 相关, 即

$ \begin{equation} \mathrm{d}W_t^{(1)} =\tilde{\rho} \mathrm{d}W_t^{(2)} +\sqrt{1-\tilde{\rho}^2}\mathrm{d}W_t^{(3)}, \end{equation} $

其中, $\tilde{\rho}\in[-1,0]$ 是相关系数, $\{W_t^{(3)}, t\geq0\}$ 是标准布朗运动且与 $\{W_t^{(2)}, t\geq0\}$ 独立.

引理3.2 设投资收益过程 $\{S_t=\mathrm{e}^{\xi(t)},t\geq 0\}$ 由 (3.26)-(3.28) 式描述. 对实数 $a, b>0$, 若

$ \begin{equation} (\delta^2+2m\delta)(a+b)+(a+b)^2\delta^2<m^2, \end{equation} $

$ \begin{matrix} E\mathrm{e}^{-b\xi(u)-a\xi(u+v)} &=\exp\left\{ -b\mu u-a\mu(u+v)+\frac{a\tilde{\rho} mlv}{\delta} \right.\nonumber\\ &\left.\qquad\qquad +\frac{(a+b)\tilde{\rho} (r_0+mlu)}{\delta}+f\,(u,v)+g(u) \right\}, \end{matrix} $

其中 $f(u,v) =\frac{(m-\Omega(e_2))mlv}{\delta^2} -\frac{2ml}{\delta^2}\ln\left(\frac{\zeta(e_1,e_2)-\mathrm{e}^{(u-v)\Omega(e_2)}}{\zeta(e_1,e_2)-\mathrm{e}^{u\Omega(e_2)}}\right)$, $e_1=-\frac{a\tilde{\rho}}{\delta}$, $e_2=\frac{a+a^2(1-\tilde{\rho}^2)}{2} -\frac{am\tilde{\rho}}{\delta}$, $e_3=-\frac{b\tilde{\rho}}{\delta}+\hat{c}(e_1,e_2)$, $e_4=\frac{(b+a)+(b+a)^2(1-\tilde{\rho}^2)}{2} -\frac{(b+a)m\tilde{\rho}}{\delta}$, $g(u)=\hat{c}(e_3,e_4)r_0 +\frac{(m-\Omega(e_4))mlu}{\delta^2} -\frac{2ml}{\delta^2}\ln\left(\frac{\zeta(e_3,e_4)-\mathrm{e}^{-\Omega(e_4)u}}{\zeta(e_3,e_4)-1}\right)$, 且 $\hat{c}(\cdot,\cdot)$, $\Omega(\cdot)$$\zeta(\cdot,\cdot)$ 由 (3.25) 式引入.

由 Itô 公式, (3.26) 式的解为

$ \begin{matrix} \mathrm{e}^{\xi(t)}=S_t&=\exp\left\{\mu t-\int_0^t \frac{r_s}{2} \mathrm{d}s +\int_0^t \sqrt{r_s}\,\mathrm{d}W_s^{(1)}\right\}\nonumber\\ &=\exp\left\{\mu t-\int_0^t \frac{r_s}{2} \mathrm{d}s +\tilde{\rho}\int_0^t \sqrt{r_s}\mathrm{d}W_s^{(2)}+\sqrt{1-\tilde{\rho}^2}\int_0^t \sqrt{r_s}\,\mathrm{d}W_s^{(3)}\right\}. \end{matrix} $

将 (3.31) 式代入 $E\mathrm{e}^{-b\xi(u)-a\xi(u+v)}$

$ \begin{matrix} &\quad\, E\mathrm{e}^{-b\xi(u)-a\xi(u+v)}=E\left(S_u^{-b}S_{u+v}^{-a}\right)\nonumber\\ &=\mathrm{e}^{-b\mu u-a\mu(u+v)}E\left[\exp\left( \frac{b}{2}\int_0^u r_s\, \mathrm{d}s -b\tilde{\rho}\int_0^u \sqrt{r_s}\,\mathrm{d}W_s^{(2)}-b\sqrt{1-\tilde{\rho}^2}\int_0^u \sqrt{r_s}\, \mathrm{d}W_s^{(3)}\right)\right.\nonumber\\ &\left.\quad \cdot\exp\left( \frac{a}{2}\int_0^{u+v} r_s \,\mathrm{d}s -a\tilde{\rho}\int_0^{u+v} \sqrt{r_s}\,\mathrm{d}W_s^{(2)}-a\sqrt{1-\tilde{\rho}^2}\int_0^{u+v} \sqrt{r_s}\,\mathrm{d}W_s^{(3)}\right)\right]\nonumber\\ &=\mathrm{e}^{-b\mu u-a\mu(u+v)}E\left\{ \exp\left( \frac{b+a}{2}\int_0^u r_s \,\mathrm{d}s -(b+a)\tilde{\rho}\int_0^u \sqrt{r_s}\,\mathrm{d}W_s^{(2)}\right.\right.\nonumber\\ &\quad\left.\left. -(b+a)\sqrt{1-\tilde{\rho}^2}\int_0^u \sqrt{r_s}\,\mathrm{d}W_s^{(3)}\right)\right.\nonumber\\ &\left.\quad \cdot E\left[\exp\left( \frac{a}{2}\int_u^{u+v} r_s \,\mathrm{d}s -a\tilde{\rho}\int_u^{u+v} \sqrt{r_s}\,\mathrm{d}W_s^{(2)}-a\sqrt{1-\tilde{\rho}^2}\int_u^{u+v} \sqrt{r_s}\,\mathrm{d}W_s^{(3)} \right) |\mathcal{F}_u\right]\nonumber \right\}\\ &=:\mathrm{e}^{-b\mu u-a\mu(u+v)}E[M_1(u)\cdot M_2(u,v)]. \end{matrix} $

$M_2(u,v)$, 由 Girsanov 定理,

$ \begin{matrix} M_2(u,v) &=E\left\{E\left[\exp\left( \frac{a}{2}\int_u^{u+v} r_s \,\mathrm{d}s -a\tilde{\rho}\int_u^{u+v} \sqrt{r_s}\,\mathrm{d}W_s^{(2)}-a\sqrt{1-\tilde{\rho}^2}\int_u^{u+v} \sqrt{r_s}\,\mathrm{d}W_s^{(3)} \right) \right.\right.\nonumber\\ &\quad\ \left.\left. \cdot \mid\mathcal{F}_u,W_s^{(2)},u\leq s\leq u+v\right]\mid \mathcal{F}_u \right\}\nonumber\\ &=E\left\{ \exp\left( \frac{a}{2}\int_{u}^{u+v} r_s \,\mathrm{d}s -a\tilde{\rho}\int_{u}^{u+v} \sqrt{r_s}\,\mathrm{d}W_s^{(2)} \right)\right. \nonumber\\ &\quad\ \cdot E\left[\exp\left( -a\sqrt{1-\tilde{\rho}^2}\int_{u}^{u+v} \sqrt{r_s}\,\mathrm{d}W_s^{(3)} \right.\right.\left.\left. \mid \mathcal{F}_u,W_s^{(2)},u\leq s\leq u+v\right] \mid \mathcal{F}_u\right\}\nonumber\\ &= E\left[ \exp\left( \frac{a}{2}\int_{u}^{u+v} r_s \,\mathrm{d}s -a\tilde{\rho}\int_{u}^{u+v} \sqrt{r_s}\,\mathrm{d}W_s^{(2)} +\frac{a^2(1-\tilde{\rho}^2)}{2}\int_{u}^{u+v} r_s \,\mathrm{d}s \right)\mid \mathcal{F}_u \right]. \end{matrix} $

更进一步地, 由 (3.27), (3.29) 和 (3.24) 式得

$ \begin{matrix} M_2(u,v) &=E\left\{ \exp\left[ \frac{a+a^2(1-\tilde{\rho}^2)}{2}\int_{u}^{u+v} r_s \,\mathrm{d}s \right.\right. \\ &\quad\ \left.\left. -\frac{a\tilde{\rho}}{\delta}\left( m\int_{u}^{u+v} r_s \,\mathrm{d}s-mlv+r_{u+v}-r_{u} \right)\right]\mid \mathcal{F}_u \right\}\nonumber\\ &=\exp\left(\frac{a\tilde{\rho} mlv+a\tilde{\rho} r_{u}}{\delta}\right) \\ &\quad\ \cdot E\left\{ \exp\left[ -\frac{a\tilde{\rho}}{\delta}r_{u+v} +\left(\frac{a+a^2(1-\tilde{\rho}^2)}{2}-\frac{am\tilde{\rho}}{\delta}\right)\int_u^{u+v} r_s \,\mathrm{d}s \right] |\mathcal{F}_u\right\}\nonumber\\ &=\exp\left[ \frac{a\tilde{\rho} mlv+a\tilde{\rho} r_u}{\delta} +\hat{c}\left(-\frac{a\tilde{\rho}}{\delta}, \frac{a+a^2(1-\tilde{\rho}^2)}{2}-\frac{am\tilde{\rho}}{\delta}\right)r_u +f\,(u,v)\right], \end{matrix} $

其中 $f\,(u,v)$ 由引理 3.2 引入, $\hat{c}(\cdot,\cdot)$ 由 (3.25) 式引入. 故

$\begin{align*} E\mathrm{e}^{-b\xi(u)-a\xi(u+v)} &=\exp\{-b\mu u-a\mu(u+v)\}E\left\{M_1(u) \exp\left\{\frac{ a\tilde{\rho} mlv+a\tilde{\rho} r_u }{\delta} \right.\right.\\ &\quad\left.\left. +\hat{c}\left(-\frac{a\tilde{\rho}}{\delta}, \frac{a+a^2(1-\tilde{\rho}^2)}{2}-\frac{am\tilde{\rho}}{\delta}\right)r_u+f\,(u,v) \right\} \right\}\nonumber\\ &=\exp\{-b\mu u-a\mu(u+v)+\frac{a\tilde{\rho} mlv}{\delta} +f\,(u,v)\}\\ &\quad\cdot E\left( \exp\left\{ \left[\frac{a\tilde{\rho}}{\delta}+\hat{c}\left(-\frac{a\tilde{\rho}}{\delta}, \frac{a+a^2(1-\tilde{\rho}^2)}{2}-\frac{am\tilde{\rho}}{\delta} \right)\right]r_u+\frac{b+a}{2}\int_0^u r_s \,\mathrm{d}s \right.\right.\nonumber\\ &\left.\left.\quad -(b+a)\tilde{\rho}\int_0^u \sqrt{r_s}\,\mathrm{d}W_s^{(2)} -(b+a)\sqrt{1-\tilde{\rho}^2}\int_0^u \sqrt{r_s}\,\mathrm{d}W_s^{(3)} \right\} \right)\\ &:=\exp\{-b\mu u-a\mu(u+v)+a\tilde{\rho} mlv/\delta+f(u,v)\}\widetilde{M}_1(u).\nonumber \end{align*}$

$\widetilde{M}_1(u)$, 采用类似于 (3.33) 和 (3.34) 式的推导过程即可得到 (3.30) 式. 证毕.

定理3.2 考虑二维带扰动的保险风险模型 (1.1). 设随机向量 $(X,Y)$ 的边际分布为 $F\in\mathcal{R}_{-\alpha}$$G\in\mathcal{R}_{-\beta}$, $\alpha, \beta>0$, 而且 $(X,Y)$ 服从二元 Sarmanov 分布, 即 (2.6) 式. 设投资收益过程 $\{S_t=\mathrm{e}^{\xi(t)},\ t\geq0 \}$ 由 (3.26)-(3.28) 式构造, 且 $\{\xi(t),t\geq 0\}$, $\{(X_i,Y_i),i\geq1\}$, $\{\theta_i,i\geq1\}$$\{(B_1(t),B_2(t)),t\geq0\}$ 独立. 若存在常数$\kappa>\max{\{\alpha+\beta,2\}}$ 满足 $\delta\kappa[2m+(\kappa+1)\delta]<m^2$, 则对任意的 $t>0$,

$\begin{align*} \Psi(x,y;t) \sim\bar{F}(x)\bar{G}(y) &\bigg\{ \lambda\widetilde{C}_d\int_{0}^{t}E\mathrm{e}^{-(\alpha+\beta)\xi(u)}\,\mathrm{d}u +\lambda^2\iint_{u+v\leq t}E\mathrm{e}^{-\beta\xi(u)-\alpha\xi(u+v)}\\ &\ +E\mathrm{e}^{-\alpha\xi(u)-\beta\xi(u+v)}\,\mathrm{d}u\mathrm{d}v \bigg\}, \end{align*}$

其中 $E\mathrm{e}^{-(\alpha+\beta)\xi(u)}$, $E\mathrm{e}^{-\alpha\xi(u)-\beta\xi(u+v)}$$E\mathrm{e}^{-\beta\xi(u)-\alpha\xi(u+v)}$ 可根据 (3.30) 式得到.

由引理 3.2, 在 (3.32)-(3.34) 式的推导过程中, 令 $b=0$, $a=\kappa$, $u=0$$v=t$

$\begin{align*} E\big\{\mathrm{e}^{-\kappa\xi(t)}\big\} &=\exp\left\{-\kappa\mu t +\frac{\kappa\tilde{\rho} mlt}{\delta} +\frac{\kappa\tilde{\rho} r_0}{\delta} +\hat{c}\left(-\frac{\kappa\tilde{\rho}}{\delta}, \frac{\kappa+\kappa^2(1-\tilde{\rho}^2)}{2} -\frac{\kappa m\tilde{\rho}}{\delta} \right)+f\,(0,t)\right\}\\ &<\infty, \end{align*}$

于是根据定理 (2.1) 即可得到结果, 定理 (3.2) 得证.

4 主要结果的证明

4.1 一些引理

首先引入若干证明主要结果需要的关系式. 设 $F$ 是定义于 $[0,\infty)$ 的分布函数, 若 $F\in\mathcal{R}_{-\alpha}$, $0<\alpha<\infty$, 则对 $0<a<b<\infty$, 下式对任意的 $y\in[a,b]$ 一致成立,

$ \begin{matrix} \bar{F}(xy)\sim y^{-\alpha}\bar{F}(x). \end{matrix} $

根据专著 [2], 若 $F\in\mathcal{R}_{-\alpha}$, $\alpha>0$, 则存在常数 $C_F>1$$D_F>0$, 使得对任意的 $0<\delta_0<\alpha$$x, xy\geq D_F$

$ \begin{matrix} \frac{1}{C_F}(y^{-\alpha+\delta_0}\wedge y^{-\alpha-\delta_0}) \leq \frac{\bar{F}(xy)}{\bar{F}(x)} \leq C_F(y^{-\alpha+\delta_0}\vee y^{-\alpha-\delta_0}). \end{matrix} $

于是对任意的$p>\alpha$, 由(4.2)式得

$ \begin{equation} x^{-p}=o(\bar{F}(x)),\quad x\rightarrow \infty. \end{equation} $

$X$$Y$ 是两个独立的随机变量, 若 $X$ 的分布函数 $F\in\mathcal{R}_{-\alpha}$, 且对 $p>\alpha$ 非负随机变量 $Y$ 满足$EY^{p}<\infty$, 则由文献 [24] 的 (4.4) 式, 对任意给定的 $M\geq0$

$ \begin{matrix} \lim\limits_{x\rightarrow\infty} \frac{P\left( XY>x, Y>M\right)}{\bar{F}(x)} =E\left( Y^{\alpha}\mathbb{I}_{[Y>M]} \right), \end{matrix} $

同时, 根据文献 [15] 得到对任意固定的 $\delta>0$, $\alpha<p<\infty$ 和足够大的 $x$, 存在与 $Y$$\delta$ 无关的常数 $C>0$ 使得下式成立

$ \begin{matrix} P\left( XY>\delta x\,\big|\, Y \right) \leq C\bar{F}(x) \left(\delta^{-p}Y\,^{p} \mathbb{I}_{[Y\geq\delta]} + \mathbb{I}_{[Y<\delta]}\right). \end{matrix} $

引理4.1$X^{\,*}$, $Y^{\,*}$$X^{\,**}$ 是非负独立的随机变量, 其分布函数分别为 $F\in\mathcal{R}_{-\alpha}$, $G\in\mathcal{R}_{-\beta}$$F^{\,**}\in\mathcal{R}_{-\alpha}$, $\alpha>0$, $\beta>0$. 设非负随机变量 $\Theta_1$$\Theta_2$ 是非退化的且与 $X^{\,*}$, $Y^{\,*}$$X^{\,**}$ 独立. 若存在常数 $\eta>\alpha+\beta$ 满足

$ \begin{matrix} E\Theta_k^{\eta}<\infty,\qquad k=1,2, \end{matrix} $

$P\left\{\omega:\Theta_1(\omega)\Theta_2(\omega)\neq0\right\}>0$, 则

$ \begin{matrix} &\,\,P\left\{ X^{\,*}\Theta_1>x,\ Y^{\,*}\Theta_2>y \right\} \sim \bar{F}(x)\bar{G}(y)E\left( \Theta_1^{\alpha}\Theta_2^{\beta} \right), \end{matrix} $
$ \begin{matrix} P\left\{ X^{\,**}\Theta_1>x,\ Y^{\,*}\Theta_1>y,\ X^{\,*}\Theta_2>x \right\}=o(1)\bar{F}(x)\bar{G}(y). \end{matrix} $

由 (4.6) 式和 Hölder 不等式, 对任意的 $0<l\leq\eta$

$ \begin{matrix} E\Theta_k^{l} \leq \left(E\Theta_k^{\eta}\right)^{l/\eta} <\infty,\quad k=1,2. \end{matrix} $

对任意的 $\varepsilon>0$, 取 $b\in (1,\infty)$$a\in(0,1)$ 满足 $a^{\alpha} \vee a^{\beta}<\varepsilon$, $\alpha+\beta+2\varepsilon<\eta$

$ \begin{matrix} E\left\{ \Theta_k^{l} \left(\mathbb{I}_{[\Theta_k<a]} +\mathbb{I}_{[\Theta_k>b]} \right) \right\} <\varepsilon. \end{matrix} $

首先证明 (4.7) 式. 先证明概率 $P\left\{ X^{\,*}\Theta_1>x,\ Y^{\,*}\Theta_2>y \right\}$ 的渐近上界, 令 $E_{1}=\left\{ \Theta_1<a \right\}$, $E_{2}=\left\{ a\leq\Theta_1\leq b \right\}$, $E_{3}=\left\{ \Theta_1>b \right\}$. 于是 $P\left\{ X^{\,*}\Theta_1>x,\ Y^{\,*}\Theta_2>y \right\}$ 可重写为 $P\{ X^{\,*}\Theta_1>x,$$Y^{\,*}\Theta_2>y \} = \sum\limits_{s=1}^3P\left\{ X^{\,*}\Theta_1>x, Y^{\,*}\Theta_2>y,E_{s}\right\} :=\sum\limits_{s=1}^3 Q_{s}$.$F\in\mathcal{R}_{-\alpha}$, $G\in\mathcal{R}_{-\beta}$, (4.4) 及 (4.9) 式知, 存在$x_1>0$, $y_1>0$ 使得当 $ x>x_1$, $y>y_1$ 时,

$\begin{align*} Q_{1} \leq \bar{F}\left( \frac{x}{a} \right) P\left\{ Y^{\,*}\Theta_2>y \right\} \sim a^{\alpha}\bar{F}(x)\bar{G}(y)E\Theta_2^{\beta} <C\varepsilon\bar{F}(x)\bar{G}(y). \end{align*}$

根据 (4.4), (4.1), (4.10) 和 (4.9) 式知, 存在 $x_2>x_1$, $y_2>y_1$ 使得当 $x>x_2$, $y>y_2$ 时,

$\begin{align*} Q_{2} &= P\left\{ X^{\,*}\Theta_1>x, Y^{\,*}\Theta_2>y,a\leq\Theta_1\leq b, \Theta_2<a \right\} +P\left\{ X^{\,*}\Theta_1>x, Y^{\,*}\Theta_2>y, \right.\\ &\left.\quad\ a\leq\Theta_1\leq b, a\leq\Theta_2\leq b \right\} +P\left\{ X^{\,*}\Theta_1>x, Y^{\,*}\Theta_2>y,a\leq\Theta_1\leq b, \Theta_2>b \right\}\\ &\leq \bar{G}\left(\frac{y}{a}\right)P\left\{ X^{\,*}\Theta_1>x \right\} +\int_a^b\int_a^b \bar{F}\left(x/u\right)\bar{G}\left(y/v\right)P\left(\Theta_1\in \mathrm{d}u,\Theta_2 \in \mathrm{d}v \right)\\ &\quad\ +\bar{F}\left( \frac{x}{b} \right)P\left\{ Y^{\,*}\Theta_2>y, \Theta_2>b \right\}\\ &\sim a^{\beta}\bar{F}(x)\bar{G}(y)E\Theta_1^{\alpha} +\bar{F}(x)\bar{G}(y) \int_a^b\int_a^b u^{\alpha}v^{\beta}P\left(\Theta_1\in \mathrm{d}u,\Theta_2\in \mathrm{d}v \right) \\ &\quad\ +b^{\alpha}\bar{F}(x)\bar{G}(y)E\left(\Theta_2^{\beta}\mathbb{I}_{[\Theta_2>b]}\right)\\ &\leq C\varepsilon\bar{F}(x)\bar{G}(y)+ \bar{F}(x)\bar{G}(y) E\left(\Theta_1^{\alpha}\Theta_2^{\beta}\right). \end{align*}$

由 (4.4), (4.5), (4.10) 式和 Hölder 不等式, 存在 $x_3>x_2$, $y_3>y_2$ 使得对任意的 $ x>x_3$, $ y>y_3$

$\begin{align*} Q_{3} &= P\left\{ X^{\,*}\Theta_1>x,Y^{\,*}\Theta_2>y,\Theta_1> b, \Theta_2\leq b \right\} \!+\!P\left\{ X^{\,*}\Theta_1>x,Y^{\,*}\Theta_2>y,\Theta_1> b, \Theta_2> b \right\}\\ &\leq \bar{G}\left(\frac{y}{b}\right) P\left\{ X^{\,*}\Theta_1>x,\Theta_1> b \right\} \\ &\quad\ +E\left\{\mathbb{I}_{[\Theta_1> b,\Theta_2> b]} P\left(X^{\,*}\Theta_1>x|\Theta_1,\Theta_2 \right) P\left(Y^{\,*}\Theta_2>y|\Theta_1,\Theta_2 \right) \right\}\\ &\leq C\varepsilon\bar{F}(x)\bar{G}(y) \\ &\quad\ +C\bar{F}(x)\bar{G}(y)E\left\{ \mathbb{I}_{[\Theta_1> b,\Theta_2> b]} \left( \Theta_1^{\alpha+\varepsilon}\mathbb{I}_{[\Theta_1\geq 1]}+\mathbb{I}_{[\Theta_1< 1]}\right) \left( \Theta_2^{\beta+\varepsilon}\mathbb{I}_{[\Theta_2\geq 1]}+\mathbb{I}_{[\Theta_2< 1]}\right) \right\}\\ &\leq C\varepsilon\bar{F}(x)\bar{G}(y)+ C\bar{F}(x)\bar{G}(y)E\left\{ \Theta_1^{\alpha+\varepsilon}\mathbb{I}_{[\Theta_1> b]} \Theta_2^{\beta+\varepsilon}\mathbb{I}_{[\Theta_2> b]} \right\}\\ &\leq C\varepsilon\bar{F}(x)\bar{G}(y) + C\bar{F}(x)\bar{G}(y) \left[ E\left( \Theta^{\alpha+\beta+2\varepsilon}_1 \mathbb{I}_{[\Theta_1> b]}\right)\right] ^{\frac{\alpha+\varepsilon}{\alpha+\beta+2\varepsilon}} \left[E\left(\Theta^{\alpha+\beta+2\varepsilon}_2 \mathbb{I}_{[\Theta_2> b]} \right)\right] ^{\frac{\beta+\varepsilon}{\alpha+\beta+2\varepsilon}}\\ &\leq C\varepsilon\bar{F}(x)\bar{G}(y). \end{align*}$

于是, 由上述关于 $Q_1$, $Q_2$$Q_3$ 的讨论得到概率 $P\left\{ X^{\,*}\Theta_1>x,\ Y^{\,*}\Theta_2>y \right\}$ 的渐近上界, 现证明概率 $P\left\{ X^{\,*}\Theta_1>x,\ Y^{\,*}\Theta_2>y \right\}$ 的渐近下界. 根据 $Q_2$ 的讨论, 存在 $x_4>x_3$, $y_4>y_3$ 使得当 $x>x_4$, $y>y_4$ 时,

$\begin{align*} P\left\{ X^{\,*}\Theta_1>x,\ Y^{\,*}\Theta_2>y \right\} &\geq P\left\{ X^{\,*}\Theta_1>x, Y^{\,*}\Theta_2>y,a\leq\Theta_1\leq b, a\leq\Theta_2\leq b \right\}\\ &\sim \bar{F}(x)\bar{G}(y)E\left( \Theta_1^{\alpha}\Theta_2^{\beta} \mathbb{I}_{[a\leq\Theta_1\leq b]}\mathbb{I}_{[a\leq\Theta_2\leq b]}\right) \\ & \geq\bar{F}(x)\bar{G}(y) \left\{E\left(\Theta^{\alpha}_1\Theta^{\beta}_2\right) -E\left(\Theta^{\alpha}_1\Theta^{\beta}_2\mathbb{I}_{[\Theta_1<a]} \right)\right.\\ &\left.\quad -E\left(\Theta^{\alpha}_1\Theta^{\beta}_2\mathbb{I}_{[\Theta_1>b]} \right) -E\left(\Theta^{\alpha}_1\Theta^{\beta}_2\mathbb{I}_{[\Theta_2<a]} \right) -E\left(\Theta^{\alpha}_1\Theta^{\beta}_2\mathbb{I}_{[\Theta_2>b]} \right)\right\}. \end{align*}$

由 Hölder 不等式, (4.9) 和 (4.10) 式得

$\begin{align*} E\left(\Theta^{\alpha}_1\Theta^{\beta}_2\mathbb{I}_{[\Theta_1<a]} \right) \leq \left[E\left(\Theta^{\alpha+\beta}_1\mathbb{I}_{[\Theta_1<a]}\right)\right]^{\alpha/(\alpha+\beta)} \left[E\left(\Theta^{\alpha+\beta}_2 \right)\right]^{\beta/(\alpha+\beta)} \leq C\varepsilon. \end{align*}$

类似地, $ E\left(\Theta^{\alpha}_1\Theta^{\beta}_2\mathbb{I}_{[\Theta_1>b]} \right) +E\left(\Theta^{\alpha}_1\Theta^{\beta}_2\mathbb{I}_{[\Theta_2<a]} \right) +E\left(\Theta^{\alpha}_1\Theta^{\beta}_2\mathbb{I}_{[\Theta_2>b]}\right) \leq C\varepsilon. $ 于是, 对上述 $\varepsilon>0$, $x>x_4$$y>y_4$,

$\begin{align*} (1-C\varepsilon)\bar{F}(x)\bar{G}(y)E\left\{\Theta^{\alpha}_1\Theta^{\beta}_2\right\} \leq P\left\{ X^{\,*}\Theta_1>x,\ Y^{\,*}\Theta_2>y \right\} \leq (1+C\varepsilon)\bar{F}(x)\bar{G}(y)E\left\{\Theta^{\alpha}_1\Theta^{\beta}_2\right\}, \end{align*}$

即证明渐近式 (4.7).

其次证明 (4.8) 式. 对上述 $\varepsilon>0$, 由 (4.2) 式, Hölder 不等式, (4.9) 和 (4.3) 式,

$\begin{align*} &P\left\{ X^{\,**}\Theta_1>x,\ Y^{\,*}\Theta_1>y,\ X^{\,*}\Theta_2>x \right\}\\ =&\left(\int_0^{x/D_F}\int_0^{y/D_G}+\int_0^{x/D_F}\int_{y/D_G}^{\infty} +\int_{x/D_F}^{\infty}\int_0^{y/D_G}+\int_{x/D_F}^{\infty}\int_{y/D_G}^{\infty}\right)\\ &\cdot \bar{F} \left(\frac{x}{v}\right) \bar{G} \left(\frac{y}{u}\right) \bar{F}^{\,**} \left(\frac{x}{u}\right) P\left\{ \Theta_1\in \mathrm{d}u, \Theta_2\in \mathrm{d}v \right\}\\ \leq\ & C\bar{F}(x)\bar{G}(y)\int_0^{x/D_F}\int_0^{y/D_G} (u^{\beta-\varepsilon}\vee u^{\beta+\varepsilon}) (v^{\alpha-\varepsilon}\vee v^{\alpha+\varepsilon}) \bar{F}^{\,**} \left(\frac{x}{u}\right) P\left\{ \Theta_1\in \mathrm{d}u, \Theta_2\in \mathrm{d}v \right\}\\ & +C\bar{F}(x)\int_0^{x/D_F}\int_{y/D_G}^{\infty} (v^{\alpha-\varepsilon}\vee v^{\alpha+\varepsilon}) \left( \frac{uD_G}{y} \right)^{\beta+\varepsilon} P\left\{ \Theta_1\in \mathrm{d}u, \Theta_2\in \mathrm{d}v \right\}\\ & +C\bar{G}(y)\int_{x/D_F}^{\infty}\int_0^{y/D_G} (u^{\beta-\varepsilon}\vee u^{\beta+\varepsilon}) \left( \frac{vD_F}{x} \right)^{\alpha+\varepsilon} P\left\{ \Theta_1\in \mathrm{d}u, \Theta_2\in \mathrm{d}v \right\}\\ & +C\int_{x/D_F}^{\infty}\int_{y/D_G}^{\infty} \left( \frac{uD_G}{y} \right)^{\beta+\varepsilon} \left( \frac{vD_F}{x} \right)^{\alpha+\varepsilon} P\left\{ \Theta_1\in \mathrm{d}u, \Theta_2\in \mathrm{d}v \right\} \\ \leq\ & C\bar{F}(x)\bar{G}(y)E\left\{ (\Theta_1^{\beta-\varepsilon}+\Theta_1^{\beta+\varepsilon}) (\Theta_2^{\alpha-\varepsilon}+\Theta_2^{\alpha+\varepsilon}) \mathbb{I}_{[X^{\,**}\Theta_1>x]} \right\} \\ & +C\bar{F}(x)y^{-(\beta+\varepsilon)}E\left\{ (\Theta_2^{\alpha-\varepsilon}+ \Theta_2^{\alpha+\varepsilon}) \Theta_1^{\beta+\varepsilon}\right\} +Cx^{-(\alpha+\varepsilon)}\bar{G}(y)E\left\{ (\Theta_1^{\beta-\varepsilon}+ \Theta_1^{\beta+\varepsilon}) \Theta_2^{\alpha+\varepsilon} \right\}\\ & +Cx^{-(\alpha+\varepsilon)}y^{-(\beta+\varepsilon)}E\left\{ \Theta_1^{\beta+\varepsilon}\Theta_2^{\alpha+\varepsilon} \right\} =o(1)\bar{F}(x)\bar{G}(y). \end{align*}$

引理得证.

$\left\{(\widetilde{X}^{\,*}_k, \widetilde{Y}^{\,*}_k,\widetilde{\theta}^{\,*}_k),k\geq 1\right\}$ 是独立同分布的随机序列, 其独立复制为 $(\widetilde{X}^{\,*}, \widetilde{Y}^{\,*},\widetilde{\theta}^{\,*})$.$(\widetilde{X}^{\,*}, $$\widetilde{Y}^{\,*},\widetilde{\theta}^{\,*})$ 与本文中的随机量独立且边际分布分别为 $\widetilde{F}$, $\widetilde{G}$$\widetilde{H}$, 即

$\begin{gather*} \mathrm{d}\widetilde{F}(x)=\left( 1-\frac{\varphi_1(x)}{b_1}\right)\mathrm{d}F(x),\; \mathrm{d}\widetilde{G}(y)=\left( 1-\frac{\varphi_2(y)}{b_2}\right)\mathrm{d}G(y),\; \mathrm{d}\widetilde{H}(z)=\left( 1-\frac{\varphi_3(z)}{b_3} \right)\mathrm{d}H(z), \end{gather*}$

其中, $\varphi_1(x)$, $\varphi_2(y)$$\varphi_3(z)$ 由假设 2.1 引入, $b_i$, $i=1,2,3$, 由 (2.9) 式引入. 于是,

$ \begin{matrix} \bar{\widetilde{F}}(x)=\int_x^{\infty} \left(1-\varphi_1(u)/b_1\right)\mathrm{d}F(u) \sim \left(1-d_1/b_1 \right)\bar{F}(x),\quad x\rightarrow\infty, \end{matrix} $
$ \begin{matrix} \bar{\widetilde{G}}(y)=\int_y^{\infty} \left(1-\varphi_2(v)/b_2\right)\mathrm{d}G(v) \sim \left(1-d_2/b_2\right)\bar{G}(y),\quad y\rightarrow\infty, \end{matrix} $

其中 $d_1$$d_2 $ 由 (2.4) 式引入. 进一步地, 对 $0<\alpha, \beta<\infty$, 由 $F\in\mathcal{R}_{-\alpha}$$G\in\mathcal{R}_{-\beta}$$\widetilde{F} \in\mathcal{R}_{-\alpha}$$\widetilde{G}\in\mathcal{R}_{-\beta}$.

引理4.2 在假设 2.1 成立的条件下,

$\begin{align*} P\left\{g(X,Y,\theta)\in\Delta\right\} =\ &f_0P\left\{g(X^{\,*},Y^{\,*},\theta^*)\in\Delta\right\}-(f_{12}+f_{13})P\left\{g(\widetilde{X}^{\,*},Y^{\,*},\theta^*)\in\Delta\right\}\\ &-(f_{12}+f_{23})P\left\{g(X^{\,*},\widetilde{Y}^{\,*},\theta^*)\in\Delta\right\} \\ &-(f_{13}+f_{23})P\left\{g(X^{\,*},Y^{\,*},\widetilde{\theta}^*)\in\Delta\right\} +f_{12}P\left\{g(\widetilde{X}^{\,*},\widetilde{Y}^{\,*},\theta^*) \in\Delta\right\}\\ &+f_{13}P\left\{g(\widetilde{X}^{\,*},Y^{\,*},\widetilde{\theta}^*)\in\Delta\right\} +f_{23}P\left\{g(X^{\,*},\widetilde{Y}^{\,*},\widetilde{\theta}^*)\in\Delta\right\}, \end{align*}$

其中, $g$ 是 Borel 可测函数, $\Delta$ 是 Borel 集, 且 $f_0=1+\eta_{12}b_1b_2+\eta_{13}b_1b_3+\eta_{23}b_2b_3$, $f_{12}=\eta_{12}b_1b_2$, $f_{13}=\eta_{13}b_1b_3$, $f_{23}=\eta_{23}b_2b_3$.

由假设 2.1 及 $\widetilde{F}(x)$, $\widetilde{G}(y)$$\widetilde{H}(z)$ 的定义得,

$\begin{align*} P\left\{g(X,Y,\theta)\in\Delta\right\} = &\int_0^{\infty}\int_0^{\infty}\int_0^{\infty}P\left\{g(u,v,w)\in\Delta\right\} \left[1+\eta_{12}\varphi_{1}(u)\varphi_{2}(v)+\eta_{13}\varphi_{1}(u)\varphi_{3}(w) \right.\\ &\left. +\eta_{23}\varphi_{2}(v)\varphi_{3}(w)\right] \mathrm{d}F(u)\mathrm{d}G(v)\mathrm{d}H(w)\\ =&\int_0^{\infty}\int_0^{\infty}\int_0^{\infty}P\left\{g(u,v,w)\in\Delta\right\} \left[f_0-(f_{12}+f_{13})\left(1-\varphi_1(u)/b_1\right)\right.\\ & -(f_{12}+f_{23})\left(1-\varphi_2(v)/b_2\right) -(f_{13}+f_{23})\left(1-\varphi_3(v)/b_3\right) \\ & +f_{12}\left(1-\varphi_1(u)/b_1\right)\left(1-\varphi_2(v)/b_2\right) +f_{13}\left(1-\varphi_1(u)/b_1\right)\left(1-\varphi_3(v)/b_3\right) \\ &\left. +f_{23}\left(1-\varphi_2(v)/b_2\right) \left(1-\varphi_3(v)/b_3\right) \right]\mathrm{d}F(u)\mathrm{d}G(v)\mathrm{d}H(w)\\ =\ &f_0P\left\{g(X^{\,*},Y^{\,*},\theta^*)\in\Delta\right\}-(f_{12}+f_{13})P\left\{g(\widetilde{X}^{\,*},Y^{\,*},\theta^*)\in\Delta\right\}\\ & -(f_{12}+f_{23})P\left\{g(X^{\,*},\widetilde{Y}^{\,*},\theta^*)\in\Delta\right\} \\ & -(f_{13}+f_{23})P\left\{g(X^{\,*},Y^{\,*},\widetilde{\theta}^*)\in\Delta\right\} +f_{12}P\left\{g(\widetilde{X}^{\,*},\widetilde{Y}^{\,*},\theta^*)\in\Delta\right\}\\ & +f_{13}P\left\{g(\widetilde{X}^{\,*},Y^{\,*},\widetilde{\theta}^*)\in\Delta\right\} +f_{23}P\left\{g(X^{\,*},\widetilde{Y}^{\,*},\widetilde{\theta}^*)\in\Delta\right\}. \end{align*}$

引理得证.

对任意的 $t>0$ 和整数 $i>0$, 令 $\tau_i=\theta_1+\theta_2+\cdots+\theta_i$, $\tau_i^*=\theta_1^*+\theta_2^*+\cdots+\theta_{i}^*$, $\vartheta_i(t)=\mathrm{e}^{-\xi(\tau_i)}\mathbb{I}_{[\tau_i \leq t]}$, $\vartheta_i^*(t)=\mathrm{e}^{-\xi(\tau_i^*)}\mathbb{I}_{[\tau_i^* \leq t]}$, $\widehat{\vartheta}_{ki}(t)=\mathrm{e}^{-\xi(\hat{\tau}^{(k)}_i)}\mathbb{I}_{[\hat{\tau}^{(k)}_i\leq t]}$, 其中 $k=1,2,3,4,5$, $\hat{\tau}^{(k)}_i$ 由 (2.13)-(2.15) 式引入. 对任意的 $q \geq 0$

$ \begin{matrix} \sum\limits_{n=1}^{\infty} n^{q} \frac{ s^{n-1} \lambda^{n}}{(n-1)!} \mathrm{e}^{-\lambda s} \leq \begin{cases} C(s^q \vee 1), & q=0,1,2\cdots,\\ C(s^{[q]+1} \vee 1), & \text{其它}, \end{cases} \end{matrix} $

其中 $[q]$$q$ 的整数部分. 对 $q\geq0$, $0<l \leq \kappa$ 和定理 (2.1) 中的 $\kappa$, 根据Hölder 不等式,

$ \begin{matrix} \sum\limits_{n=1}^{\infty} n^q E\vartheta_n^{\,l}(t) & =\sum\limits_{n=1}^{\infty}n^q E\left\{\mathbb{I}_{[\tau_n \leq t]}E\left(\mathrm{e}^{-l\xi(\tau_n)}|\tau_n \right)\right\} \nonumber\\ & =\sum\limits_{n=1}^{\infty}n^q \int_0^t E(\mathrm{e}^{-l\xi(s)})\frac{s^{n-1}\lambda^n}{(n-1)!}\mathrm{e}^{-\lambda s}{\rm d}s\nonumber\\ &=\int_0^t E(\mathrm{e}^{-l\xi(s)}) \sum\limits_{n=1}^{\infty} n^q \frac{s^{n-1}\lambda^n}{(n-1)!}\mathrm{e}^{-\lambda s}{\rm d}s\nonumber\\ & \leq C(t^{[q]+1} \vee 1)\int_0^t E\mathrm{e}^{-l\xi(s)}{\rm d}s \nonumber\\ & \leq C(T) \int_0^t \left( E\mathrm{e}^{-\kappa\xi(s)} \right)^{l/\kappa}{\rm d}s\nonumber\\ & \leq C(T) \left( \int_0^t E\mathrm{e}^{-\kappa\xi(s)}{\rm d}s \right)^{l/\kappa} <\infty, \quad 0<t\leq T, \end{matrix} $

其中, 上式的第二步是由伽马分布的定义得到. 在 (4.27) 式中取 $q=0$, 对 $0<l \leq \kappa$$0<t\leq T$, 则

$ \begin{equation} E\vartheta_n^{\,l}(t)<\infty, \quad \text{对任意的}\ n\geq1. \end{equation} $

引理4.3 在定理 (2.1) 的条件下, 对任意的 $i\geq1$, $j\geq1$$0<t\leq T$, 有

(1) 当 $i=j$ 时, $P\left\{ X_i\vartheta_i(t)>x,\ Y_i\vartheta_i(t)>y \right\}\sim \widetilde{C}_d\bar{F}(x)\bar{G}(y) E\widehat{\vartheta}_{3i}^{\alpha+\beta}(t)$, 其中 $\widetilde{C}_d$ 由 (2.4) 式引入;

(2) 当 $i<j$ 时, $P\left\{ X_i\vartheta_i(t)>x,\ Y_j\vartheta_j(t)>y \right\}\sim \bar{F}(x)\bar{G}(y)E\left\{ \widehat{\vartheta}^{\alpha}_{1i}(t)\widehat{\vartheta}^{\beta}_{4j}(t) \right\}$;

(3) 当 $i>j$ 时, $P\left\{ X_i\vartheta_i(t)>x,\ Y_j\vartheta_j(t)>y \right\}\sim \bar{F}(x)\bar{G}(y) E\left\{\widehat{\vartheta}^{\beta}_{2j}(t)\widehat{\vartheta}^{\alpha}_{5i}(t) \right\}$.

引入记号

$ \begin{equation} \vartheta_i^*(s_k,s_m;t) \nonumber\\ =\mathrm{e}^{-\xi(\theta_1^*+\cdots+\theta_{k-1}^*+s_k+\cdots+\theta_{m-1}^*+s_m+\cdots+\theta_i^*)} \mathbb{I}_{[\theta_1^*+\cdots+s_k+\cdots+s_m+\cdots+\theta_i^*\leq t]}, \ 1\leq k< m \leq i \end{equation} $

$ \begin{equation} \vartheta_i^*(s_k;t) =\mathrm{e}^{-\xi(\theta_1^*+\cdots+\theta_{k-1}^*+s_k+\cdots+\theta_i^*)}\mathbb{I}_{[\theta_1^*+\cdots+\theta_{k-1}^*+s_k+\cdots+\theta_i^*\leq t]}, \quad 1\leq k \leq i. \end{equation} $

由 (4.15) 式和

$ \begin{equation} {\rm d}\widetilde{H}(w) =\left( 1-\varphi_3(v)/b_3 \right){\rm d}H(w), \end{equation} $

得, 对任意的 $n$$0<l\leq\kappa$, 有

$ \begin{matrix} E\left\{\vartheta_{n}^{*l}(\widetilde{\theta}_n^*;t)\right\} &=E\left\{E\left[\vartheta_{n}^{*l}(\widetilde{\theta}_n^*;t) \mid\widetilde{\theta}_n^*\right]\right\} =\int_0^t E\left(\mathrm{e}^{-l\xi(\theta_1^*+\cdots+u)}\right){\rm d}\widetilde{H}(u)\nonumber\\ &\leq 2\int_0^t E\left(\mathrm{e}^{-l\xi(\theta_1^*+\cdots+u)}\right){\rm d}H(u) \nonumber\\ & =2E\left\{\vartheta_{n}^{*l}(t)\right\} <\infty \end{matrix} $

$ \begin{equation} E\left\{\vartheta_{n}^{*l}(\widetilde{\theta}_k^*,\widetilde{\theta}_n^*;t)\right\} =E\left\{E\left[\vartheta_{n}^{*l}(\widetilde{\theta}_k^*,\widetilde{\theta}_n^*;t)\mid\widetilde{\theta}_k^*,\widetilde{\theta}_n^*\right]\right\} \leq4E\left\{\vartheta_{n}^{*l}(t)\right\}<\infty. \end{equation} $

对任意的 $i\geq1$, 证明 $P\left\{ X_i\vartheta_i(t)>x,\ Y_i\vartheta_i(t)>y \right\}\sim \widetilde{C}_d\bar{F}(x)\bar{G}(y) E\widehat{\vartheta}_{3i}^{\alpha+\beta}(t)$. 注意到 $(X_i,Y_i,\theta_i)$ 服从 Sarmanov 分布, 即假设 2.1, 于是, $P\left\{ X_i\vartheta_i(t)>x,\ Y_i\vartheta_i(t)>y \right\}$ 可重写为

$ P\left\{ X_i\vartheta_i(t)>x,\ Y_i\vartheta_i(t)>y \right\} =E\left\{P\left( X_i\vartheta_i(t)>x,\ Y_i\vartheta_i(t)>y\mid \theta_1,\cdots,\theta_{i-1} \right)\right\}. $

根据引理 4.2, (4.15), (4.19), (4.7), (4.11) 和 (4.12) 式得到

$ \begin{matrix} &P\left\{ X_i\vartheta_i(t)>x,\ Y_i\vartheta_i(t)>y \right\} \\ =\ &f_0P\left\{X_i^{\,*}\vartheta_i^{\,*}(t)>x,Y_i^{\,*}\vartheta_i^*(t)>y\right\} -(f_{12}+f_{13})P\left\{\widetilde{X}_i^{\,*}\vartheta_i^*(t)>x,Y_i^{\,*}\vartheta_i^*(t)>y \right\}\nonumber\\ & -(f_{12}+f_{23})P\left\{X^{\,*}_i\vartheta_i^*(t)>x,\widetilde{Y}_i^{\,*}\vartheta_i^*(t)>y\right\} \nonumber\\ & -(f_{13}+f_{23})P\left\{X^{\,*}_i\vartheta_i^*(\widetilde{\theta}_i^*;t)>x,Y_i^*\vartheta_i^*(\widetilde{\theta}_i^*;t)>y\right\} +f_{12}P\left\{\widetilde{X}_i^{\,*}\vartheta_i^*(t)>x,\widetilde{Y}_i^{\,*}\vartheta_i^*(t)>y\right\} \nonumber\\ & +f_{13}P\left\{\widetilde{X}_i^{\,*}\vartheta_i^*(\widetilde{\theta}_i^*;t)>x,Y_i^{\,*}\vartheta_i^*(\widetilde{\theta}_i^*;t)>y\right\} +f_{23}P\left\{X_i^{\,*}\vartheta_i^*(\widetilde{\theta}_i^*;t)>x,\widetilde{Y}_i^{\,*}\vartheta_i^*(\widetilde{\theta}_i^*;t)>y\right\}\nonumber\\ \sim\,& f_0\bar{F}(x)\bar{G}(y)E\vartheta^{*\alpha+\beta}_i(t) -(f_{12}+f_{13})\left(1-d_1/b_1\right)\bar{F}(x)\bar{G}(y)E\vartheta^{*\alpha+\beta}_i(t) \nonumber\\ & -(f_{12}+f_{23})\left(1-d_2/b_2\right)\bar{F}(x)\bar{G}(y)E\vartheta^{*\alpha+\beta}_i(t) -(f_{13}+f_{23})\bar{F}(x)\bar{G}(y) E\left[\vartheta_i^{*\alpha+\beta}(\widetilde{\theta}_i^*;t)\right] \nonumber\\ & +f_{12}\left(1-d_1/b_1\right) \left(1-d_2/b_2\right)\bar{F}(x)\bar{G}(y)E\vartheta^{*\alpha+\beta}_i(t) \nonumber\\ & +f_{13}\left(1-d_1/b_1\right)\bar{F}(x)\bar{G}(y) E\left[\vartheta_i^{*\alpha+\beta}(\widetilde{\theta}_i^*;t)\right] +f_{23}\left(1-d_2/b_2\right)\bar{F}(x)\bar{G}(y) E\left[\vartheta_i^{*\alpha+\beta}(\widetilde{\theta}_i^*;t)\right] \nonumber\\ =\ &\widetilde{C}_d\bar{F}(x)\bar{G}(y) \int_0^t \varphi_{33}(u)E \left[ \mathrm{e}^{-(\alpha + \beta)\xi(\tau_{i - 1}^* +u)}\mathbb{I}_{[\tau_{i - 1}^* +u\leq t]}\right] H(\mathrm{d}u)\nonumber\\ =\ & \widetilde{C}_d \bar{F}(x)\bar{G}(y)E\widehat{\vartheta}_{3i}^{\alpha + \beta}(t), \end{matrix} $

其中 $\vartheta_i^*(\cdot;t)$ 由 (4.17) 式引入.

$i<j$, 证明 $P\left\{ X_i\vartheta_i(t)>x,\ Y_j\vartheta_j(t)>y \right\}$. 由于 $(X_i,\theta_i)$ 服从二元 Sarmanov 分布, 即 (2.7) 式, 故在引理 4.2 中取 $\eta_{12}=\eta_{23}=0$ 得到

$ \begin{matrix} &P\left\{ X_i\vartheta_i(t)>x,\ Y_j\vartheta_j(t)>y \right\} \nonumber\\ =\,&(1+\eta_{13}b_1b_3)P\left\{X_i^{\,*}\vartheta_i^*(t)>x, Y_j\vartheta_j^{\,*}(\theta_j;t)>y\right\}-\eta_{13}b_1b_3P\left\{\widetilde{X}_i^{\,*}\vartheta_i^*(t)>x, Y_j\vartheta_j^{*}(\theta_j;t)>y\right\}\nonumber\\ & -\eta_{13}b_1b_3P\left\{X_i^{\,*}\vartheta_i^*(\widetilde{\theta}_i^*;t)>x, Y_j\vartheta_j^*(\widetilde{\theta}_i^*,\theta_j;t)>y\right\} \nonumber\\ &+\eta_{13}b_1b_3P\left\{\widetilde{X}_i^{\,*}\vartheta_i^*(\widetilde{\theta}_i^*;t)>x, Y_j\vartheta_j^*(\widetilde{\theta}_i^*,\theta_j;t)>y\right\}\nonumber\\ :=\,&(1+\eta_{13}b_1b_3)L_1-\eta_{13}b_1b_3L_2-\eta_{13}b_1b_3L_3+\eta_{13}b_1b_3L_4, \end{matrix} $

其中, $\vartheta_j^*(\cdot;t)$$\vartheta_j^*(\cdot,\cdot;t)$ 分别由 (4.17) 和 (4.16) 式引入.

考虑$L_1$, 由于$(Y_j,\theta_j)$ 服从二元 Sarmanov 分布, 即 (2.8) 式, 故在引理 4.2 中取 $\eta_{12}=\eta_{13}=0$ 得到

$ \begin{matrix} L_1 =\,&(1+\eta_{23}b_2b_3)P\left\{X^{\,*}_i\vartheta_i^*(t)>x,Y_j^{\,*}\vartheta_j^*(t)>y\right\} -\eta_{23}b_2b_3P\left\{X^{\,*}_i\vartheta_i^*(t)>x,\widetilde{Y}_j^{\,*}\vartheta_j^*(t)>y\right\} \nonumber\\ & - \eta_{23}b_2b_3P \left\{ X_i^{\,*}\vartheta_i^*(t) > x,Y_j^{\,*}\vartheta_j^*(\widetilde{\theta}_j^* ; t) > y \right\} + \eta_{23}b_2b_3 P \left\{ X_i^{\,*}\vartheta_i^*(t) > x, \widetilde{Y}_j^{\,*}(\widetilde{\theta}_j^* ; t) > y \right\}, \end{matrix} $

类似于 (4.21) 式的讨论可得 $L_1\sim\bar{F}(x)\bar{G}(y)E\left\{\vartheta^{*\alpha}_{i}(t)\widehat{\vartheta}^{\beta}_{2j}(t)\right\}$. 由 (4.20) 式及类似于 $L_1$ 中的讨论可得 $L_3\sim\bar{F}(x)\bar{G}(y) E\left\{\vartheta^{*\alpha}_{i}(\widetilde{\theta}^*_i;t) \vartheta^{*\beta}_{j}(\widetilde{\theta}^*_i,\widehat{\theta}_2;t)\right\}$, 其中, $\widehat{\theta}_2$ 由(2.12)式引入. 类似地, $L_2\sim\left(1- \frac{d_1 }{b_1}\right)\bar{F}(x)\bar{G}(y)E\left\{\vartheta^{*\alpha}_{i}(t)\widehat{\vartheta}^{\beta}_{2j}(t)\right\}$$L_4\sim\left(1- \frac{d_1 }{b_1}\right)\bar{F}(x)\bar{G}(y) E\left\{\vartheta^{*\alpha}_{i}(\widetilde{\theta}^*_i;t) \vartheta^{*\beta}_{j}(\widetilde{\theta}^*_i,\widehat{\theta}_2;t)\right\}$.$L_1$, $L_2$, $L_3$$L_4$ 代入 (4.22) 式, 并根据 (2.10) 及 (2.12)-(2.14) 式得到当 $i<j$ 时, $P\{ X_i\vartheta_i(t)>x,$$ Y_j\vartheta_j(t)>y\} \sim \bar{F}(x)\bar{G}(y)E\left\{ \widehat{\vartheta}^{\alpha}_{1i}(t)\widehat{\vartheta}^{\beta}_{4j}(t) \right\}$.$i>j$ 时, 类似于 $i<j$ 的讨论, 证得 $P\{ X_i\vartheta_i(t)>x,$$ Y_j\vartheta_j(t)>y \} \sim \bar{F}(x)\bar{G}(y) E\left\{\widehat{\vartheta}^{\beta}_{2j}(t)\widehat{\vartheta}^{\alpha}_{5i}(t) \right\}$. 引理得证.

引理4.4 在定理 2.1 的条件下, 对任意的 $N$$0<t\leq T$,

$\begin{gather*} P\left\{\sum\limits_{i=1}^{N}X_i\vartheta_i(t)>x,\sum\limits_{j=1}^{N}Y_j\vartheta_j(t)>y \right\} \sim \sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N}P\left\{X_i\vartheta_i(t)>x,Y_j\vartheta_j(t)>y \right\}. \end{gather*}$

首先证明概率 $P\Big\{\sum\limits_{i=1}^{N}X_i\vartheta_i(t)>x,\sum\limits_{j=1}^{N}Y_j\vartheta_j(t)>y \Big\}$ 的渐近上界. 对任意的 $\varepsilon>0$ 满足 $\alpha+\beta+2\varepsilon<\kappa$, 取 $0<\delta<1$ 使得 $(1-\delta)^{-(\alpha+\beta)}<1+\varepsilon$ 成立. 令

$ E =\left(\bigcup_{l=1}^{N}\left[X_l\vartheta_l(t)>(1-\delta)x\right]\right)\bigcap\left(\bigcup_{m=1}^{N}\left[ Y_m\vartheta_m(t)>(1-\delta)y\right]\right), $

$ \begin{matrix} &P\left\{\sum\limits_{i=1}^{N}X_i\vartheta_i(t)>x,\sum\limits_{j=1}^{N}Y_j\vartheta_j(t)>y \right\} =P\left\{\sum\limits_{i=1}^{N}X_i\vartheta_i(t)>x,\sum\limits_{j=1}^{N}Y_j\vartheta_j(t)>y, E\cup E^c \right\} \nonumber\\ \leq\ & \sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N}P\left\{X_i\vartheta_i(t)>(1-\delta)x,Y_j\vartheta_j(t)>(1-\delta)y \right\}\nonumber\\ &+\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N}\sum\limits_{1\leq m\leq N,\atop{m\neq i}} P\left\{X_i\vartheta_i(t)>x/N, Y_j\vartheta_j(t)>y/N,\, X_m\vartheta_m(t)>\delta x/(N-1) \right\}\nonumber\\ &+\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N}\sum\limits_{1\leq m\leq N,\atop{m\neq j}} P\left\{X_i\vartheta_i(t)>x/N,Y_j\vartheta_j(t)>y/N,\,Y_m\vartheta_m(t)>\delta y/(N-1) \right\}\nonumber\\ :=\ &K_1+K_2+K_3. \end{matrix} $

考虑 $K_1$, 由引理 4.3, $F\in\mathcal{R}_{-\alpha}$$G\in\mathcal{R}_{-\beta}$ 知对足够大的 $x$$y$

$ \begin{matrix} K_1 &=\left(\sum\limits_{i=j=1}^{N}+\sum\limits_{j=1}^{N-1}\sum\limits_{i=j+1}^{N} +\sum\limits_{i=1}^{N-1}\sum\limits_{j=i+1}^{N}\right) P\left\{X_i\vartheta_i(t)>(1-\delta)x,Y_j\vartheta_j(t)>(1-\delta)y \right\} \nonumber\\ &\sim(1-\delta)^{-(\alpha+\beta)}\bar{F}(x)\bar{G}(y) \left\{\widetilde{C}_d \sum\limits_{i=1}^{N} E\left(\widehat{\vartheta}^{\alpha+\beta}_{3i}(t)\right) +\sum\limits_{j=1}^{N-1}\sum\limits_{i=j+1}^{N} E\left(\widehat{\vartheta}^{\beta}_{2j}(t)\widehat{\vartheta}^{\alpha}_{5i}(t)\right) \right.\nonumber\\ &\quad\ \left.+\sum\limits_{i=1}^{N-1}\sum\limits_{j=i+1}^{N} E\left(\widehat{\vartheta}^{\alpha}_{1i}(t)\widehat{\vartheta}^{\beta}_{4j}(t)\right) \right\}\nonumber\\ & \sim(1-\delta)^{-(\alpha+\beta)}\sum\limits_{i=1}^{N} \sum\limits_{j=1}^{N}P\left\{X_i\vartheta_i(t)>x,Y_j\vartheta_j(t)>y\right\} \nonumber\\ &\leq(1+\varepsilon)\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N} P\left\{X_i\vartheta_i(t)>x,Y_j\vartheta_j(t)>y\right\} \nonumber\\ &\leq\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N} P\left\{X_i\vartheta_i(t)>x,Y_j\vartheta_j(t)>y\right\} +C\varepsilon\bar{F}(x)\bar{G}(y). \end{matrix} $

考虑 $K_2$, 有

$\begin{align*} K_2=&\left(\sum\limits_{1\leq m <i=j\leq N}+\sum\limits_{1\leq i=j<m\leq N}+\sum\limits_{1\leq i<j=m\leq N} +\sum\limits_{1\leq j=m<i\leq N}+\sum\limits_{1\leq m <i<j\leq N} \right.\\ &\left.+\sum\limits_{1\leq i<j<m\leq N}+\sum\limits_{1\leq m <j<i\leq N} +\sum\limits_{1\leq j<m<i\leq N}+\sum\limits_{1\leq j<i<m\leq N}+\sum\limits_{1\leq i<m<j\leq N}\right) \\ &\cdot P\left\{X_i\vartheta_i(t)>x/N,Y_j\vartheta_j(t)>y/N, X_m\vartheta_m(t)>\delta x/(N-1) \right\}\\ :=\ &K_{20}+K_{21}+K_{22}+\cdots+K_{29}. \end{align*}$

因为 $(X_m,\theta_m)$ 服从二元 Sarmanov 分布 (见 (2.7) 式), 故在引理 4.2 中取 $\eta_{12}=\eta_{23}=0$

$\begin{align*} K_{20} \leq\ & (1+\eta_{13}b_1b_3)\sum\limits_{m=1}^{N-1}\sum\limits_{i=m+1}^{N} P\left\{X_i\vartheta_i^*(\theta_i;t)>x/N, Y_i\vartheta_i^*(\theta_i;t)>y/N,\right.\\ &\left. X_m^{\,*}\vartheta^*_m(t)> \delta x/(N-1)\right\} +\eta_{13}b_1b_3\sum\limits_{m=1}^{N-1}\sum\limits_{i=m+1}^{N} P\left\{ X_i\vartheta_i^*(\widetilde{\theta}_m^*,\theta_i;t)>x/N,\right.\\ &\left. Y_i\vartheta_i^*(\widetilde{\theta}_m^*,\theta_i;t)>y/N, \widetilde{X}_m^{\,*}\vartheta^*_m(\widetilde{\theta}_m^*;t) > \delta x/(N-1)\right\}\\ :=\ &(1+\eta_{13}b_1b_3)K_{201}+\eta_{13}b_1b_3K_{202}, \end{align*}$

其中, $\vartheta_i^*(\cdot,\cdot;\,t)$$\vartheta^*_m(\cdot;\,t)$ 分别由 (4.16) 和 (4.17) 式引入. 在 $K_{201}$中, 注意到 $(X_i,Y_i,\theta_i)$ 服从 Sarmanov 分布, 即假设 2.1, 则由引理 4.2, (4.15), (4.19) 和 (4.8) 式得, 对足够大的 $x$$y$

$\begin{matrix} K_{201}&\leq\sum\limits_{m=1}^{N-1}\sum\limits_{i=m+1}^{N} \bigg\{ f_0P\left\{ X^{\,*}_i\vartheta^*_i(t)>x/N, Y^{\,*}_i\vartheta_i^*(t)>y/N, X_m^{\,*}\vartheta_m^*(t)>\delta x/(N-1) \right\}\nonumber\\ &\quad+f_{12} P\left\{ \widetilde{X}^{\,*}_i\vartheta_i^*(t)>x/N, \widetilde{Y}^{\,*}_i\vartheta_i^*(t)>y/N, X_m^{\,*}\vartheta_m^*(t)>\delta x/(N-1) \right\}\nonumber\\ &\quad+f_{13} P\left\{\widetilde{X}^{\,*}_i\vartheta_i^*(\widetilde{\theta}^*_i;t)>x/N, Y^{\,*}_i\vartheta_i^*(\widetilde{\theta}_i^*;t)>y/N, X_m^{\,*}\vartheta_m^*(t)>\delta x/(N-1) \right\}\nonumber\\ &\quad+\left.f_{23} P\left\{X^{\,*}_i\vartheta_i^*(\widetilde{\theta}^*_i;t)>x/N, \widetilde{Y}^{\,*}_i\vartheta_i^*(\widetilde{\theta}^*_i;t)>y/N, X_m^{\,*}\vartheta_m^*(t)>\delta x/(N-1) \right\}\right\}\nonumber\\ &\leq C\varepsilon\bar{F}(x)\bar{G}(y)\nonumber. \end{matrix}$

由 (4.11), (4.19) 和 (4.20) 式, 且采用类似于 $K_{201}\leq C\varepsilon\bar{F}(x)\bar{G}(y)$ 中的证明步骤得, 对足够大的 $x$$y$$K_{202}\leq C\varepsilon\bar{F}(x)\bar{G}(y)$. 故对足够大的 $x$$y$, $K_{20}\leq C\varepsilon\bar{F}(x)\bar{G}(y)$. 类似地, 对足够大的 $x$$y$, 当 $k=1,2,\cdots,9$ 时, $K_{2k}\leq C\varepsilon\bar{F}(x)\bar{G}(y)$.$K_{2k}\leq C\varepsilon\bar{F}(x)\bar{G}(y)$, $k=1,2,\cdots,9$, 代入 $K_2$$K_{2} \leq C\varepsilon\bar{F}(x)\bar{G}(y)$, 对足够大的$x$$y$成立. 同样地, $K_{3} \leq C\varepsilon\bar{F}(x)\bar{G}(y)$ 对足够大的 $x$$y$ 成立.

其次证明概率 $P\Big\{\sum\limits_{i=1}^{N}X_i\vartheta_i(t)>x, \sum\limits_{j=1}^{N}Y_j\vartheta_j(t)>y \Big\}$ 的渐近下界. 于是,

$ \begin{matrix} &P\bigg\{\sum\limits_{i=1}^{N}X_i\vartheta_i(t)>x,\sum\limits_{j=1}^{N}Y_j\vartheta_j(t)>y \bigg\}\nonumber\\ \geq\ & P\bigg\{\bigcup_{i=1}^{N}\left(X_i\vartheta_i(t)>x\right), \bigcup_{j=1}^{N}\left(Y_j\vartheta_j(t)>y\right) \bigg\}\nonumber\\ \geq\ & \sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N} P\left\{X_i\vartheta_i(t)>x,Y_j\vartheta_j(t)>y \right\} \nonumber\\ & -\sum\limits_{i=1}^N\sum\limits_{j=1}^N\sum\limits_{1\leq m\leq N\atop{i\neq m}} P\left\{X_i\vartheta_i(t)>x,Y_j\vartheta_j(t)>y, X_m\vartheta_m(t)>x \right\}\nonumber\\ & -\sum\limits_{i=1}^N\sum\limits_{j=1}^N\sum\limits_{1\leq m\leq N\atop{j\neq m}} P\left\{X_i\vartheta_i(t)>x,Y_j\vartheta_j(t)>y,Y_m\vartheta_m(t)>y \right\}\nonumber\\ :=\ &{K}{'}_1-{K}'_2-{K}'_3. \end{matrix} $

类似于 $K_2\leq C\varepsilon\bar{F}(x)\bar{G}(y)$ 的证明, 有 ${K}'_{2}\leq C\varepsilon\bar{F}(x)\bar{G}(y)$${K}'_{3}\leq C\varepsilon\bar{F}(x)\bar{G}(y)$ 对足够大的 $x$$y$ 成立. 结合 (4.24) 和 (4.26) 式即可得到结果. 引理 4.4 得证.

$0<r<1$, $0<l\leq \kappa$, $0<t\leq T$, 由 Hölder 不等式和 (4.27) 式得

$ \begin{matrix} \sum\limits_{n=1}^{\infty}n^q\left(E\vartheta^{\,l}_{n}(t)\right)^{r} \leq\bigg(\sum\limits_{n=1}^{\infty}n^{(q+1)/r}E\vartheta^{l}_{n}(t)\bigg)^{r} \bigg(\sum\limits_{n=1}^{\infty}1/n^{1/(1-r)}\bigg)^{1-r} <\infty, \quad q\geq0. \end{matrix} $

对任意的$\varepsilon>0$$\alpha+\beta+2\varepsilon<\kappa$, 由 Hölder 不等式, Cr 不等式和 (4.27) 式,

$ \begin{matrix} &\sum\limits_{i=1}^{\infty}\sum\limits_{j=1}^{\infty}i^{\,q}j^{\,q} E\left\{ \left[\vartheta_i^{\alpha-\varepsilon}(t)+\vartheta_i^{\alpha+\varepsilon}(t)\right] [\vartheta_j^{\beta-\varepsilon}(t)+\vartheta_j^{\beta+\varepsilon}(t)] \right\}\nonumber\\ \leq\ & \sum\limits_{i=1}^{\infty}\sum\limits_{j=1}^{\infty}i^{\,q}j^{\,q} \left\{E\left(\left[\vartheta_i^{\alpha-\varepsilon}(t)+\vartheta_i^{\alpha+\varepsilon}(t)\right] ^{\frac{\alpha+\beta+2\varepsilon}{\alpha+\varepsilon}}\right)\right\}^{\frac{\alpha+\varepsilon}{\alpha+\beta+2\varepsilon}} \\ &\cdot \left\{E\left(\left[\vartheta_j^{\beta-\varepsilon}(t)+ \vartheta_j^{\beta+\varepsilon}(t)\right]^{ \frac{\alpha+\beta+2\varepsilon}{\beta+\varepsilon}}\right)\right\} ^{\frac{\beta+\varepsilon}{\alpha+\beta+2\varepsilon}} \nonumber\\ \leq\ & C\sum\limits_{i=1}^{\infty}\sum\limits_{j=1}^{\infty}i^{\,q}j^{\,q} \left\{\left(E\left[\vartheta_i^{\frac{\alpha-\varepsilon}{\alpha+\varepsilon}(\alpha+\beta+2\varepsilon)}(t)\right]\right) ^{\frac{\alpha+\varepsilon}{\alpha+\beta+2\varepsilon}} +\left(E\left[\vartheta_i^{\alpha+\beta+2\varepsilon}(t)\right]\right)^{ \frac{\alpha+\varepsilon}{\alpha+\beta+2\varepsilon} } \right\}\nonumber\\ &\cdot\left\{\left(E\left[\vartheta_j^{\frac{\beta-\varepsilon}{\beta+\varepsilon}(\alpha+\beta+2\varepsilon)}(t)\right]\right) ^{\frac{\beta+\varepsilon}{\alpha+\beta+2\varepsilon}} +\left(E\left[\vartheta_j^{\alpha+\beta+2\varepsilon}(t)\right]\right)^{ \frac{\beta+\varepsilon}{\alpha+\beta+2\varepsilon} } \right\} \nonumber\\ <\infty,\ q\geq0. \end{matrix} $

类似地,

$ \begin{matrix} \sum\limits_{i=1}^{\infty}\sum\limits_{j=1}^{\infty}i^{\,q}j^{\,q} E\left\{ \left[\vartheta_i^{\alpha-\varepsilon}(t)+\vartheta_i^{\alpha+\varepsilon}(t)\right] \vartheta_j^{\beta+\varepsilon}(t)+\vartheta_i^{\alpha+\varepsilon}(t) \left[\vartheta_j^{\beta-\varepsilon}(t)+\vartheta_j^{\beta+\varepsilon}(t)\right] \right\} <\infty. \end{matrix} $

引理4.5 在定理 (2.1) 的条件下, 当 $0<t\leq T$ 时,

$ \begin{equation} \lim\limits_{N\rightarrow\infty}\limsup\limits_{(x,y)\rightarrow(\infty,\infty)} \frac{P\bigg\{\sum\limits_{i=N}^{\infty}X_i\vartheta_i(t)>x, \sum\limits_{j=1}^{\infty}Y_j\vartheta_j(t)>y \bigg\}} {\bar{F}(x)\bar{G}(y)}=0, \end{equation} $

$ \begin{equation} \lim\limits_{N\rightarrow\infty}\limsup\limits_{(x,y)\rightarrow(\infty,\infty)} \frac{P\bigg\{\sum\limits_{i=1}^{\infty}X_i\vartheta_i(t)>x, \sum\limits_{j=N}^{\infty}Y_j\vartheta_j(t)>y \bigg\}} {\bar{F}(x)\bar{G}(y)}=0. \end{equation} $

首先证明 (4.30) 式. 取 $ M$ 满足 $\sum\limits_{i=1}^{\infty}\frac{1}{i^2}<M$, 于是

$\begin{align*} &P\bigg\{\sum\limits_{i=N}^{\infty}X_i\vartheta_i(t)>x,\sum\limits_{j=1}^{\infty}Y_j\vartheta_j(t)>y\bigg\} \\ \leq\ & \sum\limits_{i=N}^{\infty}\sum\limits_{j=1}^{\infty}P\left\{ X_i\vartheta_i(t)>x/(i^2M), Y_j\vartheta_j(t)>y/(j^2M)\right\}\\ &=\bigg(\sum\limits_{N\leq i<j}^{\infty}+\sum\limits_{i=j=N}^{\infty}+\sum\limits_{i\geq N,i>j}^{\infty}\bigg)P\left\{ X_i\vartheta_i(t)>x/(i^2M), Y_j\vartheta_j(t)>y/(j^2M)\right\}\\ :=\ &L'_1+L'_2+L'_3. \end{align*}$

考虑 $L'_1$, 根据 (4.22) 和 (4.23) 式提到的方法重写 $L'_1$. 具体来说, 因为 $(X_i,\theta_i)$ 服从二元 Sarmanov 分布, 即 (2.7) 式, 故在引理 4.2 中取 $\eta_{12}=\eta_{23}=0$, 此时可将 $L'_1$ 分成四部分 $L'_{1k}$, $k=1,2,3,4$. 又根据$(Y_j,\theta_j)$服从二元 Sarmanov 分布, 即 (2.8) 式, 故在引理 4.2 中取 $\eta_{12}=\eta_{13}=0$, 此时可将 $L'_{11}$ 分成四部分 $L'_{11k}$, $k=1,2,3,4$. 接下来根据 (4.2), (4.3), (4.28), (4.29) 和 (4.27) 式得到

$\begin{align*} {L}'_{111} =\ &\sum\limits_{N\leq i<j}^{\infty}P\left\{ X_i^*\vartheta_i^*(t)>x/(i^2M), Y_j^*\vartheta_j^*(t)>y/(j^2M)\right\}\\ =\ &\sum\limits_{N\leq i<j}^{\infty} \left(\int_0^{x/(i^2MD_F)}\int_0^{y/(j^2MD_G)} +\int_0^{x/(i^2MD_F)}\int_{y/(j^2MD_G)}^{\infty} \right.\\&\left.\quad +\int_{x/(i^2MD_F)}^{\infty}\int_0^{y/(j^2MD_G)} +\int_{x/(i^2MD_F)}^{\infty}\int_{y/(j^2MD_G)}^{\infty}\right) \bar{F} \left(x/(i^2Mu)\right) \\ &\cdot \bar{G} \left(y/(j^2Mv)\right) P\left\{ \vartheta_i^*(t)\in \mathrm{d}u, \vartheta_j^*(t)\in \mathrm{d}v \right\}\\ \leq\ & C\bar{F}(x)\bar{G}(y)\sum\limits_{N\leq i<j}^{\infty} i^{2(\alpha+\varepsilon)}j^{2(\beta+\varepsilon)} \int_0^{\infty}\int_0^{\infty} (u^{\alpha-\varepsilon}\vee u^{\alpha+\varepsilon}) (v^{\beta-\varepsilon}\vee v^{\beta+\varepsilon}) \\ & \cdot P\left\{ \vartheta_i^*(t)\in \mathrm{d}u, \vartheta_j^*(t)\in \mathrm{d}v \right\} \\ & +C\bar{F}(x)\sum\limits_{N\leq i<j}^{\infty} i^{2(\alpha+\varepsilon)} \int_0^{x/(i^2MD_F)}\int_{y/(j^2MD_G)}^{\infty} (u^{\alpha-\varepsilon}\vee u^{\alpha+\varepsilon}) \left( vj^2MD_G/y \right)^{\beta+\varepsilon} \\ & \cdot P\left\{ \vartheta_i^*(t)\in \mathrm{d}u, \vartheta_j^*(t)\in \mathrm{d}v \right\} \\ & +C\bar{G}(y)\sum\limits_{N\leq i<j}^{\infty}j^{2(\beta+\varepsilon)} \int_{x/(i^2MD_F)}^{\infty}\int_0^{y/(j^2MD_G)} (v^{\beta-\varepsilon}\vee v^{\beta+\varepsilon}) \left( ui^2MD_F/x \right)^{\alpha+\varepsilon} \\ & \cdot P\left\{ \vartheta_i^*(t)\in \mathrm{d}u, \vartheta_j^*(t)\in \mathrm{d}v \right\} \\ & +C\sum\limits_{N\leq i<j}^{\infty} \int_{x/(i^2MD_F)}^{\infty}\int_{y/(j^2MD_G)}^{\infty} \left( ui^2MD_F/x \right)^{\alpha+\varepsilon} \left( vj^2MD_G/y \right)^{\beta+\varepsilon} \\ & \cdot P\left\{ \vartheta_i^*(t)\in \mathrm{d}u, \vartheta_j^*(t)\in \mathrm{d}v \right\}\\ \leq\ & C\bar{F}(x)\bar{G}(y)\sum\limits_{N\leq i<j}^{\infty} i^{2(\alpha+\varepsilon)}j^{2(\beta+\varepsilon)} E\left\{ \left[\vartheta_i^{*(\alpha+\varepsilon)}(t)\!+\!\vartheta_i^{*(\alpha-\varepsilon)}(t)\right] \left[\vartheta_j^{*(\beta+\varepsilon)}(t)\!+\!\vartheta_j^{*(\beta-\varepsilon)}(t)\right] \right\}\\ &+C\bar{F}(x)y^{-(\beta+\varepsilon)}\sum\limits_{N\leq i<j}^{\infty} i^{2(\alpha+\varepsilon)}j^{2(\beta+\varepsilon)} E\left\{ \left[\vartheta_i^{*(\alpha+\varepsilon)}(t)+ \vartheta_i^{*(\alpha-\varepsilon)}(t)\right] \vartheta_j^{*(\beta+\varepsilon)}(t)\right\}\\ & +Cx^{-(\alpha+\varepsilon)}\bar{G}(y)\sum\limits_{N\leq i<j}^{\infty} i^{2(\alpha+\varepsilon)}j^{2(\beta+\varepsilon)} E\left\{ \left[\vartheta_j^{*(\beta+\varepsilon)}(t)+ \vartheta_j^{*(\beta+\varepsilon)}(t)\right] \vartheta_i^{*(\alpha+\varepsilon)}(t) \right\}\\ &+Cx^{-(\alpha+\varepsilon)}y^{-(\beta+\varepsilon)} \sum\limits_{N\leq i<j}^{\infty}i^{2(\alpha+\varepsilon)}j^{2(\beta+\varepsilon)} E\left\{ \vartheta_i^{*(\alpha+\varepsilon)}(t)\vartheta_j^{*(\beta+\varepsilon)}(t) \right\}, \end{align*}$

于是, $\lim\limits_{N\rightarrow\infty} \limsup\limits_{(x,y)\rightarrow(\infty,\infty)} \frac{{L}'_{111}}{\bar{F}(x)\bar{G}(y)}=0$. 类似地, 当 $k=2,3,4$ 时, $\lim\limits_{N\rightarrow\infty}\limsup\limits_{(x,y)\rightarrow(\infty,\infty)}$$ \frac{{L}'_{11k}}{\bar{F}(x)\bar{G}(y)}=0$. 所以, $\lim\limits_{N\rightarrow\infty} \limsup\limits_{(x,y)\rightarrow(\infty,\infty)} \frac{L'_{11}}{\bar{F}(x)\bar{G}(y)}=0$. 类似地, 当 $k=2,3,4$ 时, $\lim\limits_{N\rightarrow\infty} \limsup\limits_{(x,y)\rightarrow(\infty,\infty)} \frac{L'_{1k}}{\bar{F}(x)\bar{G}(y)}=0$. 从而, $ \lim\limits_{N\rightarrow\infty} \limsup\limits_{(x,y)\rightarrow(\infty,\infty)} \frac{L'_{1}}{\bar{F}(x)\bar{G}(y)}=0. $ 类似于 $L'_{1}$ 的讨论得 $ \lim\limits_{N\rightarrow\infty} \limsup\limits_{(x,y)\rightarrow(\infty,\infty)} \frac{L'_{k}}{\bar{F}(x)\bar{G}(y)}=0, $$ k=2,3. $ 故式 (4.30) 得证. 式 (4.31) 类似可证. 引理 4.5 得证.

4.2 定理 (2.1) 的证明

首先给出证明定理 (2.1) 所需要的若干关系式. 在 (4.27) 和 (4.27) 式中取 $q=0$, 当 $0<t\leq T$ 时, 由 Hölder 不等式,

$ \begin{matrix} &\quad\ \sum\limits_{i=1}^{\infty}E\left(\widehat{\vartheta}^{\alpha+\beta}_{3i}(t)\right) +\sum\limits_{j=1}^{\infty}\sum\limits_{i=1}^{\infty}E\left(\widehat{\vartheta}^{\beta}_{2j}(t)\widehat{\vartheta}^{\alpha}_{5i}(t)\right) +\sum\limits_{i=1}^{\infty}\sum\limits_{j=1}^{\infty} E\left(\widehat{\vartheta}^{\alpha}_{1i}(t)\widehat{\vartheta}^{\beta}_{4j}(t)\right)\nonumber\\ &\leq b_{33}\sum\limits_{i=1}^{\infty}E\left(\vartheta^{*\alpha+\beta}_{i}(t)\right) +b_{32}b_{31}\sum\limits_{j=1}^{\infty}\sum\limits_{i=1}^{\infty} E\left(\vartheta^{*\beta}_{j}(t)\vartheta^{*\alpha}_{i}(t)\right) +b_{31}b_{32}\sum\limits_{i=1}^{\infty}\sum\limits_{j=1}^{\infty} E\left(\vartheta^{*\alpha}_{i}(t)\vartheta^{*\beta}_{j}(t)\right)\nonumber\\ &\leq b_{33}\sum\limits_{i=1}^{\infty}E\left(\vartheta^{*\alpha+\beta}_{i}(t)\right) +2b_{32}b_{31}\sum\limits_{j=1}^{\infty}\left(E\vartheta^{*\alpha+\beta}_{j}(t)\right)^{\frac{\beta}{\alpha+\beta}}\cdot \sum\limits_{i=1}^{\infty}\left(E\vartheta^{*\alpha+\beta}_{i}(t)\right)^{\frac{\alpha}{\alpha+\beta}} \nonumber\\ <\infty, \end{matrix} $

其中, 上式的第一步是根据 (2.10)-(2.12) 式得到. 对任意的 $\varepsilon>0$ 满足 $\alpha+\beta+2\varepsilon<\kappa$, 由引理 4.5, (4.32) 和 (4.27) 式得, 存在整数 $N>1$ 及足够大的$x$$y$

$ \begin{matrix} &\qquad P\left\{\sum\limits_{i=N+1}^{\infty}X_i\vartheta_i(t)>x, \sum\limits_{j=1}^{\infty}Y_j\vartheta_j(t)>y \right\} \leq \varepsilon\bar{F}(x)\bar{G}(y), \end{matrix} $
$ \begin{matrix} &\qquad P\left\{\sum\limits_{i=1}^{\infty}X_i\vartheta_i(t)>x, \sum\limits_{j=N+1}^{\infty}Y_j\vartheta_j(t)>y \right\} \leq \varepsilon\bar{F}(x)\bar{G}(y), \end{matrix} $
$ \begin{matrix} &\sum\limits_{i=N+1}^{\infty}E\widehat{\vartheta}^{\alpha+\beta}_{3i}(t) +\left(\sum\limits_{j=1}^{\infty}\sum\limits_{i=N+1}^{\infty} +\sum\limits_{j=N+1}^{\infty}\sum\limits_{i=j+1}^{\infty}\right) E\left(\widehat{\vartheta}^{\beta}_{2j}(t)\widehat{\vartheta}^{\alpha}_{5i}(t)\right) <\varepsilon, \end{matrix} $
$ \begin{matrix} &\left(\sum\limits_{i=1}^{\infty}\sum\limits_{j=N+1}^{\infty} +\sum\limits_{i=N+1}^{\infty}\sum\limits_{j=i+1}^{\infty}\right) E\left(\widehat{\vartheta}^{\alpha}_{1i}(t)\widehat{\vartheta}^{\beta}_{4j}(t)\right) <\varepsilon, \quad \sum\limits_{i=N+1}^{\infty}\frac{1}{i^2}<1. \end{matrix} $

根据定义 2.1, 取 $v_1, v_2\in(1/2,1)$ 使得下式对足够大的 $x$$y$ 成立

$ \begin{matrix} P(X>v_1x)\leq (1+\varepsilon)P(X>x) \;\text{ 和 }\; P(Y>v_2y)\leq (1+\varepsilon)P(Y>y). \end{matrix} $

$D_{0,t}^{(i)} =\sup\limits_{0\leq s\leq t}|\int_0^s\mathrm{e}^{-\xi(v)}\mathrm{d}B_i(v)|$, $i=1,2,3$. 则根据 Hölder 不等式, Burkholder-Davis-Gundy 不等式, Fubini 定理及定理 (2.1) 中的 $\int_0^TE\mathrm{e}^{-\kappa\xi(s)}\mathrm{d}s<\infty$ 得到

$ \begin{matrix} ED_{0,t}^{(i)l} &\leq \left\{ED_{0,t}^{(i)\kappa}\right\}^{l/\kappa} \nonumber\\ \leq C\left\{E\left(\int_0^t\mathrm{e}^{-2\xi(s)}{\rm d}s\right)^{\kappa/2}\right\}^{l/\kappa} \leq C\left\{t^{\kappa/2-1}E\int_0^t\mathrm{e}^{-\kappa\xi(s)}{\rm d}s\right\}^{l/\kappa}\nonumber\\ &=C\left\{t^{\kappa/2-1}\int_0^tE\mathrm{e}^{-\kappa\xi(s)}{\rm d}s\right\}^{l/\kappa} <\infty,\quad 0<l\leq\kappa,\ 0<t\leq T. \end{matrix} $

在 (4.14) 式中取 $l=1$, 则

$ \begin{matrix} E\left(\int_0^t\mathrm{e}^{-\xi(s)}\mathrm{d}s\right) =\int_0^tE\mathrm{e}^{-\xi(s)}\mathrm{d}s<\infty, \quad 0<t\leq T. \end{matrix} $

故由 (4.38), (4.39) 和 (4.15) 式及 Hölder 不等式, 存在足够大的 $A>0$ 使得, 对 $1\leq m,n\leq N$, $0<l\leq\kappa$, $0<t\leq T$$i=1,2,3$, 有

$ \begin{matrix} &P\left\{D_{0,t}^{(i)}>A\right\}<\frac{\varepsilon}{4N^2}, \quad P\left\{\int_0^t\mathrm{e}^{-\xi(s)}{\rm d}s>A\right\}<\frac{\varepsilon}{4N^{\,2}}, \end{matrix} $
$ \begin{matrix} E\left\{\vartheta_m^{*l}(t)\left[ \mathbb{I}_{[D_{0,t}^{(i)}>A]} + \mathbb{I}_{[\int_0^t\mathrm{e}^{-\xi(s)}{\rm d}s>A]} \right]\right\} <\frac{\varepsilon}{4N^{\,\kappa+2}}, \end{matrix} $
$ \begin{matrix} E\left\{\vartheta_m^{*\alpha+\varepsilon}(t)\vartheta_n^{*\beta+\varepsilon}(t) \left[ \mathbb{I}_{[D_{0,t}^{(i)}>A]} + \mathbb{I}_{[\int_0^t\mathrm{e}^{-\xi(s)}{\rm d}s>A]} \right] \right\}<\frac{\varepsilon}{4N^{\,2\kappa+2}}. \end{matrix} $

由 Hölder 不等式, (4.19) 和 (4.40) 式知, 当 $1\leq k\leq m\leq N$, $0<l\leq\kappa$ 时, 有

$ \begin{matrix} &E\left\{\vartheta_m^{*l}(\widetilde{\theta}^*_k;t)\mathbb{I}_{[D_{0,t}^{(1)}> A]}\right\} \leq \left\{E[\vartheta_m^{*\kappa}(\widetilde{\theta}^*_k;t)]\right\}^{l/\kappa} [P(D_{0,t}^{(1)}> A)]^{(\kappa-l)/\kappa}<\frac{C\varepsilon}{4N^{\,\kappa+2}}. \end{matrix} $

由 Hölder 不等式, (4.15) 和 (4.43) 式得, 当$1\leq k\leq m\leq N$时, 有

$ \begin{matrix} E\left\{\vartheta_m^{*\alpha+\varepsilon}(\widetilde{\theta}^*_k;t) \vartheta_n^{*\beta+\varepsilon}(t)\mathbb{I}_{[D_{0,t}^{(1)}> A]}\right\} <\frac{C\varepsilon}{4N^{\,2\kappa+2}}. \end{matrix} $

现在, 分成两步证明有限时间破产概率 $\Psi(x,y;t)$ 的渐近估计式.

第一步 证明 $\Psi(x,y;t)$ 的渐近下界. 对满足(4.33)-(4.36) 式的 $N$, 满足 (4.40)-(4.42) 式的 $A$$0<t\leq T$, 有

$ \begin{matrix} \Psi(x,y;t) \geq\ & P\left\{ \sum\limits_{i=1}^{\infty}X_i\vartheta_i(t) -c_1\int_0^t\mathrm{e}^{-\xi(s)}\mathrm{d}s -\sigma_1\int_0^t\mathrm{e}^{-\xi(s)}\mathrm{d}B_1(s)>x,\right. \\ &\left. \sum\limits_{j=1}^{\infty}Y_j\vartheta_j(t) c_2\int_0^t\mathrm{e}^{-\xi(s)}\mathrm{d}s- \sigma_2\int_0^t\mathrm{e}^{-\xi(s)}\mathrm{d}B_2(s)>y \right\} \nonumber\\ \geq\ & P\left\{ \sum\limits_{i=1}^{N}X_i\vartheta_i(t)>x+(c_1+\sigma_1)A, \right.\nonumber\\ &\left. \sum\limits_{j=1}^{N}Y_j\vartheta_j(t)>y+(c_2+\sigma_2)A, D_{0,t}^{(1)}\leq A,D_{0,t}^{(2)}\leq A, \int_0^t\mathrm{e}^{-\xi(s)}\mathrm{d}s\leq A\right\}\nonumber\\ \geq\ & P\left\{ \sum\limits_{i=1}^{N}X_i\vartheta_i(t)>x+(c_1+\sigma_1)A,\sum\limits_{j=1}^{N}Y_j\vartheta_j(t)>y+(c_2+\sigma_2)A\right\}\nonumber\\ &-P\left\{ \sum\limits_{i=1}^{N}X_i\vartheta_i(t)>x+(c_1+\sigma_1)A,\sum\limits_{j=1}^{N}Y_j\vartheta_j(t)>y+(c_2+\sigma_2)A, D_{0,t}^{(1)}>A\right\}\nonumber\\ &-P\left\{ \sum\limits_{i=1}^{N}X_i\vartheta_i(t)>x+(c_1+\sigma_1)A,\sum\limits_{j=1}^{N}Y_j\vartheta_j(t)>y+(c_2+\sigma_2)A, D_{0,t}^{(2)}>A\right\}\nonumber\\ &-P\left\{ \sum\limits_{i=1}^{N}X_i\vartheta_i(t)>x+(c_1+\sigma_1)A,\sum\limits_{j=1}^{N}Y_j\vartheta_j(t)>y+(c_2+\sigma_2)A, \right. \\ &\left. \int_0^t\mathrm{e}^{-\xi(s)}\mathrm{d}s>A\right\} \nonumber\\ :={I}'_1-{I}'_2-{I}'_3-{I}'_4. \end{matrix} $

考虑 $I'_1$, 取 $v_3$ 满足 $v_3x>(c_1+\sigma_1)A$, $v_3y>(c_2+\sigma_2)A$$(1+v_3)^{-(\alpha+\beta)}\geq1-\varepsilon$. 由引理 4.4, 引理 4.3, (4.35) 和 (4.36) 式得对足够大的 $x$$y$,

$ \begin{matrix} {I}'_1 \gtrsim\ &\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N} P\left\{X_i\vartheta_i(t)>(1+v_3)x, Y_j\vartheta_j(t)>(1+v_3)y\right\} \sim(1+v_3)^{-(\alpha+\beta)}\bar{F}(x)\bar{G}(y)\nonumber\\ &\cdot\bigg\{ \widetilde{C}_d \sum\limits_{i=1}^{N} E\left(\widehat{\vartheta}^{\alpha+\beta}_{3i}(t)\right) +\sum\limits_{j=1}^{N-1}\sum\limits_{i=j+1}^{N} E\left(\widehat{\vartheta}^{\beta}_{2j}(t)\widehat{\vartheta}^{\alpha}_{5i}(t)\right) +\sum\limits_{i=1}^{N-1}\sum\limits_{j=i+1}^{N} E\left(\widehat{\vartheta}^{\alpha}_{1i}(t)\widehat{\vartheta}^{\beta}_{4j}(t)\right) \bigg\}\nonumber\\ \geq\ &(1-\varepsilon)\bar{F}(x)\bar{G}(y)\bigg\{ \widetilde{C}_d\bigg(\sum\limits_{i=1}^{\infty}-\sum\limits_{i=N+1}^{\infty}\bigg) E\left(\widehat{\vartheta}^{\alpha+\beta}_{3i}(t)\right) \nonumber\\ & +\bigg(\sum\limits_{j=1}^{\infty}\sum\limits_{i=j+1}^{\infty} -\sum\limits_{j=1}^{N}\sum\limits_{i=N+1}^{\infty} \sum\limits_{j=N+1}^{\infty}\sum\limits_{i=j+1}^{\infty}\bigg) E\left(\widehat{\vartheta}^{\beta}_{2j}(t)\widehat{\vartheta}^{\alpha}_{5i}(t)\right) \nonumber\\ & +\bigg(\sum\limits_{i=1}^{\infty}\sum\limits_{j=i+1}^{\infty} -\sum\limits_{i=1}^{N}\sum\limits_{j=N+1}^{\infty} -\sum\limits_{i=N+1}^{\infty}\sum\limits_{j=i+1}^{\infty}\bigg) E\left(\widehat{\vartheta}^{\alpha}_{1i}(t)\widehat{\vartheta}^{\beta}_{4j}(t)\right)\bigg\} \nonumber\\ \geq\ &(1-\varepsilon)\bar{F}(x)\bar{G}(y)\bigg\{\widetilde{C}_d \sum\limits_{i=1}^{\infty} E\left(\widehat{\vartheta}^{\alpha+\beta}_{3i}(t)\right) +\sum\limits_{j=1}^{\infty}\sum\limits_{i=j+1}^{\infty} E\left(\widehat{\vartheta}^{\beta}_{2j}(t)\widehat{\vartheta}^{\alpha}_{5i}(t)\right) \nonumber\\ & +\sum\limits_{i=1}^{\infty}\sum\limits_{j=i+1}^{\infty} E\left(\widehat{\vartheta}^{\alpha}_{1i}(t)\widehat{\vartheta}^{\beta}_{4j}(t)\right)\bigg\} -C\varepsilon\bar{F}(x)\bar{G}(y) \\ :=\ &(1-\varepsilon)\bar{F}(x)\bar{G}(y)\left[I'_{11}+I'_{12}+I'_{13}\right]-C\varepsilon\bar{F}(x)\bar{G}(y). \end{matrix} $

$I'_{11}$$I'_{12}$, 由 (2.13), (2.14) 和 (2.15) 式得

$\begin{align*} I'_{11}&=\widetilde{C}_d\sum\limits_{i=1}^{\infty}E\left(\mathrm{e}^{-(\alpha+\beta)\xi(\widehat\tau_{i}^{(3)})} \mathbb{I}_{[\widehat\tau_{i}^{(3)}\leq t]}\right) =\widetilde{C}_d\sum\limits_{i=1}^{\infty}\int_0^tE\mathrm{e}^{-(\alpha+\beta)\xi(u)}P(\widehat\tau_{i}^{(3)}\in \mathrm{d}u) =\widetilde{C}_d\int_0^tE\mathrm{e}^{-(\alpha+\beta)\xi(u)}\mathrm{d}\widehat{\lambda}_u^{(3)} \end{align*}$

$\begin{align*} I'_{12} &=\sum\limits_{i=2}^{\infty}E\left\{\mathrm{e}^{-\beta\xi(\hat\tau_{1}^{(5)})-\alpha\xi(\hat\tau_{i}^{(5)})} \mathbb{I}_{[\hat\tau_{i}^{(5)}\leq t]} \right\} +\sum\limits_{j=2}^{\infty}\sum\limits_{i=j+1}^{\infty}E\left\{\mathrm{e}^{-\beta\xi(\hat\tau_{j}^{(5)})-\alpha\xi(\widehat\tau_{i}^{(5)})} \mathbb{I}_{[\widehat\tau_{i}^{(5)}\leq t]} \right\}\\ &=\sum\limits_{i=2}^{\infty}\iint\nolimits_{u+v\leq t} E\left\{\mathrm{e}^{-\beta\xi(u)-\alpha\xi(u+v)}\right\} P(\widehat\tau_{1}^{(5)}\in du )P(\widehat\tau_{i}^{(5)}-\widehat\tau_{1}^{(5)}\in dv) \\ &\quad\ +\sum\limits_{j=2}^{\infty}\sum\limits_{i=j+1}^{\infty}\iint\nolimits_{u+v\leq t} E\left\{\mathrm{e}^{-\beta\xi(u)-\alpha\xi(u+v)}\right\} P(\widehat\tau_{j}^{(5)}\in \mathrm{d}u)P(\widehat\tau_{i}^{(5)}-\widehat\tau_{j}^{(5)}\in \mathrm{d}v)\\ &=\iint\nolimits_{u+v\leq t} E\left\{\mathrm{e}^{-\beta\xi(u)-\alpha\xi(u+v)}\right\}\mathrm{d}\widehat{H}_2(u)(\mathrm{d}\widehat{\lambda}_v^{(1)}-\mathrm{d}\lambda_v) \\ &\quad\ +\iint\nolimits_{u+v\leq t} E\left\{\mathrm{e}^{-\beta\xi(u)-\alpha\xi(u+v)}\right\}\mathrm{d}\widehat{\lambda}_u^{(5)}\mathrm{d}\lambda_v, \end{align*}$

其中, $I'_{12}$ 的第一步用到了下式,

$\begin{align*} &\quad\,\sum\limits_{j=2}^{\infty}\sum\limits_{i=j+1}^{\infty} E\left\{\mathrm{e}^{-\beta\xi(\hat\tau_{j}^{\scriptscriptstyle (2)})-\alpha\xi(\hat\tau_{i}^{\scriptscriptstyle (5)})}\mathbb{I}_{[\widehat\tau_{i}^{(5)}\leq t]} \right\}\\ &=\sum\limits_{j=2}^{\infty}\sum\limits_{i=j+1}^{\infty} \idotsint\limits_{s_1+s_2\cdots+s_i\leq t} E\left\{\mathrm{e}^{-\beta\xi(s_1+s_2\cdots+s_j)-\alpha\xi(s_1+s_2\cdots+s_j+\cdots+s_i)} \right\} \\ &\quad\ \cdot \varphi_{32}(s_j)\varphi_{31}(s_i) \mathrm{d}H(s_1)\cdots \mathrm{d}H(s_i)\\ &=\sum\limits_{j=2}^{\infty}\sum\limits_{i=j+1}^{\infty} \idotsint\limits_{s_1+s_2\cdots+s_i\leq t} E\left\{\mathrm{e}^{-\beta\xi(s_1+s_2\cdots+s_j)-\alpha\xi(s_1+s_2\cdots+s_j+\cdots+s_i)} \right\} \\ &\quad\ \cdot \varphi_{32}(s_1)\varphi_{31}(s_2) \mathrm{d}H(s_1)\cdots \mathrm{d}H(s_i)\\ &=\sum\limits_{j=2}^{\infty}\sum\limits_{i=j+1}^{\infty} E\left\{\mathrm{e}^{-\beta\xi(\hat\tau_{j}^{\scriptscriptstyle (5)})-\alpha\xi(\hat\tau_{i}^{\scriptscriptstyle (5) )}}\mathbb{I}_{[\hat\tau_{i}^{(5)}\leq t]} \right\}. \end{align*}$

类似地,

$\begin{align*} I'_{13} =\ &\iint\nolimits_{u+v\leq t} E\left\{\mathrm{e}^{-\alpha\xi(u)-\beta\xi(u+v)}\right)\mathrm{d}\widehat{H}_1(u)(\mathrm{d}\widehat{\lambda}_v^{(2)}-\mathrm{d}\lambda_v) \\ & +\iint\nolimits_{u+v\leq t} E\left\{\mathrm{e}^{-\alpha\xi(u)-\beta\xi(u+v)}\right)\mathrm{d}\widehat{\lambda}_u^{(4)}\mathrm{d}\lambda_v. \end{align*}$

考虑 $I'_2$, 有

$\begin{align*} {I}'_{2} &\leq \sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N} P\left\{ X_i\vartheta_i(t)>x/N, Y_j\vartheta_j(t)>y/N,D_{0,t}^{(1)}> A\right\}\\ &=\bigg(\sum\limits_{j=1}^{N-1}\sum\limits_{i=j+1}^{N}+\sum\limits_{i=j=1}^{N}+\sum\limits_{i=1}^{N-1}\sum\limits_{j=i+1}^{N}\bigg) P\left\{X_i\vartheta_i(t)>x/N, Y_j\vartheta_j(t)>y/N,D_{0,t}^{(1)}> A\right\}\\ &:=I'_{21}+I'_{22}+I'_{23}. \end{align*}$

在引理 4.2 中取 $\eta_{12}=\eta_{13}=0$, 得

$\begin{align*} {I}'_{21} &\leq (1+\eta_{23}b_2b_3)\sum\limits_{j=1}^{N-1}\sum\limits_{i=j+1}^{N} P\left\{X_i\vartheta_i^*(\theta_i;t)I_{[D_{0,t}^{(1)}> A]}>x/N, Y_j^{\,*}\vartheta_j^*(t)\mathbb{I}_{[D_{0,t}^{(1)}> A]}>y/N\right\}\\ &\quad +\eta_{23}b_2b_3\sum\limits_{j=1}^{N-1}\sum\limits_{i=j+1}^{N} P\left\{X_i\vartheta_i^*(\widetilde{\theta}^*_j,\theta_i;t)\mathbb{I}_{[D_{0,t}^{(1)}> A]}>x/N, \widetilde{Y}_j^{\,*}\vartheta_j^*(\widetilde{\theta}^*_j;t)\mathbb{I}_{[D_{0,t}^{(1)}> A]}>y/N\right\}\\ &:=(1+\eta_{23}b_2b_3){I}'_{211}+\eta_{23}b_2b_3{I}'_{212}. \end{align*}$

进一步地, 在引理 4.2 中取 $\eta_{12}=\eta_{23}=0$, 于是 $I'_{211}$ 可重写为

$\begin{align*} I'_{211} &\leq (1+\eta_{13}b_1b_3)\sum\limits_{j=1}^{N-1}\sum\limits_{i=j+1}^{N} P\left\{X_i^{\,*}\vartheta_i^*(t)\mathbb{I}_{[D_{0,t}^{(1)}> A]}>x/N, Y_j^{\,*}\vartheta_j^*(t)\mathbb{I}_{[D_{0,t}^{(1)}> A]}>y/N\right\}\\ &\quad +\eta_{13}b_1b_3\sum\limits_{j=1}^{N-1}\sum\limits_{i=j+1}^{N} P\left\{\widetilde{X}_i^{\,*}\vartheta_i^*(\widetilde{\theta}^*_i;t)\mathbb{I}_{[D_{0,t}^{(1)}> A]}>x/N, Y_j^*\vartheta_j^{\,*}(t) \mathbb{I}_{[D_{0,t}^{(1)}> A]}>y/N\right\}\\ & :=(1+\eta_{13}b_1b_3){I}'_{2111}+\eta_{13}b_1b_3{I}'_{2112}. \end{align*}$

根据 (4.5), (4.40), (4.41) 和 (4.42) 式得到

$\begin{align*} {I}'_{2111} &=\sum\limits_{j=1}^{N-1}\sum\limits_{i=j+1}^{N} E\Big\{ P\Big\{X_i^{\,*}\vartheta_i^*(t)\mathbb{I}_{[D_{0,t}^{(1)}> A]}>x/N,Y_j^{\,*}\vartheta_j^*(t)\mathbb{I}_{[D_{0,t}^{(1)}> A]}>y/N \mid \vartheta_j^*(t),\\ &\quad\ \vartheta_i^*(t),D_{0,t}^{(1)}\Big\}\Big\}\\ &=\sum\limits_{j=1}^{N-1}\sum\limits_{i=j+1}^{N} E\left\{ P\left\{X_i^{\,*}\vartheta_i^*(t)\mathbb{I}_{[D_{0,t}^{(1)}> A]}>x/N\mid \vartheta_j^*(t),\vartheta_i^*(t),D_{0,t}^{(1)}\right\} \right.\\ &\quad\left. \cdot P\left\{Y_j^{\,*}\vartheta_j^*(t)\mathbb{I}_{[D_{0,t}^{(1)}> A]}>y/N\mid \vartheta_j^*(t),\vartheta_i^*(t),D_{0,t}^{(1)}\right\}\right\}\\ &\leq C\bar{F}(x)\bar{G}(y)\sum\limits_{j=1}^{N-1}\sum\limits_{i=j+1}^{N} \left\{N^{2\kappa}E\left(\vartheta_i^{*\alpha+\varepsilon}(t)\vartheta_j^{*\beta+\varepsilon}(t)\mathbb{I}_{[D_{0,t}^{(1)}> A]}\right) \right.\\ &\left.\quad +N^{\,\kappa}E\left(\vartheta_i^{*\alpha+\varepsilon}(t)\mathbb{I}_{[D_{0,t}^{(1)}> A]}\right) +N^{\,\kappa}E\left(\vartheta_j^{*\beta+\varepsilon}(t)\mathbb{I}_{[D_{0,t}^{(1)}> A]}\right) +P\left(D_{0,t}^{(1)}> A\right) \right\}\\ &\leq C\varepsilon\bar{F}(x)\bar{G}(y), \quad\text{对足够大的} \; x \; \text{和} \;y. \end{align*}$

类似于 ${I}'_{2111}\leq C\varepsilon\bar{F}(x)\bar{G}(y)$, 由 (4.11), (4.43) 和 (4.44) 式知 ${I}'_{2112}\leq C\varepsilon\bar{F}(x)\bar{G}(y)$ 对足够大的 $x$ 和 $y$ 成立. 故 ${I}'_{211}\leq C\varepsilon\bar{F}(x)\bar{G}(y)$ 对足够大的 $x$ 和 $y$ 成立. 由 Hölder 不等式, (4.20), (4.19), (4.40) 和 (4.43) 式得, 当 $0<l\leq\kappa$ 及 $1\leq n<m\leq N$ 时, $E\big\{\vartheta_m^{*l}(\widetilde{\theta}^*_n,\widetilde{\theta}^*_m;t) \mathbb{I}_{[D_{0,t}^{(1)}> A]}\big\} <\frac{C\varepsilon}{4N^{\,\kappa+2}}$ 且 $E\big\{[\vartheta_m^{*\alpha+\varepsilon}(\widetilde{\theta}^*_m;t)+\vartheta_m^{*\alpha+\varepsilon}(\widetilde{\theta}^*_n, \widetilde{\theta}^*_m;t)]\vartheta_n^{*\beta+\varepsilon}(\widetilde{\theta}^*_n;t)\mathbb{I}_{[D_{0,t}^{(1)}> A]}\big\} <\frac{C\varepsilon}{4N^{\,2\kappa+2}}, $ 于是类似于 ${I}'_{211}\leq C\varepsilon\bar{F}(x)\bar{G}(y)$ 的步骤可以得到 ${I}'_{212}\leq C\varepsilon\bar{F}(x)\bar{G}(y)$ 对足够大的 $x$ 和 $y$ 成立, 故 ${I}'_{21}\leq C\varepsilon\bar{F}(x)\bar{G}(y)$ 对足够大的 $x$ 和 $y$ 成立. 类似于$I'_{21}$, 当 $k=2,3$ 时, ${I}'_{2k}\leq C\varepsilon\bar{F}(x)\bar{G}(y)$ 对足够大的 $x$ 和 $y$ 成立. 于是,

$ {I}'_{2}\leq C\varepsilon\bar{F}(x)\bar{G}(y), \quad\text{对足够大的} \; x \; \text{和} \;y. $

类似于 ${I}'_{2}$,

$ {I}'_{3}\leq C\varepsilon\bar{F}(x)\bar{G}(y),\quad {I}'_{4}\leq C\varepsilon\bar{F}(x)\bar{G}(y), \quad \text{对足够大的} \; x \; \text{和} \;y. $

$I'_k$, $k=1,2,3,4$, 代入 (4.45) 式得到

$ \begin{matrix} \Psi(x,y;t) \geq\ & \bar{F}(x)\bar{G}(y) \left\{ \widetilde{C}_d \int_{0}^{t}E\mathrm{e}^{-(\alpha+\beta)\xi(u)} \mathrm{d}\widehat{\lambda}_{u}^{(3)} \right.\nonumber\\ &\left. +\iint_{u+v\leq t} E\mathrm{e}^{-\beta\xi(u)-\alpha\xi(u+v)} [\mathrm{d}\widehat{\lambda}_{u}^{(5)}\mathrm{d}\lambda_v +\mathrm{d}\widehat{H}_2(u) (\mathrm{d}\widehat{\lambda}_{v}^{(1)}-\mathrm{d}\lambda_v)] \right.\nonumber\\ &\left. +\iint_{u+v\leq t} E\mathrm{e}^{-\alpha\xi(u)-\beta\xi(u+v)} [\mathrm{d}\widehat{\lambda}_{u}^{(4)}\mathrm{d}\lambda_v +\mathrm{d}\widehat{H}_1(u) (\mathrm{d}\widehat{\lambda}_{v}^{(2)} -\mathrm{d}\lambda_v)]\right\} \\ & -C\varepsilon\bar{F}(x)\bar{G}(y). \end{matrix} $

第二步 证明概率 $\Psi(x,y;t)$ 的渐近上界. 对满足(4.33)-(4.36) 式的 $N$ 和满足 (4.37) 式的 $v_1$$v_2$, 有

$\begin{matrix} \Psi(x,y;t)&=P\bigg\{\bigcup_{0<s\leq t}\bigg( \sum\limits_{i=1}^{\infty}X_i\vartheta_i(s) -c_1\int_0^s\mathrm{e}^{-\xi(u)}\mathrm{d}u -\sigma_1\int_0^s\mathrm{e}^{-\xi(u)}\mathrm{d}B_1(u)>x, \nonumber\\ &\quad\ \sum\limits_{j=1}^{\infty}Y_j\vartheta_j(s) -c_2\int_0^s\mathrm{e}^{-\xi(v)}\mathrm{d}v -\sigma_2\int_0^s\mathrm{e}^{-\xi(v)}\mathrm{d}B_2(v)>y \bigg)\bigg\}\nonumber\\ &\leq P\bigg\{ \sum\limits_{i=1}^{\infty}X_i\vartheta_i(t)+\sigma_1D_{0,t}^{(1)}>x, \sum\limits_{j=1}^{\infty}Y_j\vartheta_j(t)+\sigma_2D_{0,t}^{(2)}>y \bigg\}\nonumber\\ &\leq P\bigg\{\sum\limits_{i=1}^{N}X_i\vartheta_i(t)>v_1x, \sum\limits_{j=1}^{N}Y_j\vartheta_j(t)>v_2y\bigg\} \nonumber\\&\quad\ +P\bigg\{ \sum\limits_{i=1}^{N}X_i\vartheta_i(t)>v_1x, \sum\limits_{j=N+1}^{\infty}Y_j\vartheta_j(t)>\frac{1-v_2}{2}y \bigg\}\nonumber\\ & \quad\ +P\bigg\{ \sum\limits_{i=1}^{N}X_i\vartheta_i(t)>v_1x, \sigma_2D_{0,t}^{(2)}>\frac{1-v_2}{2}y\bigg\}\nonumber\\&\quad\ +P\bigg\{ \sum\limits_{i=N+1}^{\infty}X_i\vartheta_i(t)>\frac{1-v_1}{2}x, \sum\limits_{j=1}^{N}Y_j\vartheta_j(t)>v_2y \bigg\}\nonumber\\ & \quad\ +P\bigg\{ \sum\limits_{i=N+1}^{\infty}X_i\vartheta_i(t)>\frac{1-v_1}{2}x, \sum\limits_{j=N+1}^{\infty}Y_j\vartheta_j(t)>\frac{1-v_2}{2}y \bigg\}\nonumber\\& \quad\ +P\bigg\{ \sum\limits_{i=N+1}^{\infty}X_i\vartheta_i(t)>\frac{1-v_1}{2}x, \sigma_2D_{0,t}^{(2)}>\frac{1-v_2}{2}y\bigg\}\nonumber\\&\quad\ +P\bigg\{ \sigma_1D_{0,t}^{(1)}>\frac{1-v_1}{2}x, \sum\limits_{j=1}^{N}Y_j\vartheta_j(t)>v_{2}y\bigg\} \nonumber\\& \quad\ +P\bigg\{ \sigma_1D_{0,t}^{(1)}>\frac{1-v_1}{2}x, \sum\limits_{j=N+1}^{\infty}Y_j\vartheta_j(t)>\frac{1-v_2}{2}y \bigg\}\nonumber\\&\quad\ +P\bigg\{ \sigma_1D_{0,t}^{(1)}>\frac{1-v_1}{2}x, \sigma_2D_{0,t}^{(2)}>\frac{1-v_2}{2}y\bigg\}\nonumber\\ &:=I_1+I_2+I_3+I_4+I_5+I_6+I_7+I_8+I_9. \end{matrix}$

考虑 $I_1$, 由引理 4.4, 引理 4.3 及 (4.37) 式得

$\begin{align*} I_1&\sim\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N}P\left\{X_i\vartheta_i(t)>v_1x,Y_j\vartheta_j(t)>v_2y\right\} \\ & \sim\bar{F}(v_1x)\bar{G}(v_2y) \bigg\{\widetilde{C}_d \sum\limits_{i=1}^{N} E\left(\widehat{\vartheta}^{\alpha+\beta}_{3i}(t)\right) +\sum\limits_{j=1}^{N-1}\sum\limits_{i=j+1}^{N} E\left(\widehat{\vartheta}^{\beta}_{2j}(t)\widehat{\vartheta}^{\alpha}_{5i}(t)\right) \\ &\quad\ +\sum\limits_{i=1}^{N-1}\sum\limits_{j=i+1}^{N} E\left(\widehat{\vartheta}^{\alpha}_{1i}(t)\widehat{\vartheta}^{\beta}_{4j}(t)\right) \bigg\}\\ &\leq (1+\varepsilon)^2\bar{F}(x)\bar{G}(y)\left(I'_{11}+I'_{12}+I'_{13}\right), \quad \text{对足够大的} \; x \; \text{和} \;y, \end{align*}$

其中, $I'_{1k}$, $k=1,2,3$, 由 (4.46) 式引入. 考虑 $I_3$, 在引理 4.2 中取 $\eta_{12}=\eta_{23}=0$, 则

$\begin{align*} I_3 &\leq (1+\eta_{13}b_1b_3)\sum\limits_{i=1}^N P\left(X_i^{\,*}\vartheta_i^*(t)\mathbb{I}_{[\sigma_2D_{0,t}^{(2)}>(1-v_2)y/2]}>v_1x/N\right) \\ &\quad\ + \eta_{13}b_1b_3\sum\limits_{i=1}^N P\left( \widetilde{X}_i^{\,*}\vartheta_i^*(\widetilde{\theta}_i^*;t) \mathbb{I}_{[\sigma_2D_{0,t}^{(2)}>(1-v_2)y/2]}>v_1x/N\right)\\ &:=(1+\eta_{13}b_1b_3)I_{31}+\eta_{13}b_1b_3I_{32}. \end{align*}$

由 (4.5), Hölder 式不等式, Markov 不等式, (4.38), (4.27) 和 (4.3) 式得

$\begin{align*} I_{31}&=\sum\limits_{i=1}^N E\left\{P\left(X_i^{\,*}\vartheta_i^*(t)\mathbb{I}_{[\sigma_2D_{0,t}^{(2)}>(1-v_2)y/2]}>v_1x/N|\vartheta_i^*(t),D_{0,t}^{(2)}\right)\right\}\\ &\leq C\bar{F}(x)\sum\limits_{i=1}^N\left[N^{\alpha+\varepsilon}E\left(\vartheta_i^{*\alpha+\varepsilon}(t)\mathbb{I}_{[\sigma_2D_{0,t}^{(2)}>(1-v_2)y/2]}\right) +E\mathbb{I}_{[\sigma_2D_{0,t}^{(2)}>(1-v_2)y/2]}\right]\\ &\leq C\bar{F}(x)\left\{N^{\alpha+\varepsilon}\sum\limits_{i=1}^N \left(E\vartheta_i^{*\alpha+\beta+2\varepsilon}(t)\right) ^{\frac{\alpha+\varepsilon}{\alpha+\beta+2\varepsilon}} \left(E\mathbb{I}_{[\sigma_2D_{0,t}^{(2)}>(1-v_2)y/2]}\right) ^{\frac{\beta+\varepsilon}{\alpha+\beta+2\varepsilon}} \right.\\ &\quad\ \left. +\sum\limits_{i=1}^NP\left( \sigma_2D_{0,t}^{(2)}>(1-v_2)y/2 \right)\right\}\\ &\leq C\bar{F}(x)y^{-(\beta+\varepsilon)} \bigg[N^{\alpha+\varepsilon}\left(ED_{0,t}^{(2)\alpha+\beta+2\varepsilon}\right) ^{\frac{\beta+\varepsilon}{\alpha+\beta+2\varepsilon}} \sum\limits_{i=1}^N \left(E\vartheta_i^{*\alpha+\beta+2\varepsilon}(t)\right) ^{\frac{\alpha+\varepsilon}{\alpha+\beta+2\varepsilon}} \\ &\quad\, +\sum\limits_{i=1}^N ED_{0,t}^{(2)\beta+\varepsilon} \bigg]\\ &\leq C\bar{F}(x)y^{-(\beta+\varepsilon)} \leq C\varepsilon\bar{F}(x)\bar{G}(y), \quad\text{对足够大的} \; x \; \text{和} \;y. \end{align*}$

类似地, $I_{32}\leq C\varepsilon\bar{F}(x)\bar{G}(y)$ 对足够大的 $x$$y$ 成立. 故

$\begin{align*} I_{3}\leq C\varepsilon\bar{F}(x)\bar{G}(y), \quad\text{对足够大的} \; x \; \text{和} \;y. \end{align*}$

类似于 $I_3\leq C\varepsilon\bar{F}(x)\bar{G}(y)$ 的推导过程, 要证明 $I_{6}\leq C\varepsilon\bar{F}(x)\bar{G}(y)$ 对足够大的$x$$y$ 成立, 只需证明 $\sum\limits_{i=N+1}^{\infty}P\left( X_i^{\,*}\vartheta_i^*(t) \mathbb{I}_{[\sigma_2D_{0,t}^{(2)}>(1-v_2)y/2]} >\frac{(1-v_1)x}{2i^2}\right) \leq C\varepsilon\bar{F}(x)\bar{G}(y)$. 而由 (4.5) 式, Hölder 不等式, Markov 不等式, (4.38), (4.27) 和 (4.3) 式得

$\begin{align*} &\quad\ \sum\limits_{i=N+1}^{\infty}E\left\{ P\left(X_i^*\vartheta_i^*(t) \mathbb{I}_{[\sigma_2D_{0,t}^{(2)}>(1-v_2)y/2]} >\frac{(1-v_1)x}{2i^2} \Big|\vartheta_i^*(t),D_{0,t}^{(2)}\right)\right\}\\ &\leq C\bar{F}(x)\bigg[ \sum\limits_{i=N+1}^{\infty}i^{2(\alpha+\varepsilon)}E\left( \vartheta_i^{*\alpha+\varepsilon}(t) \mathbb{I}_{[\sigma_2D_{0,t}^{(2)}>(1-v_2)y/2]}\right)\\ &\quad\ +\sum\limits_{i=N+1}^{\infty}E\left( \mathbb{I}_{[\vartheta_i^*(t)<1]}\mathbb{I}_{[\sigma_2D_{0,t}^{(2)}>(1-v_2)y/2]}\right) \bigg] \\ &\leq C\bar{F}(x)\bigg\{ \sum\limits_{i=N+1}^{\infty}i^{2(\alpha+\varepsilon)} \left(E\vartheta_i^{*\alpha+\beta+2\varepsilon}(t)\right) ^{\frac{\alpha+\varepsilon}{\alpha+\beta+2\varepsilon}} \left[P(\sigma_2D_{0,t}^{(2)}>\frac{(1-v_2)y}{2})\right] ^{\frac{\beta+\varepsilon}{\alpha+\beta+2\varepsilon}}\\ &\quad\ \cdot \sum\limits_{i=N+1}^{\infty} [P(\vartheta_i^*(t)<1)] ^{\frac{\alpha+\varepsilon}{\alpha+\beta+2\varepsilon}} \left[P(\sigma_2D_{0,t}^{(2)}>\frac{(1-v_2)y}{2})\right] ^{\frac{\beta+\varepsilon}{\alpha+\beta+2\varepsilon}} \bigg\}\\ &\leq C\bar{F}(x)y^{-(\beta+\varepsilon)}\bigg\{\sum\limits_{i=N+1}^{\infty}i^{2(\alpha+\varepsilon)} \left(E\vartheta_i^{*\alpha+\beta+2\varepsilon}(t)\right) ^{\frac{\alpha+\varepsilon}{\alpha+\beta+2\varepsilon}} +\sum\limits_{i=N+1}^{\infty}\left[P(\vartheta_i^*(t)<1)\right] ^{\frac{\alpha+\varepsilon}{\alpha+\beta+2\varepsilon}} \bigg\}\\ &\leq C\varepsilon\bar{F}(x)\bar{G}(y), \quad\text{对足够大的} \; x \; \text{和} \;y, \end{align*}$

其中, 上式的最后一步由下式得到: 当 $q\geq0$, $0<r\leq1$, $0<t\leq T$, 由伽马分布和 (4.13) 式,

$\begin{align*} \sum\limits_{i=1}^{\infty}i^q[P(\vartheta_i^*(t)<1)]^{r} &\leq\bigg(\sum\limits_{i=1}^{\infty}i^{(q+1)/r}P(\vartheta_i^*(t)<1)\bigg)^r \bigg(\sum\limits_{i=1}^{\infty}i^{-1/(1-r)}\bigg)^{1-r}\\ &\leq C\bigg[\sum\limits_{i=1}^{\infty}i^{(q+1)/r}\int_0^tP(\mathrm{e}^{-\xi(s)}<1) P(\tau_i\in \mathrm{d}s)\bigg]^{r} \\ &\leq C\left(t^{[(q+1)/r]+1}\vee1\right)^{r}\left(\int_0^tP(\mathrm{e}^{-\xi(s)}<1)\mathrm{d}s\right)^{r} \leq Ct^{\,r}<\infty. \end{align*}$

类似于 $I_3\leq C\varepsilon\bar{F}(x)\bar{G}(y)$$I_6\leq C\varepsilon\bar{F}(x)\bar{G}(y)$, 分别得到 $I_7\leq C\varepsilon\bar{F}(x)\bar{G}(y)$$I_8\leq C\varepsilon\bar{F}(x)\bar{G}(y)$ 对足够大的 $x$$y$ 成立. 由 (4.5) 和 (4.33) 式, 及定义 2.1 得, 对足够大的 $x$$y$, 有 $ I_k\leq C\varepsilon\bar{F}(x)\bar{G}(y), \ k=2,4,5, $ 考虑 $I_9$, 若扰动系数 $\sigma_1=0$$\sigma_2=0$, 易得 $I_9\leq C\varepsilon \bar{F}(x)\bar{G}(y)$ 对足够大的 $x$$y$ 成立, 故考虑 $\sigma_1\neq0$$\sigma_2\neq0$. 由于 $B_2(t)=\rho B_1(t)+\sqrt{1-\rho^2}B_3(t)$, $I_9$ 可改写为

$\begin{align*} I_9 &=P\bigg\{ \sigma_1D_{0,t}^{(1)}>(1-v_1)x/2,\\ &\quad\ \sigma_2\sup\limits_{0\leq s\leq t}\Big| \rho\int_0^s\mathrm{e}^{-\xi(v)}\mathrm{d}B_1(v) +\sqrt{1-\rho^2}\int_0^s\mathrm{e}^{-\xi(v)}\mathrm{d}B_3(v)\Big| > (1-v_2)y/2\bigg\}\\ & \leq P\left\{ D_{0,t}^{(1)}>(1-v_1)x/(2\sigma_1), |\rho| D_{0,t}^{(1)}>(1-v_2)y/(4\sigma_2)\right\} \\ &\quad\ +P\left\{D_{0,t}^{(1)}>(1-v_1)x/(2\sigma_1), \sqrt{1-\rho^2}D_{0,t}^{(3)}>(1-v_2)y/(4\sigma_2)\right\} :=I_{91}+I_{92}. \end{align*}$

$\rho\in(-1,0)\cup(0,1)$, 则由 Markov 不等式, (4.38) 和 (4.3) 式有

$\begin{align*} I_{91} &=P\left\{D_{0,t}^{(1)}>[(1-v_1)x/(2\sigma_1)]\vee [(1-v_2)y/(4\sigma_2|\rho|)]\right\} \\ &\leq C E\left(D_{0,t}^{(1)\alpha+\beta+2\varepsilon}\right)(x^{\alpha+\beta+2\varepsilon}\vee y^{\alpha+\beta+2\varepsilon})^{-1}\\ &\leq C E\left(D_{0,t}^{(1)\alpha+\beta+2\varepsilon}\right)(x^{\alpha+\varepsilon}y^{\beta+\varepsilon})^{-1} \leq C\varepsilon \bar{F}(x)\bar{G}(y) \end{align*}$

$\begin{align*} I_{92} &\leq Cx^{-(\alpha+\varepsilon)}y^{-(\beta+\varepsilon)}E\left(D_{0,t}^{(1)\alpha+\varepsilon}D_{0,t}^{(3)\beta+\varepsilon}\right) \\ &\leq Cx^{-(\alpha+\varepsilon)}y^{-(\beta+\varepsilon)} \left\{E\left(D_{0,t}^{(1)\alpha+\beta+2\varepsilon}\right)\right\} ^{\frac{\alpha+\varepsilon}{\alpha+\beta+2\varepsilon}} \left\{E\left(D_{0,t}^{(3)\alpha+\beta+2\varepsilon}\right)\right\} ^{\frac{\beta+\varepsilon}{\alpha+\beta+2\varepsilon}} \leq C\varepsilon \bar{F}(x)\bar{G}(y) \end{align*}$

对足够大的 $x$$y$ 成立, 其中, $I_{92}$ 的第二步由 Hölder 不等式得到. 若 $\rho=0$$\pm1$, 则易得

$I_9\leq C\varepsilon \bar{F}(x)\bar{G}(y)$ 对足够大的 $x$$y$ 成立. 故

$\begin{align*} I_9\leq C\varepsilon \bar{F}(x)\bar{G}(y), \quad\text{对足够大的} \; x \; \text{和} \;y. \end{align*}$

$I_k$, $k=1,\cdots,9$, 代入 (4.48) 式得

$ \begin{matrix} \Psi(x,y;t) \leq\ & \bar{F}(x)\bar{G}(y) \left\{ \widetilde{C}_d \int_{0}^{t}E\mathrm{e}^{-(\alpha+\beta)\xi(u)} \mathrm{d}\widehat{\lambda}_{u}^{(3)} \right.\nonumber\\ &\left. +\iint_{u+v\leq t} E\mathrm{e}^{-\beta\xi(u)-\alpha\xi(u+v)} [\mathrm{d}\widehat{\lambda}_{u}^{(5)}\mathrm{d}\lambda_v +\mathrm{d}\widehat{H}_2(u) (\mathrm{d}\widehat{\lambda}_{v}^{(1)} -\mathrm{d}\lambda_v)] \right.\nonumber\\ &\left. +\iint_{u+v\leq t} E\mathrm{e}^{-\alpha\xi(u)-\beta\xi(u+v)} [\mathrm{d}\widehat{\lambda}_{u}^{(4)}\mathrm{d}\lambda_v +\mathrm{d}\widehat{H}_1(u)(\mathrm{d}\widehat{\lambda}_{v}^{(2)} -\mathrm{d}\lambda_v)]\right\} \\ &+C\varepsilon\bar{F}(x)\bar{G}(y). \end{matrix} $

结合 (4.47) 和 (4.49) 式即可得到结果, 定理 (2.1) 得证.

参考文献

Asmussen S, Albrecher H. Ruin Probabilities. New Jersey: World Scientific, 2010

[本文引用: 1]

Bingham N H, Goldie C M, Teugels J L. Regular Variation. Cambridge: Cambridge University Press, 1987

[本文引用: 1]

Chan W S, Yang H L, Zhang L Z.

Some results on ruin probabilities in a two-dimensional risk model

Insurance Math Econom, 2003, 32(3): 345-358

DOI:10.1016/S0167-6687(03)00115-X      URL     [本文引用: 1]

Chen Y, Wang Y B, Wang K Y.

Asymptotic results for ruin probability of a two-dimensional renewal risk model

Stoch Anal Appl, 2013, 31(1): 80-91

DOI:10.1080/07362994.2013.741386      URL     [本文引用: 1]

Cheng D Y, Yu C J.

Uniform asymptotics for the ruin probabilities in a bidimensional renewal risk model with strongly subexponential claims

Stochastics, 2019, 91(5): 643-656

DOI:10.1080/17442508.2018.1539088      URL     [本文引用: 1]

Fu K A, Ng C Y A.

Uniform asymptotics for the ruin probabilities of a two-dimensional renewal risk model with dependent claims and risky investments

Statist Probab Lett, 2017, 125: 227-235

DOI:10.1016/j.spl.2017.02.015      URL     [本文引用: 1]

Fu K A, Yu C L.

On a two-dimensional risk model with time-dependent claim sizes and risky investments

J Comput Appl Math, 2018, 344: 367-380

DOI:10.1016/j.cam.2018.05.043      URL     [本文引用: 1]

Gaier J, Grandits P.

Ruin probabilities in the presence of regularly varying tails and optimal investment

Insurance Math Econom, 2002, 30(2): 211-217

DOI:10.1016/S0167-6687(02)00101-4      URL     [本文引用: 1]

Gao Q W, Yang X Z.

Asymptotic ruin probabilities in a generalized bidimensional risk model perturbed by diffusion with constant force of interest

J Math Anal Appl, 2014, 419(2): 1193-1213

DOI:10.1016/j.jmaa.2014.05.069      URL     [本文引用: 1]

Guo F L, Wang D C.

Uniform asymptotic estimates for ruin probabilities of renewal risk models with exponential Levy process investment returns and dependent claims

Appl Stochastic Models Bus Ind, 2013, 29(3): 295-313

DOI:10.1002/asmb.v29.3      URL     [本文引用: 1]

Guo F L, Wang D C.

Tail asymptotic for discounted aggregate claims with one-sided linear dependence and general investment return

Sci China Math, 2019, 62(4): 735-750

DOI:10.1007/s11425-017-9167-0      [本文引用: 1]

Guo F L, Wang D C, Yang H L.

Asymptotic results for ruin probability in a two-dimensional risk model with stochastic investment returns

J Comput Appl Math, 2017, 325: 198-221

DOI:10.1016/j.cam.2017.04.049      URL     [本文引用: 1]

Guo F L, Wang D C.

Finite-and infinite-time ruin probabilities with general stochastic investment return processes and bivariate upper tail independent and heavy-tailed claims

Adv Appl Probab, 2013, 45(1): 241-273

DOI:10.1239/aap/1363354110      URL     [本文引用: 1]

In this paper we investigate the asymptotic behaviors of the finite- and infinite-time ruin probabilities for a Poisson risk model with stochastic investment returns which constitute a general adapted càdlàg process and heavy-tailed claim sizes which are bivariate upper tail independent. The results of this paper show that the asymptotic ruin probabilities are dominated by the extreme of insurance risk but not by that of investment risk. As applications of the results, we discuss four special cases when the investment returns are determined by a fractional Brownian motion, an integrated Vasicek model, an integrated Cox–Ingersoll–Ross model, and the Heston model.

Heston S L.

A closed-form solution for options with stochastic volatility with applications to bond and currency options

Rev Financ Stud, 1993, 6(2): 327-343

DOI:10.1093/rfs/6.2.327      URL     [本文引用: 1]

Heyde C C, Wang D C.

Finite-time ruin probability with an exponential Lévy process investment return and heavy-tailed claims

Adv Appl Probab, 2009, 41(1): 206-224

DOI:10.1239/aap/1240319582      URL     [本文引用: 1]

By expressing the discounted net loss process as a randomly weighted sum, we investigate the finite-time ruin probabilities for the Poisson risk model with an exponential Lévy process investment return and heavy-tailed claims. It is found that in finite time, however, the extreme of insurance risk dominates the extreme of financial risk, but, for the case of dangerous investment (see Klüppelberg and Kostadinova (2008) for an accurate definition of dangerous investment), the extreme of financial risk has more and more of an effect on the total risk, and as time passes, the extreme of financial risk finally dominates the extreme of insurance risk.

Hu Z C, Jiang B.

On joint ruin probabilities of a two-dimensional risk model with constant interest rate

J Appl Probab, 2013, 50(2): 309-322

DOI:10.1239/jap/1371648943      URL     [本文引用: 1]

In this note we consider the two-dimensional risk model introduced in Avram, Palmowski and Pistorius (2008) with constant interest rate. We derive the integral-differential equations of the Laplace transforms, and asymptotic expressions for the finite-time ruin probabilities with respect to the joint ruin times Tmax(u1,u2) and Tmin(u1,u2) respectively.

Jiang T, Wang Y B, Chen Y, et al.

Uniform asymptotic estimate for finite-time ruin probabilities of a time-dependent bidimensional renewal model

Insurance Math Econom, 2015, 64: 45-53

DOI:10.1016/j.insmatheco.2015.04.006      URL     [本文引用: 1]

Li J Z.

A revisit to asymptotic ruin probabilities for a bidimensional renewal risk model

Statist Probab Lett, 2018, 140: 23-32

DOI:10.1016/j.spl.2018.04.003      URL     [本文引用: 1]

Liu R F, Wang D C.

The ruin probabilities of a discrete-time risk model with dependent insurance and financial risks

J Math Anal Appl, 2016, 444(1): 80-94

DOI:10.1016/j.jmaa.2016.05.047      URL     [本文引用: 1]

Lu D W, Zhang B.

Some asymptotic results of the ruin probabilities in a two-dimensional renewal risk model with some strongly subexponential claims

Statist Probab Lett, 2016, 114: 20-29

DOI:10.1016/j.spl.2016.03.005      URL     [本文引用: 1]

Ming R X, He X X, Hu Y J, et al.

Uniform estimate on finite time ruin probabilities with random interest rate

Acta Math Sci, 2010, 30B(3): 688-700

[本文引用: 1]

Shreve S E. Stochastic Calculus for Finance II:Continuous-Time Models. New York: Springer Science and Business Media, 2004

[本文引用: 3]

Tang Q H.

Asymptotic ruin probabilities of the renewal model with constant interest force and regular variation

Scand Actuar J, 2005, 1: 1-5

[本文引用: 1]

Tang Q H, Wang G J, Yuen K C.

Uniform tail asymptotics for the stochastic present value of aggregate claims in the renewal risk model

Insurance Math Econom, 2010, 46: 362-370

DOI:10.1016/j.insmatheco.2009.12.002      URL     [本文引用: 1]

Yang H Z, Li J Z.

Asymptotic ruin probabilities for a bidimensional renewal risk model

Stochastics, 2017, 89(5): 687-708

DOI:10.1080/17442508.2016.1276909      URL     [本文引用: 1]

Yang Y, Wang Y B.

Tail behavior of the product of two dependent random variables with applications to risk theory

Extremes, 2012, 16(1) 55-74

DOI:10.1007/s10687-012-0153-2      URL     [本文引用: 1]

Yuen K C, Guo J Y, Wu X Y.

On the first time of ruin in the bivariate compound Poisson model

Insurance Math Econom, 2006, 38(2): 298-308

DOI:10.1016/j.insmatheco.2005.08.011      URL     [本文引用: 1]

/