Hilbert空间中的算子非紧性测度
Measure of Non-Compactness of Operators in Hilbert Space
通讯作者:
收稿日期: 2022-06-9 修回日期: 2023-02-13
基金资助: |
|
Received: 2022-06-9 Revised: 2023-02-13
Fund supported: |
|
作者简介 About authors
孙俊俊,E-mail:
该文利用经典的Hausdorff非紧性测度理论研究了Banach空间中(特殊地, Hilbert 空间中)的算子非紧性测度. 具体地, 先给出Banach空间中算子非紧性测度的表示问题, 及其在全空间与子空间上的限制测度的等价问题; 最后研究了Hilbert 空间之间的有界算子序列的几个半范数相互等价的关系性质, 特别地, 其中包括了一种由Hausdorff测度生成的算子半范数.
关键词:
In this paper, by using the classical Hausdorff measure of noncompactess theory, we study the measure of noncompactness of operators in Banach spaces (especially in Hilbert spaces); Specifically, we first give the representation of measure of noncompactness of operators in Banach spaces, and the equivalence of restricted measures in the whole space and subspaces; Finally, we study the equivalent properties of several semi-norms of bounded operator sequences between Hilbert spaces, especially including a kind of operator semi norm generated by Hausdorff measure of noncompactness.
Keywords:
本文引用格式
沈钦锐, 孙俊俊.
Shen Qinrui, Sun Junjun.
1 引言
非紧性测度最早是在1930年由K.Kuratowski[1]提出来的, 后来称为集合非紧性测度或 Kuratowski 非紧性测度(记为
令diam
a)
b)
c)
d)
进一步, 当
e)
f)
g)
h)
此外,
1957年, Goldenstein, Gohberg 和 Markus[2]引入Hausdorf{f}非紧性测度
等价于:
等价于:
下面给出Hausdorff算子非紧性测度的定义.
定义 1.1 设
设
记
易知
用
对于有界算子序列
用
2 主要结果
定理 2.1
证 设
定理 2.2 设
证 由
另一方面, 设
这里
于是
从而
设
定理 2.3 设
(1)对任意有界集
(2)当
其中
(3)设
证 (1) 由
令
故
另一方面, 对子空间
因此
(2)由结论(1)可得
另一方面, 由
由于
对包含
(3)假设
由结论(1)可知
定理 2.4 设
证 显然有
定理 2.5 设
特别地, 对
证 (1)当
(2)当
记
则
令
取
照此办法, 便可得到一子列
由于
则
进而
因此
由
特别地, 对
证毕.
参考文献
Sur les espaces complets
DOI:10.4064/fm-15-1-301-309 URL [本文引用: 1]
Investigation of some propertied of bounded linear operators in connection with their
On a measure of noncompactness of bounded sets and linear operators
Thickness of sets in metric spaces and its applications to the fixed point theory. Habilit
[M].
On the essential norms of Toeplitz operators with continuous symbols
DOI:10.1016/j.jfa.2020.108835 URL [本文引用: 1]
A viewpoint to measure of non-compactness of operators in Banach spaces
Integrable solutions for Gripenberg-Type equations with
DOI:10.3390/math10020221
URL
[本文引用: 1]
Let {r(n)}n≥0 be the Rudin-Shapiro sequence, and let ρ(n):=max{∑j=ii+n−1r(j)∣i≥0}+1 be the abelian complexity function of the Rudin-Shapiro sequence. In this note, we show that the function ρ(n) has many similarities with the classical summatory function Sr(n):=∑i=0nr(i). In particular, we prove that for every positive integer n, 3≤ρ(n)n≤3. Moreover, the point set {ρ(n)n:n≥1} is dense in [3,3].
Controllability of nonlocal impulsive differential equations with measure of noncompactness
On the measure of noncompactness of linear operators in spaces of strongly
DOI:10.1007/s10998-007-4129-4 URL [本文引用: 1]
Measure of noncompactness of operators and matrices on the spaces c and c0
Measure of noncompactness of operators and matrices on the spaces c and c0
/
〈 |
|
〉 |
