数学物理学报, 2023, 43(3): 733-742

高阶线性微分方程解的完全正规增长性

陈丽, 刘慧芳,*

江西师范大学数学与统计学院 南昌 330022

The Completely Regular Growth of Solutions of Higher Order Linear Differential Equations

Chen Li, Liu Huifang,*

School of Mathematics and Statistics, Jiangxi Normal University, Nanchang 330022

通讯作者: *刘慧芳,E-mail: liuhuifang73@sina.com

收稿日期: 2022-08-8   修回日期: 2022-11-18  

基金资助: 国家自然科学基金(12261044)
国家自然科学基金(11661044)
江西省教育厅科技项目(GJJ210302)

Received: 2022-08-8   Revised: 2022-11-18  

Fund supported: NSFC(12261044)
NSFC(11661044)
STP of Education Department of Jiangxi Province(GJJ210302)

摘要

研究高阶线性微分方程完全正规增长性解的存在性, 其中方程的控制系数为指数多项式. 运用指数多项式的Nevanlinna特征, 得到方程不存在完全正规增长性解的判定条件. 同时, 对具有指数多项式解的高阶线性微分方程, 给出了方程解的表示形式与控制系数之间的关系.

关键词: 线性微分方程; 完全正规增长性; 指数多项式; 整函数

Abstract

In this paper, the existence of completely regular growth solutions of higher order linear differential equations is studied, where its dominant coefficient is an exponential polynomial. By using the Nevanlinna characteristic of exponential polynomials, some conditions which guarantee the non-existence of such solutions are obtained. At the same time, for the higher order linear differential equation with exponential polynomial solutions, the relationship between the expression of its solutions and dominant coefficient is given.

Keywords: Linear differential equation; Completely regular growth; Exponential polynomial; Entire function

PDF (349KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陈丽, 刘慧芳. 高阶线性微分方程解的完全正规增长性[J]. 数学物理学报, 2023, 43(3): 733-742

Chen Li, Liu Huifang. The Completely Regular Growth of Solutions of Higher Order Linear Differential Equations[J]. Acta Mathematica Scientia, 2023, 43(3): 733-742

1 引言及主要结果

本文采用Nevanlinna理论的标准记号和基本结果[1-3], 用$\rho(f), \lambda(f)$分别表示亚纯函数$f(z)$的级和零点收敛指数. 设$f(z)$为整函数满足$\rho(f)\in(0, +\infty)$, 定义$f(z)$的Phragmén-Lindelöf指示函数为

$h_f(\theta)=\limsup\limits_{r\rightarrow\infty}\frac{\log|f(r{\rm e}^{{\rm i}\theta})|}{r^{\rho(f)}},~~\theta\in(-\pi,\pi].$

若存在上密度为零的集合$H$, 使得对任意的$\theta\in(-\pi,\pi]$, 有

$h_f(\theta)=\lim\limits_{{r\rightarrow\infty\atop r\not\in H}}\frac{\log|f(r{\rm e}^{{\rm i}\theta})|}{r^{\rho(f)}},$

则称$f(z)$是完全正规增长的整函数[4].

解的增长性是复微分方程的一个重要研究内容. 考虑线性微分方程

$f^{(n)}+A_{n-1}(z)f^{(n-1)}+\cdots+A_1(z)f'+A_0(z)f=0,(1.1)$

其中$n\geq 2$为整数, $A_0(z), A_1(z), \cdots, A_{n-1}(z)$为有限级整函数, Wittich[3]证明了当且仅当$A_j(z)(j=0, \cdots, n-1)$为多项式时, 方程(1.1)的所有解都为有限级; 当$\max\limits_{j\neq 0}\rho(A_j)<\rho(A_0)$时, 陈宗煊和杨重骏[5]证明了方程(1.1)的每一个非零解为无穷级; 而当$\max\limits_{j\neq 0}\rho(A_j)\geq\rho(A_0)$时, 方程(1.1)可能存在有限级解, 例如: 方程$f''+(e^z+1)f'-e^zf=0$$f'''-{\rm e}^{z^2}f''+({\rm e}^{z^2}+2{\rm e}^{-z})f'-f=0$都存在有限级解$f(z)=e^z+2$, 但如果对系数$A_j(z)~(j=0, \cdots, n-1)$再增加适当的限制条件, 比如系数的值分布性质(见文献[6-9]等), 方程(1.1)的每一个非零解就具有无穷级. 本文的目的是在 $\max\limits_{j\neq 0}\rho(A_j)\geq\rho(A_0)$条件下, 结合系数的径向增长性, 研究方程(1.1)的完全正规增长性解的存在性, 以及方程(1.1)的指数多项式解的表示形式, 这与Gol'dberg-Ostrovskii-Petrenko[10]提出的下述问题有关:

${\bf GOP问题}$[10] 当方程(1.1)的系数为完全正规增长的整函数时, 其有限级超越解$f(z)$是否具有完全正规增长性?

关于此问题, Heittokangas, Laine, Tohge等[11]指出: 在完全正规增长的整函数中, 指数多项式是一类重要的整函数, 并得到下述结果.

${\bf 定理A}$[11]$A_1(z)$为指数多项式, $A_0(z)$为整函数满足$0<\rho(A_0)<\rho(A_1)$, 若集合$E=\{\theta\in(-\pi,\pi]:h_{A_1}(\theta)h_{A_0}(\theta)=0\}$的线测度为零, 则方程

$f''+A_1(z)f'+A_0(z)f=0(1.2)$

的所有非零解为无穷级.

这里所说的指数多项式是指形如

$g(z)=P_1(z){\rm e}^{Q_1(z)}+P_2(z){\rm e}^{Q_2(z)}+\dots+P_s(z){\rm e}^{Q_s(z)}(1.3)$

的整函数, 其中$P_j(z), Q_j(z)(j=1,\cdots, s)$为多项式, 满足$q=\max\limits_{1\leq j\leq s}\{\deg Q_j\}\geq 1$,通常称$g(z)$$q$次指数多项式.由(1.3)可得$g(z)$的正规化形式为

$g(z)=H_0(z)+H_1(z){\rm e}^{\omega_1z^q}+\dots+H_m(z){\rm e}^{\omega_mz^q},(1.4)$

其中$1\leq m\leq s,\omega_1,\dots,\omega_m$为相互判别的非零复数, $H_0(z),\cdots, H_m(z)$为次数$\leq q-1$的指数多项式或$z$的多项式, 满足$H_j(z)\not\equiv0\ (j=1,\cdots,m)$. (1.4)中的非零复数$\omega_1, \cdots, \omega_m$ 称为指数多项式$g(z)$的频率.

定理A表明虽然方程(1.2)的系数为完全正规增长的整函数, 但其解不一定具有完全正规增长性. 自然地, 我们会考虑当方程(1.1)存在某一系数为指数多项式且具有最大增长级时, 其完全正规增长性解的存在性, 得到下述结果.

${\bf定理1.1}$$A_0(z), \cdots, A_{n-1}(z)$为整函数, 且对某个$\mu\in\{1, \cdots, n-1\}$, $A_{\mu}(z)$为指数多项式满足$\rho(A_\mu)=\max\limits_{0\leq j\leq n-1}\{\rho(A_j)\}$.$\Lambda=\{j:\rho(A_j)=\rho(A_\mu), 0\leq j\leq n-1\}$, $|\Lambda|$表示集合$\Lambda$的元素个数. 若下列条件之一成立

(i)当$|\Lambda|<n$时, 对任意的$\theta\in(-\pi,\pi]\backslash E$, $h_{A_\mu}(\theta)>\max\limits_{j\in \Lambda-\{\mu\}}\{0,h_{A_j}(\theta)\}$,

(ii)当$|\Lambda|=n$时, 对任意的$\theta\in(-\pi,\pi]\backslash E$, $h_{A_\mu}(\theta)>\max\limits_{j\neq\mu}\{h_{A_j}(\theta)\}$,

其中$E$是线测度为零的集合, 则方程(1.1)的每一个超越解必为无穷级.

${\bf 注1.1}$$|\Lambda|<n$时, 若缺少条件(i), 定理1.1的结论可能不成立, 见例1.1.

${\bf例1.1}$ 方程$f'''-{\rm e}^{z^2}f''+({\rm e}^{z^2}+e^z)f'-e^zf=0$存在有限级解$f(z)=e^z+1$. 这里$A_2(z)=-{\rm e}^{z^2}, A_1(z)={\rm e}^{z^2}+e^z, A_0(z)=-e^z$为指数多项式, 满足$\rho(A_2)=\rho(A_1)=2>\rho(A_0)$, 但当$\theta\in(-\pi/4, \pi/4)$时, $h_{A_2}(\theta)=h_{A_1}(\theta)=\cos2\theta$, 不满足定理1.1中的条件(i).

${\bf 注1.2}$$|\Lambda|=n$时, 若缺少条件(ii), 定理1.1的结论可能不成立, 见例1.2.

${\bf 例1.2}$ 方程$f''+(e^z+1)f'-e^zf=0$存在有限级解$f(z)=e^z+2$. 这里$A_1(z)=e^z+1, $$A_0(z)=-e^z$为指数多项式, 满足$\rho(A_1)=\rho(A_0)=1$, 但当$\theta\in(-\pi/2, \pi/2)$时, $h_{A_1}(\theta)=h_{A_0}(\theta)=\cos\theta$, 不满足定理1.1中的条件(ii).

${\bf 注1.3}$ 定理1.1给出了方程(1.1)的超越解为无穷级的一个判定条件. 将定理1.1和指数多项式的下述性质运用于某些线性微分方程, 就容易判断其无穷级解的存在性, 如例1.3.

${\bf性质}$[11] 指数多项式$g(z)$的Phragmén-Lindelöf~指示函数为

$h_g(\theta)=\left\{ \begin{array}{ll} \max\limits_{1\leq j\leq m}\Re\{\omega_j{\rm e}^{{\rm i}q\theta}\}, & H_0(z)\equiv 0,\\ \max\limits_{1\leq j\leq m}\Re\{0, \omega_j{\rm e}^{{\rm i}q\theta}\}, & H_0(z)\not\equiv 0. \end{array}\right.$

${\bf 例1.3}$$P_j(z)(j=1, \cdots, 4)$为非零多项式, $Q_j(z)=b_{jq}z^q+\cdots+b_{j0}$$q(\geq 1)$次多项式, 满足$b_{2q}=\gamma_2b_{1q}, b_{3q}=\gamma_3b_{1q}, b_{4q}=\gamma_4b_{1q}$, $A_0(z)$为非零整函数满足$\rho(A_0)\neq q$, 则

(i)当$\gamma_2\gamma_3<0$$\gamma_2\neq 1, \gamma_3\neq1$时, 方程

$f''+(P_1(z){\rm e}^{Q_1(z)}+P_2(z){\rm e}^{Q_2(z)}+P_3(z){\rm e}^{Q_3(z)})f'+A_0(z)f=0$

的每一个非零解都为无穷级.

(ii)当$\gamma_2<0, 0<\gamma_3<1, 0<\gamma_4<1$时, 方程

$f'''+P_4(z){\rm e}^{Q_4(z)}f''+(P_1(z){\rm e}^{Q_1(z)}+P_2(z){\rm e}^{Q_2(z)})f'+P_3(z){\rm e}^{Q_3(z)}f=0$

的每一个非零解都为无穷级.

接下来, 我们讨论方程(1.1)的指数多项式解与方程系数之间的关系. Wen, Gundersen和Heittokangas[12]研究了方程(1.1)的系数都为指数多项式的情形, 得到

${\bf定理B}$[12]$A_0(z), \cdots, A_{n-1}(z)$为指数多项式, 满足对某个$\mu\in\{1, \cdots, n-1\}$, $\rho(A_\mu)>\rho(A_j)$$(j\neq \mu)$. 又设$f(z)$为方程(1.1)的指数多项式解, 则

(i) $f(z)$$A_\mu(z)$为对偶指数多项式, 且$f(z)$的正规化形式为

$f(z)=S(z)+F_1(z){\rm e}^{\omega_1z^q}+\cdots+F_m(z){\rm e}^{\omega_mz^q},$

其中$S(z)$为次数$\leq\mu-1$的非零多项式.

(ii) 若$\rho(A_\mu f^{(\mu)})<\rho(A_\mu)$, $A_j(z)(j\neq\mu)$为多项式, 则

$f(z)=S(z)+Q(z){\rm e}^{P(z)},\quad A_\mu(z)=R(z){\rm e}^{-P(z)},$

其中$P(z), Q(z), R(z)$为非零多项式, 满足$\deg(P)=\rho(A_\mu)$.

这里称两个指数多项式$g(z)$$\phi(z)$为对偶的, 是指当$g(z)$的频率位于某一射线 $\arg z=\theta$ 上时, $\phi(z)$的频率位于射线$\arg z=\theta+\pi$上, 且$\rho(g)=\rho(\phi)$ (见文献[12]).

近来, 文献[13]的作者针对二阶线性微分方程(1.2), 改进了定理B的条件, 得到下述结果.

${\bf定理C}$[13]$A_1(z)$为指数多项式, $A_0(z)$为整函数满足$T(r, A_0)=o(T(r, A_1))$. 又设$f(z)$为方程(1.2)的指数多项式解, 则

(i) $f(z)$$A_1(z)$为对偶指数多项式, 且$f(z)$的正规化形式为

$f(z)=C+F_1(z){\rm e}^{\omega_1z^q}+\cdots+F_m(z){\rm e}^{\omega_mz^q}, $

其中$C$为非零常数.

(ii) 若$\rho(A_1f')<\rho(A_1)$, 则

$A_1(z)=a{\rm e}^{-\omega_1 z},~ A_0(z)=-\omega_1^2, ~f(z)=C\left(1+\frac{\omega_1}{a}{\rm e}^{\omega_1 z}\right),$

其中$a$为非零常数.

受定理C的启发, 我们对定理B进行完善, 考虑去掉"$A_j(z)(j\neq\mu)$为指数多项式''这一限定条件, 得到下述结果.

${\bf 定理1.2}$$A_0(z), \cdots, A_{n-1}(z)$为整函数, 满足对某个$\mu\in\{1, \cdots, n-1\}$, $A_{\mu}(z)$为指数多项式, $T(r, A_j)=S(r, A_{\mu})~(j\neq \mu)$. 又设$f(z)$为方程(1.1)的指数多项式解, 则

(i) $f(z)$$A_{\mu}(z)$为对偶指数多项式, 且$f(z)$的正规化形式为

$f(z)=S(z)+H_1(z){\rm e}^{\omega_1z^q}+\dots+H_m(z){\rm e}^{\omega_mz^q},$

其中$S(z)(\not\equiv 0)$为次数$\leq\mu-1$的多项式.

(ii) 若$\rho(A_\mu f^{(\mu)})<\rho(A_\mu)$, 则

$f(z)=S(z)+H_1(z){\rm e}^{\omega_1z^q}, \quad A_\mu(z)=R(z){\rm e}^{-\omega_1z^q},$

其中$S(z)(\not\equiv 0)$为次数$\leq\mu-1$的多项式, $R(z)(\not\equiv 0)$为次数$\leq q-1$的指数多项式. 这里$S(r, A_{\mu})=o(T(r, A_{\mu}))~(r\rightarrow\infty, r\not\in E_0), E_0$是线测度有限的集合.

定理1.2虽然证明了方程(1.1)的指数多项式解$f(z)$$A_\mu(z)$为对偶的, 但$f(z)$中相加项的个数, 即$m$的值取决于方程的具体表示形式, 见例1.4; 例1.5和例1.6给出了$A_\mu(z)$在不同位置时, 方程(1.1)存在与$A_\mu(z)$对偶的指数多项式解$f(z)$.

${\bf例1.4}$[13]$f(z)=1+c_1e^z+\cdots+c_m{\rm e}^{mz}$满足方程$f''+{\rm e}^{-z}f'-m^2f=0$, 其中$m$为正整数, $c_j=\frac{1}{j!}\prod\limits_{k=0}^{j-1}(m^2-k^2)~(1\leq j\leq m)$.

${\bf例1.5}$$f(z)={\rm e}^{z^2}+1$满足方程$f'''-2zf''+(2{\rm e}^{-z^2}-2)f'-4zf=0$.

${\bf 例1.6}$$f(z)=e^z+1$满足方程$f^{(4)}-(B(z)+z+1)f'''+(z{\rm e}^{-z}+2z)f''+B(z)f'-zf=0$, 其中$B(z)$为超越整函数满足$T(r, B)=S(r, e^z)$.

2 引理

$g(z)$$q$次指数多项式, 其正规化形式为(1.4)式, 记

$W_g=\left\{ \begin{array}{ll} \{\overline{\omega_1},\cdots, \overline{\omega_m}\}, & H_0(z)\equiv 0,\\ \{0, \overline{\omega_1},\cdots, \overline{\omega_m}\}, & H_0(z)\not\equiv 0; \end{array}\right.$

$W^0_g=W_g\bigcup\{0\}$, $co(W^0_g)$表示集合$W^0_g$的凸包. 由凸包的性质可知: 当$W^0_g$为有限集时, $co(W^0_g)$为凸多边形或直线段. 我们用$C(co(W^0_g))$表示凸包$co(W^0_g)$的周长, 特别地, 当凸包$co(W^0_g)$为直线段时, $C(co(W^0_g))$为该直线段长度的两倍.

为了证明本文的结果, 我们需要下述指数多项式的性质.

${\bf引理 2.1}$[14]$g(z)$为形如(1.4)式的$q$次指数多项式, 则

$T(r,g)=C(co(W^0_g))\cdot\frac {r^q}{2\pi}+o(r^q).$

$H_0(z)\equiv 0$, 则

$N\left(r, \frac{1}{g}\right)=C(co(W_g))\cdot\frac {r^q}{2\pi}+o(r^q).$

${\bf 引理 2.2}$[15]$f(z), g(z)$均为$q$次指数多项式, $\psi(z)=g(z)/f(z)$, 则

$m(r,\psi)=\left(C(co(W_\psi))-C(co(W_f))\right)\cdot\frac{r^q}{2\pi}+o(r^q),$

其中$W_\psi=W_g\bigcup W_f$.

${\bf 引理2.3}$[16]$f_j(z), g_j(z)(j=1,\cdots,n)~(n\geq2)$为两组整函数, 满足

(1) $\sum\limits_{j=1}^{n}f_j(z){\rm e}^{g_j(z)}\equiv 0$;

(2) 当$1\leq j\leq n,1\leq t<k\leq n$时, $f_j(z)$的级小于${\rm e}^{g_t(z)-g_k(z)}$的级.

$f_j(z)\equiv 0~~(j=1,\cdots,n)$.

${\bf 引理 2.4}$[17]$f(z)$为有限级超越亚纯函数, 则对任意给定的$\varepsilon>0$,有

(i) 存在线测度为零的集合$E\subset[0,2\pi)$, 使得如果$\theta_0\in[0,2\pi)\setminus E$, 则存在常数$R_0=R_0(\theta_0)>1$, 对满足$\arg z=\theta_0$$|z|=r\geq R_0$的所有$z$, 有

$\left|\frac{f^{(k)}(z)}{f^{(j)}(z)}\right|\leq |z|^{(k-j)(\rho(f)-1+\varepsilon)}~~(k>j).$

(ii)存在对数测度有限的集合$F\subset(1,+\infty)$, 使得对满足$|z|=r\not\in F\bigcup[0,1]$的所有$z$, 上式成立.

${\bf 引理 2.5}$[7]~~设$f(z)$为整函数, 如果$|f^{(k)}(z)|$在某条射线$\arg z=\theta$上无界, 则存在一无穷点列$z_l=r_l{\rm e}^{{\rm i}\theta}(l=1,2,\dots)$, 使得当$r_l\rightarrow\infty$时, 有$f^{(k)}(z_l)\rightarrow\infty$, 且

$\left|\frac{f^{(j)}(z_l)}{f^{(k)}(z_l)}\right|\leq|z_l|^{(k-j)}(1+o(1)), (j=0,\dots,k-1).$

${\bf 引理 2.6}$[18]~~设$f(z)$在区域

$D=\{z:\alpha<\arg z<\beta,r_0<|z|<\infty\}$

内解析, 并连续到边界$C$上. 如果对任意给定的$\epsilon>0$, 存在$r_1(\epsilon)>0$, 使得在$D$内当$|z|\geq r_1(\epsilon)$时,有

$|f(z)|<\exp\{\epsilon|z|^{\frac{\pi}{\beta-\alpha}}\},$

且在$C$上有$|f(z)|\leq M$, 则在$D$内有$|f(z)|\leq M$, 等号仅当$f(z)$为常数时成立.

3 定理的证明

${\bf 定理1.1的证明}$ 由复域微分方程基本理论和方程的系数为整函数可知: 方程(1.1)的每一个解都为整函数. 下面我们用反证法导出矛盾.

假设$f(z)$为方程(1.1)的有限级超越解, 由引理2.4知: 存在常数$M_1\geq 0$和线测度为零的集合$E_1$, 使得若$\theta\in{(-\pi,\pi]\backslash E_1}$, 则存在$R_1=R_1(\theta)>1$, 当$z$满足$\arg z=\theta$$|z|=r\geq R_1$时, 有

$\left|\frac{f^{(j)}(z)}{f^{(\mu)}(z)}\right|\leq r^{M_1}~~(\mu<j\leq n).(3.1)$

$\rho(A_\mu)=\rho$, 当$|\Lambda|<n$时, 取实数$\beta$满足$\max\limits_{j\not\in\Lambda}\{\rho(A_j)\}<\beta<\rho$, 由级的定义得: 存在$R_2>0$, 使得当$|z|=r>R_2$时, 对所有的$j\not\in\Lambda$, 有

$|A_j(z)|\leq\exp\{r^{\beta}\}.(3.2)$

另一方面, 由于$A_\mu(z)$为指数多项式, 所以由文献[15,p.462]得: 对任意的$\theta\in(-\pi,\pi]$, 有

$h_{A_\mu}(\theta)=\lim_{r\rightarrow\infty}\frac{\log|A_\mu(r{\rm e}^{{\rm i}\theta})|}{r^\rho},$

至多除去有限个例外的$\theta$. 记这些例外的$\theta$组成的集合为$E_2$, 于是, 当$\theta\in(-\pi,\pi]\backslash E_2$时, 对任意给定的$\epsilon>0$, 存在$R_3=R_3(\theta)>0$, 当$|z|=r>R_3$时,有

$\left|A_{\mu}(r{\rm e}^{{\rm i}\theta})\right|\geq \exp\{(h_{A_\mu}(\theta)-\epsilon)r^{\rho}.(3.3)$

任取$\theta\in(-\pi,\pi]\backslash E_3$, 其中$E_3=E_1\bigcup E_2\bigcup E$, $E$如定理1.1所设, 我们断言$|f^{(\mu)}(r{\rm e}^{{\rm i}\theta})|$在射线$\arg z=\theta$上有界. 若不然, 则由引理2.5知: 存在无穷点列$z_l=r_l{\rm e}^{{\rm i}{\theta}}~(r_l\rightarrow\infty)$, 使得$|f^{(\mu)}(z_l)|\rightarrow\infty$, 且

$\left|\frac{f^{(k)}(z_l)}{f^{(\mu)}(z_l)}\right|\leq |z_l|^{\mu-k}(1+o(1)),~(0\leq k\leq \mu-1).(3.4)$

$\delta(\theta)=\max\limits_{j\in \Lambda-\{\mu\}}\{h_{A_j}(\theta)\}$($|\Lambda|=1$时, 令$\delta(\theta)=0$), 取$0<\epsilon<\min\{\frac{h_{A_{\mu}}(\theta)}{3}, \frac{h_{A_{\mu}}(\theta)-\delta(\theta)}{3}\}$, 由方程(1.1)和(3.1)-(3.4)式得: 存在$M_2>0$, 使得对充分大的$r_l$, 有

(i) 当$|\Lambda|<n$时,有

$\begin{eqnarray*} \exp\{(h_{A_\mu}(\theta)-\epsilon)r_l^{\rho}\}\leq |A_\mu(r_l{\rm e}^{{\rm i}\theta})|&\leq& {r_l^{M_2}\left(\sum\limits_{j\in \Lambda-\{\mu\}}|A_j(r_l{\rm e}^{{\rm i}\theta})|+\sum\limits_{j\notin \Lambda}|A_j(r{\rm e}^{{\rm i}\theta})|\right)}\\ &\leq &r_l^{M_2}\left(\exp\{(\delta(\theta)+\epsilon)r_l^{\rho}\}+\exp r^{\beta}\right), \end{eqnarray*}$

$(1-o(1))\exp\left\{(h_{A_{\mu}}(\theta)-\epsilon)r_l^{\rho}\right\}\leq r_l^{M_2}\exp\{(\delta(\theta)+\epsilon)r_l^{\rho}\};(3.5)$

(ii) 当$|\Lambda|=n$时,有

$\exp\left\{(h_{A_{\mu}}(\theta)-\epsilon)r_l^{\rho}\right\}\leq|A_\mu(r_l{\rm e}^{{\rm i}\theta})|\leq r_l^{M_2}\exp\{(\delta(\theta)+\epsilon)r_l^{\rho}\}.(3.6)$

$h_{A_\mu}(\theta)>\delta(\theta)$知(3.5)和(3.6)式不可能成立. 所以, $|f^{(\mu)}(r{\rm e}^{{\rm i}\theta})|$在射线$\arg z=\theta$上有界, 即存在$M_0(\theta)>0$, 使得$|f^{(\mu)}(r{\rm e}^{{\rm i}\theta})|\leq M_0(\theta)$. 再结合

$f^{(j-1)}(r{\rm e}^{{\rm i}\theta})=f^{(j-1)}(r_0{\rm e}^{{\rm i}\theta})+\int_{r_0}^{r}f^{(j)}(t{\rm e}^{{\rm i}\theta})d t~(j\geq 1)$

及数学归纳法得: 对任意的$\theta\in(-\pi,\pi]\backslash E_3$, 存在$R(\theta)>0$, 当$r>R(\theta)$时, 有

$|f(r{\rm e}^{{\rm i}\theta})|\leq M(\theta)r^{\mu}, (3.7)$

其中$M(\theta)>0$是仅与$\theta$有关的常数.

由于$E_3$的线测度为零, 所以可取$s$条不同射线$\arg z=\vartheta_j\in(-\pi,\pi]\backslash E_3$, 满足

$\vartheta_1<\vartheta_2<\cdots<\vartheta_s, \quad \max\limits_{1\leq j\leq s}\{\vartheta_{j+1}-\vartheta_j\}<\frac{\pi}{\rho(f)+1},$

其中$\vartheta_{s+1}=\vartheta_1+2\pi$.$\rho(f)<\infty$和整函数级的定义可得: 存在$R>0$, 当$|z|=r\geq R$时, 有

$|f(z)|\leq M(r,f)<\exp\{r^{\rho(f)+1}\},$

从而当$|z|=r\geq R$时, 有

$\left|\frac{f(z)}{z^{\mu}}\right|\leq |f(z)|<\exp\{r^{\rho(f)+1}\}\leq \exp\{r^{\frac{\pi}{\vartheta_{j+1}-\vartheta_j}}\}.(3.8)$

$D_j=\{z:\vartheta_j<\arg z<\vartheta_{j+1},R_j'\leq |z|<\infty\}$, 其中$R_j'=\max\{R, R(\vartheta_j), R(\vartheta_{j+1})\},$$ j=1, \cdots, s$, 对$f(z)/z^\mu$在区域$D_j$内运用引理2.6, 再结合(3.7)和(3.8)式得: 对所有的$z\in\{z:\vartheta_j\leq\arg z\leq\vartheta_{j+1}, |z|\geq R_j'\}$,有

$|f(r{\rm e}^{{\rm i}\theta})|\leq M_jr^\mu,$

其中$M_j>0$是仅跟区域$D_j$有关的常数. 于是, 当$|z|\geq\max\limits_{1\leq j\leq s}\{R_j'\}$时, $|f(r{\rm e}^{{\rm i}\theta})|\leq Mr^{\mu}$, 其中$M=\max\limits_{1\leq j\leq s}\{M_j\}$, 因此$f(z)$是一个次数不超过$\mu$的多项式, 这与$f(z)$为超越整函数矛盾, 证毕.

${\bf 定理1.2的证明}$$f(z)$为方程(1.1)的$q$次指数多项式解, 其正规化形式为

$f(z)=H_{0,0}(z)+H_{1,0}(z){\rm e}^{\omega_1z^q}+\dots+H_{m,0}(z){\rm e}^{\omega_mz^q}. (3.9)$

首先, 我们证明$\rho(f)=\rho(A_\mu)$. 由方程(1.1)和$T(r,A_j)=S(r,A_{\mu})~(j\neq\mu)$

$\begin{eqnarray*} T(r,A_{\mu})&=&m(r,A_{\mu})\leq \sum\limits_{\stackrel{j=0}{j\neq\mu}}^{n-1}m(r,A_j)+\sum\limits_{j=0}^{\mu-1}m\left(r,\frac{f^{(j)}}{f^{(\mu)}}\right)+O(\log r) \\&=&o(T(r,A_{\mu}))+O(T(r, f))~(r\rightarrow\infty, r\not\in E_0), \end{eqnarray*}$

$T(r,A_{\mu})=O(T(r, f))~(r\rightarrow\infty, r\not\in E_0)$, 其中$E_0$为线测度有限的集合, 在不同地方出现可代表不同集合. 所以$\rho(f)\geq\rho(A_{\mu})$. 假设$\rho(f)>\rho(A_{\mu})$, 由$f(z)$的表达式得: 对任意的正整数$k$, 有

$f^{(k)}(z)=H_{0,k}(z)+H_{1,k}(z){\rm e}^{\omega_1z^q}+\cdots+H_{m,k}(z){\rm e}^{\omega_mz^q},(3.10)$

其中

$H_{0,k}(z)=H_{0,0}^{(k)}(z),\quad H_{l,k}(z)=H_{l,k-1}'(z)+H_{l,k-1}q\omega_lz^{q-1} (l=1,\cdots, m).(3.11)$

显然, 由指数多项式的定义和$H_{l,0}(z)$为次数小于$q$的指数多项式知: 对任意的$k\geq 1$, $H_{l,k}(z)$仍为次数小于$q$的指数多项式, 并且$ H_{l,k}(z)\not\equiv0$, 否则$H_{l,k-1}(z)$$q$ 次指数多项式, 矛盾. 将(3.9), (3.10)式代入方程(1.1)得

$\sum_{k=0}^nA_k(z)H_{0,k}(z)+\sum_{l=1}^m\left(\sum_{k=0}^nA_k(z)H_{l,k}(z)\right){\rm e}^{\omega_lz^q}=0,(3.12)$

其中$A_n(z)\equiv 1$. 由于$\rho(A_{\mu})<\rho(f), T(r,A_j)=S(r,A_{\mu})$$(j\neq\mu)$, 所以$\rho(A_k)<q$$(k=0,1, \cdots, n)$, 从而$\rho(\sum\limits_{k=0}^nA_kH_{j,k})<q$$(j=0, 1,\cdots, m)$. 于是结合(3.12)式和引理2.3得

$\sum_{k=0}^nA_k(z)H_{l,k}(z)\equiv0, ~~l= 1, \cdots, m.(3.13)$

对任意的$l\in\{1, \cdots, m\}$, 由$H_{l,k}(z)$的表达式(3.11)得: 对任意的正整数$k$, 有

$m\left(r, \frac{H_{l,k}(z)}{H_{l,k-1}(z)}\right)\leq m\left(r, \frac{H'_{l,k-1}(z)}{H_{l,k-1}(z)}\right) +m(r, q\omega_lz^{q-1})=O(\log r);(3.14)$

注意到当$q=1$时, $H_{0,0}(z), H_{1,0}(z), \cdots, H_{m,0}(z)$为多项式, 所以

$m\left(r, \frac{H_{l,k}(z)}{H_{l,k+1}(z)}\right)=O(\log r),(3.15)$

$q>1$时, 由(3.11)式和引理2.4得

$m\left(r, \frac{H_{l,k}(z)}{H_{l,k+1}(z)}\right)=m\left(r, \frac{1}{q\omega_lz^{q-1}(1+o(1))}\right)=o(1)~(r\rightarrow\infty, r\not\in F),(3.16)$

其中$F$为对数测度有限的集合, 在不同地方出现可代表不同集合. 由(3.14)-(3.16)式得: 当$j>\mu$时,有

$m\left(r, \frac{H_{l,j}(z)}{H_{l,\mu}(z)}\right)\leq \sum^j_{k=\mu+1}m\left(r, \frac{H_{l,k}(z)}{H_{l,k-1}(z)}\right) =O(\log r).(3.17)$

$t<\mu$时,有

$m\left(r, \frac{H_{l,t}(z)}{H_{l,\mu}(z)}\right)\leq \sum^{\mu-1}_{k=t}m\left(r, \frac{H_{l,k}(z)}{H_{l,k+1}(z)}\right) =O(\log r)~(r\rightarrow\infty, r\not\in F).(3.18)$

再结合(3.13), (3.17)和(3.18)式得

$\begin{eqnarray*} T(r, A_\mu)&=&m(r, A_\mu)\leq\sum\limits_{\stackrel{k=0}{k\neq\mu}}^{n-1}m(r,A_k)+ \sum\limits_{j=\mu+1}^nm\left(r, \frac{H_{l,j}}{H_{l,\mu}}\right)+ \sum\limits_{t=0}^{\mu-1}m\left(r, \frac{H_{l,t}}{H_{l,\mu}}\right)+O(1)\\& \leq &o(T(r, A_\mu))+O(\log r)~(r\rightarrow\infty, r\not\in F), \end{eqnarray*}$

这与$A_\mu(z)$为指数多项式矛盾. 因此$\rho(f)=\rho(A_\mu)$.

其次, 我们证明$H_{0,0}(z)$为次数$\leq\mu-1$的非零多项式. 若不然, 则或者$H_{0,j}(z)=H^{(j)}_{0,0}(z)\equiv0\ (j=0, 1, \cdots, n)$, 或者$H_{0,t}(z)=H^{(t)}_{0,0}(z)\not\equiv0\ (t=0, 1, \cdots, \mu)$, 从而由(3.9)和(3.10)式得$W_f=W_{f'}=\cdots=W_{f^{(\mu)}}$. 于是由引理2.2得: 当$t<\mu$时,有

$m\left(r, \frac{f^{(t)}(z)}{f^{(\mu)}(z)}\right)=o(r^q).(3.19)$

再结合(3.19), (1.1)式和引理2.1得

$\begin{eqnarray*} C(co(W^0_{A_\mu}))\cdot\frac {r^q}{2\pi}&=&T(r, A_\mu)+o(r^q)=m(r, A_\mu)+o(r^q)\\ & \leq&\sum\limits_{\stackrel{k=0}{k\neq\mu}}^{n-1}m(r,A_k)+ \sum\limits_{j=\mu+1}^nm\left(r, \frac{f^{(j)}}{f^{(\mu)}}\right)+ \sum\limits_{t=0}^{\mu-1}m\left(r, \frac{f^{(t)}}{f^{(\mu)}}\right)+o(r^q)\\& =& o(r^q) ~(r\rightarrow\infty, r\not\in E_0), \end{eqnarray*}$

矛盾.

最后, 使用文献[12,p.108-109]的证明方法可得$f(z)$$A_{\mu}(z)$为对偶指数多项式. 为方便起见, 我们给出简单的证明过程. 设指数多项式$A_\mu(z)$的正规化形式为

$A_{\mu}(z)=a_0(z)+a_1(z){\rm e}^{\lambda_1 z^q}+\cdots+a_s(z){\rm e}^{\lambda_s z^q},(3.20)$

下面分情形讨论.

情形1 若$\rho(A_{\mu}f^{(\mu)})<q$, 则由$A_\mu(z), f(z)$为整函数得

$\lambda(A_{\mu})\leq\lambda(A_{\mu}f^{(\mu)})<q, \quad \lambda(f^{(\mu)})\leq\lambda(A_{\mu}f^{(\mu)})<q.(3.21)$

另一方面, 由于$H_{0,0}(z)$是次数$\leq\mu-1$的非零多项式, 所以由(3.10)式得

$f^{(\mu)}(z)=H_{1,\mu}(z){\rm e}^{\omega_1z^q}+\cdots+H_{m,\mu}(z){\rm e}^{\omega_mz^q},(3.22)$

结合引理2.1和(3.20)-(3.22)式得 $a_0(z)\equiv 0, s=m=1$, 因此

$A_{\mu}(z)=a_1(z){\rm e}^{\lambda_1 z^q},~~f(z)=H_{0,0}(z)+H_{1,0}(z){\rm e}^{\omega_1z^q}, ~~ f^{(\mu)}(z)=H_{1,\mu}(z){\rm e}^{\omega_1z^q},$

再由$\rho(A_{\mu}f^{(\mu)})<q$$\lambda_1+\omega_1=0$, 即结论(ii)成立.

情形2 若$\rho(A_{\mu}f^{(\mu)})=q$, 则由方程(1.1)和$T(r, A_j)=S(r, A_\mu)(j\neq \mu)$, 有

$m\left(r,\frac{A_{\mu}f^{(\mu)}}{f}\right)\leq \sum\limits_{\stackrel{k=0}{k\neq\mu}}^{n-1}m(r,A_k)+\sum\limits_{\stackrel{j=1}{j\neq\mu}}^{n}m\left(r,\frac{f^{(j)}}{f}\right) +O(1)=o(r^q)~ (r\rightarrow\infty, r\not\in E_0).(3.23)$

再结合(3.23)式和引理2.2得

$C(co(W_\psi))=C(co(W_f)),(3.24)$

其中$\psi(z)=A_\mu(z)f^{(\mu)}(z)/f(z), W_\psi=W_{A_{\mu}f^{(\mu)}}\bigcup W_f$. 由(3.9)和$H_{0,0}(z)\not\equiv 0$

$W_f=\{0, \overline{\omega_1}, \cdots, \overline{\omega_m}\}.(3.25)$

又由(3.20)和(3.22)式得: 当$a_0(z)\equiv0$时, $W_{A_{\mu}f^{(\mu)}}=\{\overline{\omega_l}+\overline{\lambda_j}\}$; 当$a_0(z)\not\equiv 0$时, $W_{A_{\mu}f^{(\mu)}}=\{\overline{\omega_l}, \overline{\omega_l}+\overline{\lambda_j}\}$, 其中$l=1, \cdots, m, j=1, \cdots, s$, 所以

$W_\psi=\{0,\overline{\omega_l}, \overline{\omega_l}+\overline{\lambda_j}: l=1,\cdots,m, j=1,\cdots,s\}.(3.26)$

显然$W_f\subset W_\psi$, 所以$co(W_f)\subset co(W_\psi)$.$co(W_f)\neq co(W_\psi)$, 则在$co(W_\psi)$中至少存在一点$\overline{\omega_l}+\overline{\lambda_j}$$co(W_\psi)$的顶点, 从而$C(co(W_\psi))>C(co(W_f))$, 这与(3.24)式矛盾, 因此

$co(W_f)=co(W_\psi).(3.27)$

我们断言$0,\overline{\omega_1}, \cdots, \overline{\omega_m}$共线. 若不然, 则$co(W_f)$至少有三个顶点, 记$co(W_f)$的顶点为$z_1, \cdots, \\z_k (3\leq k\leq m+1)$, 由于$\lambda_1\neq 0$, 所以必存在某个 $j\in\{1,\cdots, k\}$, 使得$z_j+\overline{\lambda_1}\not\in co(W_f)=co(W_\psi)$, 矛盾. 因此, $0,\overline{\omega_1}, \cdots, \overline{\omega_m}$共线. 再由(3.25)-(3.27)式得$0,\overline{\omega_1}, \cdots, \overline{\omega_m}, \overline{\lambda_1}, \cdots, \overline{\lambda_s}$共线. 不妨设$\omega_1,\cdots, \omega_m,\lambda_1,\cdots, \lambda_s$都位于实轴上, 满足$\omega_1<\cdots<\omega_m, ~ \lambda_1<\cdots<\lambda_s$, 则必有

$\omega_m\lambda_s<0,\quad \omega_1\lambda_1<0.$

若不然, 则或者$\omega_m$$\lambda_s$同号, 或者$\omega_1$$\lambda_1$同号, 再结合(3.25)和(3.26)式得 $co(W_\psi)\neq co(W_f)$, 这与(3.27)式矛盾. 故(3.28)式成立, 从而$f(z)$$A_{\mu}(z)$为对偶指数多项式. 证毕.

参考文献

杨乐. 值分布论及其新研究. 北京: 科学出版社, 1982

[本文引用: 1]

Yang L. Value Distribution Theory and Its New Research. Beijing: Science Press, 1982

[本文引用: 1]

Hayman W K. Meromorphic Functions. Oxford: Clarendon Press, 1964

[本文引用: 1]

Laine I. Nevanlinna Theory and Complex Differential Equations. Berlin: Walter de Gruyter, 1993

[本文引用: 2]

Levin B J. Distribution of Zeros of Entire Functions. Providence RI: Amer Math Soc, 1980

[本文引用: 1]

Chen Z X, Yang C C.

Quantitative estimations on the zeros and growth of entire solutions of linear differential equations

Complex Var Theory Appl, 2000, 42(1): 119-133

[本文引用: 1]

Chen Z X.

The growth of solutions of $f''+{\rm e}^{-z}f'+Q(z)f=0$ where the order $(Q)=1$

Sci China Ser A, 2002, 45(3): 290-300

[本文引用: 1]

Chen Z X, Shon K H.

On the growth of solutions of a class of higher order differential equations

Acta Math Sci, 2004, 24B(1): 52-60

[本文引用: 2]

Wu P C, Zhu J.

On the growth of solutios to the complex differential equation $f''+Af'+Bf=0$

Sci China Ser A, 2011, 54(5): 939-947

DOI:10.1007/s11425-010-4153-x      URL     [本文引用: 1]

龙见仁, 朱军, 李晓曼.

一类高阶线性微分方程解的增长性

数学物理学报, 2013, 33A(3): 401-408

[本文引用: 1]

Long J R, Zhu J, Li X M.

On the growth of solutions of some higher order linear differential equations

Acta Math Sci, 2013, 33A(3): 401-408

[本文引用: 1]

Havin V P, Nikolski N K(Eds.). Linear and Complex Analysis, Problem Book 3, Part II, Leture Notes in Mathematics. Berlin: Springer-Verlag, 1994

[本文引用: 2]

Heittokangas J, Laine I, Tohge K, et al.

Completely regular growth solutions of second order complex linear differential equations

Ann Acad Sci Fenn Math, 2015, 40(2): 985-1003

DOI:10.5186/aasfm.00      URL     [本文引用: 3]

Wen Z T, Gundersen G G, Heittokangas J.

Dual exponential polynomials and linear differential equations

J Differential Equations, 2018, 264(1): 98-114

DOI:10.1016/j.jde.2017.09.003      URL     [本文引用: 4]

Heittokangas J, Ishizaki K, Tohge K, et al.

Dual exponential polynomials and a problem of Ozawa

Proc Roy Soc Edinburgh Sect A, 2022, 152(3): 701-719

DOI:10.1017/prm.2021.29      URL     [本文引用: 3]

Complex linear differential equations with entire coefficients are studied in the situation where one of the coefficients is an exponential polynomial and dominates the growth of all the other coefficients. If such an equation has an exponential polynomial solution $f$, then the order of $f$ and of the dominant coefficient are equal, and the two functions possess a certain duality property. The results presented in this paper improve earlier results by some of the present authors, and the paper adjoins with two open problems.

Steinmetz N.

Zur wertverteilung von exponentialpolynomen

Manuscripta Math, 1978, 26(1): 155-167

DOI:10.1007/BF01167971      URL     [本文引用: 1]

Steinmetz N.

Zur Wertverteilung der quotienten von exponentialpolynomen

Arch Math, 1980, 35(5): 461-470

DOI:10.1007/BF01235370      URL     [本文引用: 2]

Yi H X, Yang C C. Uniqueness Theory of Meromorphic Functions. New York: Kluwer Academic Publishem Group, 2003

[本文引用: 1]

Gundersen G G.

Estimates for the logarithmic derivative of a meromorphic function, plus similar estimate

J London Math Soc, 1988, 37(2): 88-104

[本文引用: 1]

Titchmarsh E C. The Theory of Functions. London: Oxford University Press, 1986

[本文引用: 1]

/