数学物理学报, 2022, 42(4): 1173-1185 doi:

论文

带弱阻尼Navier-Stokes方程拉回吸引子的收敛性

曹洁,1, 黄兰,2, 苏克勤,1

1 河南农业大学信息与管理科学学院 郑州 450046

2 华北水利水电大学数学与统计学院 郑州 450045

The Convergence of Pullback Attractors for Navier-Stokes Equations with Weak Damping

Cao Jie,1, Huang Lan,2, Su Keqin,1

1 College of Information and Management Science, Henan Agricultural University, Zhengzhou 450046

2 College of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou 450045

通讯作者: 苏克勤, E-mail: keqinsu@hotmail.com

收稿日期: 2021-10-26  

基金资助: 河南省自然科学基金.  212300410164

Received: 2021-10-26  

Fund supported: the Henan Natural Science Foundation.  212300410164

作者简介 About authors

曹洁,E-mail:caojie23@hotmail.com , E-mail:caojie23@hotmail.com

黄兰,E-mail:huanglan82@hotmail.com , E-mail:huanglan82@hotmail.com

Abstract

The long-time behavior of solution to Navier-Stokes equations with weak damping is studied in this paper. With some assumptions on the external force and initial datum, the global wellposedness and regularity of weak solution are proved by Galerkin method, and the existence and convergence of pullback attractors are established finally.

Keywords: Pullback attractors ; Navier-Stokes equations ; Weak damping ; Upper semicontinuity

PDF (347KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

曹洁, 黄兰, 苏克勤. 带弱阻尼Navier-Stokes方程拉回吸引子的收敛性. 数学物理学报[J], 2022, 42(4): 1173-1185 doi:

Cao Jie, Huang Lan, Su Keqin. The Convergence of Pullback Attractors for Navier-Stokes Equations with Weak Damping. Acta Mathematica Scientia[J], 2022, 42(4): 1173-1185 doi:

1 引言

本文研究如下二维带弱阻尼不可压Navier-Stokes方程的初边值问题

$ \begin{eqnarray} \left\{\begin{array}{ll} u_t-\mu\Delta u+(u\cdot\nabla)u+\alpha u+\nabla p=f(t, x), \ \ &(t, x)\in {{\Bbb R}} _{\tau}\times\Omega, \\ \nabla\cdot u=0, \ \ &(t, x)\in{{\Bbb R}} _{\tau}\times\Omega, \\ u(t, x)|_{\partial\Omega}=0, \ &t\in {{\Bbb R}} _{\tau}, \\ u(\tau, x)=u(\tau), \ &x\in \Omega, \end{array}\right. \end{eqnarray} $

其中$ \Omega\subset {{\Bbb R}} ^{2} $是具有光滑边界的有界区域, $ u=(u_1, u_2) $为流体的速度向量, $ p $为压力项, $ \tau\in {{\Bbb R}} $为初始时刻, $ {{\Bbb R}} _{\tau}=(\tau, +\infty) $, 系数$ \alpha>0 $, $ f(t, x) $表示外力项.

$ \alpha=0 $时, 系统(1.1)即为经典Navier-Stokes方程

$ \begin{eqnarray} \left\{\begin{array}{ll} u_t-\mu\Delta u+(u\cdot\nabla)u+\nabla p=f(t, x), \ \ &(t, x)\in {{\Bbb R}} _{\tau}\times\Omega, \\ \nabla\cdot u=0, \ \ &(t, x)\in{{\Bbb R}} _{\tau}\times\Omega, \\ u(t, x)|_{\partial\Omega}=0, \ &t\in {{\Bbb R}} _{\tau}, \\ u(\tau, x)=u(\tau), \ &x\in \Omega.\end{array}\right. \end{eqnarray} $

Navier-Stokes方程是代表性的流体力学方程, 刻画了粘性不可压缩流体的运动规律, 在很多领域有着广泛的应用. 有关Navier-Stokes方程解的适定性等相关结果可参考文献[1, 7, 10, 1314]. 另外, 该系统在吸引子理论方面所取得的成果对研究湍流有着重要意义, 涉及整体吸引子, 一致吸引子及拉回吸引子等的存在性[23, 9, 11, 15, 1920].

近年来, 吸引子的收敛性等相关问题受到了数学工作者的关注. Caraballo等[45]考虑了带小扰动系统拉回(随机)吸引子的上半连续性, 并给出了如下的满足条件

其中$ {\cal A}_{\varepsilon}(t)=\{A_{\varepsilon}(t)\}_{t\in {{\Bbb R}} } $表示拉回(随机)吸引子, $ K $为某紧集. 2009年, Wang[16]给出了验证带随机扰动系统随机吸引子上半连续的方法, 其后, Wang等[1718]通过研究板方程及Kirchhoff模型, 设计了一种拉回吸引子上半连续性的证明方法并给出了结论成立的充分条件. 其它有关吸引子收敛性的结果可参考文献[6, 8, 21].

到目前为止, 当$ \alpha\rightarrow 0 $时, 系统(1.1)的拉回吸引子$ {\cal A}_\alpha(t) = \{A_\alpha(t)\}_{t\in {{\Bbb R}} } $的收敛性还没有相关的研究成果, 本文将研究这一问题, 其主要特征如下

(1) 利用Galerkin方法和紧性理论去验证系统解的适定性和正则性;

(2) 基于解的适定性, 通过验证过程$ \{U_{\alpha}(t, \tau)\} $拉回吸收集$ {\cal D}_{\alpha}(t)=\{D_{\alpha}(t)\}_{t\in {{\Bbb R}} } $的存在性及渐近紧性, 利用吸引子理论证明拉回吸引子$ {\cal A}_{\alpha}(t)=\{A_{\alpha}(t)\}_{t\in {{\Bbb R}} } $的存在性;

(3) 借助文献[1718]中的方法证明系统(1.1)拉回吸引子的上半连续性, 即

2 基本定义及结论

已知$ X $为Banach空间, 范数和距离分别为$ \|\cdot\|_X $$ d_X(\cdot, \cdot) $, 过程$ \{U(t, \tau)\}_{t\geq\tau} $及其连续性的定义可参阅文献[2, 9].

定义2.1  对任意的$ t\geq\tau $及有界集$ D_b\subset X $, 若紧集族$ {\cal A}(t)=\{A(t)\}_{t\in {{\Bbb R}} } $满足

则称$ {\cal A}(t)=\{A(t)\}_{t\in {{\Bbb R}} } $为过程$ \{U(t, \tau)\}_{t\geq\tau} $的拉回吸引子, 其中$ dist_{X}(\cdot, \cdot) $表示$ X $中的$ {\rm{Hausdorff}} $半距离.

定义2.2  若对任意的$ t\in {{\Bbb R}} $及有界集$ D_b\subset X $, 存在$ T(t, D_b)>0 $, 使得

则称集合族$ {\cal D}(t)=\{D(t)\}_{t\in {{\Bbb R}} } $为过程$ \{U(t, \tau)\}_{t\geq\tau} $的拉回吸收集.

定义2.3  已知$ {\cal D}(t)=\{D(t)\}_{t\in {{\Bbb R}} } $$ X $中的子集族. 若对任意$ t\in {{\Bbb R}} $, 序列$ \tau_n\rightarrow \infty\ (n\rightarrow \infty) $$ x_n\in D(t-\tau_n) $, 序列$ \{U(t, t-\tau_n)x_n\} $$ X $中预紧, 则称过程$ \{U(t, \tau)\}_{t\geq\tau} $$ X $中拉回渐近紧.

定理2.1  已知$ {\cal D}(t)=\{D(t)\}_{t\in {{\Bbb R}} } $是连续过程$ \{U(\cdot, \cdot)\} $的拉回吸收集, 且$ \{U(\cdot, \cdot)\} $$ X $中拉回渐近紧. 则$ {\cal A}(t)=\{A(t)\}_{t\in {{\Bbb R}} } $, 其中

称为过程$ \{U(\cdot, \cdot)\} $$ X $中的拉回吸引子.

下面, 我们给出一种验证拉回渐近紧的方法, 具体可参考文献[12].

定理2.2  假设过程可分解为$ U(\cdot, \cdot)=U_1(\cdot, \cdot)+U_2(\cdot, \cdot) $, 且对任意的$ t>\tau>0 $$ u(t-\tau) \in D(t-\tau) $满足

$ ({\rm{i}}) $$ \|U_1(t, t-\tau)u(t-\tau)\|_{X}\leq K(t, \tau) $, 其中$ K(\cdot, \cdot):\ {{\Bbb R}} \times{{\Bbb R}} \rightarrow {{\Bbb R}} ^{+} $满足$ \lim\limits_{\tau\rightarrow +\infty}K(t, \tau)=0 $;

$ ({\rm{ii}}) $$ \{U_2(\cdot, \cdot)\} $$ X $中紧.

则过程$ \{U(\cdot, \cdot)\} $$ X $中拉回渐近紧.

为了研究拉回吸引子$ {\cal A}_{\alpha}(t)=\{A_\alpha(t)\}_{t\in {{\Bbb R}} } $之间的收敛关系, 下面给出相关的定义及结论.

定义2.4  已知$ \alpha \in [0, \alpha_0] $, $ \{D_\alpha(t)\}_{t\in {{\Bbb R}} } $$ X $上的子集族, 对任意的$ t\in {{\Bbb R}} $, $ \Phi_t(\cdot, \cdot, \cdot, \cdot) $是定义在

上的函数. 若对任意$ \{\alpha_n\}_{n\in {\mathbb N}} \subset [0, \alpha_0] $$ \{x_n\}_{n\in {\mathbb N}}\subset D_{\alpha_n}(t) $, 存在子序列$ \{\alpha_{n_k}\}_{k\in {\mathbb N}} \subset \{\alpha_n\} $$ \{x_{n_k}\}_{k\in {\mathbb N}} \subset \{x_n\}_{n\in {\mathbb N}} $满足$ x_{n_k} \in D_{\alpha_{n_k}} $, 使得

则称$ \Phi_t $为收缩函数.

定义2.5  若

则称$ {\cal A}_\alpha(t) $$ {\cal A}_0(t) $具有上半连续性.

下面, 我们给出有关上半连续性的结论, 具体可参见文献[1718].

定理2.3  已知$ \alpha\in [0, \alpha_0] $, $ {\cal D}(t)=\{D(t)\}_{t\in {{\Bbb R}} } $为连续过程$ \{U_\alpha(t, \tau)\} $$ X $中的拉回吸收集, $ {\cal A}(t)=\{A(t)\}_{t\in {{\Bbb R}} } $为拉回吸引子. 若

($ C_1 $) 对任意的$ t\in {{\Bbb R}} , \ \tau\in {{\Bbb R}} ^+, \ \alpha_n\rightarrow 0 $, 及$ x_n, x\in X $满足$ x_n\rightarrow x\ (n\rightarrow \infty) $, 成立

($ C_2 $) 有常数$ \theta\in(0, 1) $使得对任意的$ t\in {{\Bbb R}} $, 存在$ T=T(t, \theta) > 0 $, 使得

($ C_3 $) 对任意的$ t\in {{\Bbb R}} $, $ \mathop\bigcup\limits_{\alpha\in[0, \alpha_0]}A_{\alpha}(t) $$ X $中预紧.

则当$ \alpha\rightarrow 0 $时, $ {\cal A}_\alpha(t) $$ {\cal A}_0(t) $具有上半连续性.

以下结论是条件($ C_3 $)的替代方案.

引理2.1  已知$ \alpha\in[0, \alpha_0] $, 若对任意的$ t\in {{\Bbb R}} $$ \delta>0 $, 存在$ T=T(t, \delta, \{A_{\alpha}(t)\}_{t\in {{\Bbb R}} }) $和定义在

上的收缩函数$ \Phi_{t-T}(\cdot, \cdot, \cdot, \cdot) $使得对任意的$ \alpha_1, \alpha_2\in[0, \alpha_0] $, $ x\in A_{\alpha_1}(t-T) $$ y\in A_{\alpha_2}(t-T) $, 有

则对任意的$ t\in {{\Bbb R}} $, $ \mathop\bigcup\limits_{\alpha\in[0, \alpha_0]}A_{\alpha}(t) $$ X $中预紧.

3 预备知识

$ L^p(\Omega)\ (1\leq p\leq \infty) $为通常的Sobolev空间, 范数为$ \|\cdot\|_p $, 令$ E:=\{u|u\in(C^{\infty}_0(\Omega))^2, $$ {\rm div} u $$ = 0\} $, 则$ H=\overline{E}^{(L^2(\Omega))^2} $$ V=\overline{E}^{(H^1(\Omega))^2} $均为可分的Hilbert空间, 内积及范数分别为

$ V' $表示$ V $的对偶空间, 范数和对偶积分别记为$ \|\cdot\|_{*} $$ \langle\cdot, \cdot\rangle_{V\times V'} $.

Stokes算子$ A:=-P_L\Delta $, $ P_L:(L^2(\Omega))^2\rightarrow H $是Helmholtz-Leray映照, $ \{\omega_j\}^{\infty}_{j=1} $表示$ A $的对应于特征值$ \{\lambda_j\}^{\infty}_{j=1} $的特征向量. 定义幂运算$ A^{s} $如下

仍然用$ D(A^{s})=\{f:A^{s}f\in H\} $表示$ \overline{E}^{D(A^{s})} $, 其范数为$ \|u\|_{D(A^s)} $.

对任意的$ u, v, w\in V $, 分别定义双线性算子及三线性算子

其中, $ B(u, v) $是从$ V\times V $$ V' $的映照, 且成立

$ \begin{equation} \left\{ \begin{array}{ll} b(u, v, v)= 0, \ &\forall\ u, v, w\in V, \\ b(u, v, w)= -b(u, w, v), \ &\forall\ u, v, w\in V, \\ |b(u, v, w)|\leq C|u|\|v\||w|, \ &\forall\ u, v, w\in V, \end{array}\right. \end{equation} $

其它性质可参见文献[14].

定义3.1  对任意的$ v\in V $$ t>\tau $, 若$ u\in L^{\infty}(\tau, T;H)\bigcap L^{2}(\tau, T;V)\bigcap C([\tau, T];H) $满足

$ \begin{eqnarray} \left\{\begin{array}{ll} { } \frac{\rm d}{{\rm d}t}(u, v)+\mu((u, v))+b(u, u, v)+(\alpha u, v)=(P_Lf, v), \\ u(\tau, x)=u(\tau), \end{array}\right. \end{eqnarray} $

则称$ u $为系统$ (1.1) $$ [\tau, T]\times\Omega $上的一个整体弱解.

$ B(u)=B(u, u) $, 则系统(1.1)还可写成如下形式

$ \begin{eqnarray} \left\{\begin{array}{ll} u_t+\mu Au+B(u)+\alpha u=P_Lf(t, x), \ \forall\ t>\tau, \\ u(\tau, x)=u(\tau). \end{array}\right. \end{eqnarray} $

4 解的适定性及正则性

假设$ f(t, x) $$ V' $上一致有界, 且满足

定理4.1  已知$ u(\tau)\in H $, 则系统$ (1.1) $存在唯一的弱解$ u(t, x) $满足

  首先运用Galerkin方法定义$ P_mu = \sum\limits^m_{j=1}(w_j, u)w_j, $ 其中$ \{w_j\}_{j\in {\mathbb N}} $$ H $中的且在$ V $中稠密的正交基, $ P_m $是从$ H $$ V_m:= \mbox{span}[w_1, \cdots, w_m] $的投影算子. 令$ u_m = \sum\limits^m_{k=1}\gamma_{mk}(t)w_k $, 其中$ \gamma_{mk}(t) = (u_m(t), w_k)\ (k=1, 2, \cdots, m) $由如下的常微分方程组确定

$ \begin{eqnarray} &&(u_m(t), w_k) + \mu\int^t_\tau \langle Au_m, w_k \rangle {\rm d}s + \int^t_\tau \langle B(u_m), w_k \rangle {\rm d}s + \int_\tau^t(\alpha u_m, w_k){\rm d}s{}\\ & =& (u(\tau), w_k) + \int^t_\tau(P_mP_Lf, w_k){\rm d}s, \;\;\;\;\;\;t>\tau, \;\;\forall \;1\leq k\leq m. \end{eqnarray} $

此时

$ \begin{equation} \frac{\rm d}{{\rm d}t}(u_m, w_k) + \mu\langle Au_m, w_k\rangle + \langle B(u_m), w_k\rangle + (\alpha u_m, w_k) = (P_mP_Lf, w_k), \end{equation} $

a.e. $ t>\tau $, $ \forall $$ 1\leq k\leq m $, 系统(4.2)在$ [\tau, t_m) $上存在唯一的局部解, 通过先验估计可知解区间可延拓至$ [\tau, +\infty) $.

在(4.2)式两端乘以$ (u_m, w_k) $并对$ k $$ k=1 $$ k=m $求和, 得到

$ \begin{equation} \frac{\rm d}{{\rm d}t}|u_m|^2 + 2\mu\|u_m\|^2 + 2\alpha|u_m|^2 \leq (\mu\lambda_1+\alpha)|u_m|^2 + \frac{1}{\mu\lambda_1+\alpha}|f|^2, \end{equation} $

i.e.

$ \begin{equation} \frac{\rm d}{{\rm d}t}|u_m|^2 + (\mu\lambda_1+\alpha)|u_m|^2 \leq \frac{1}{\mu\lambda_1+\alpha}|f|^2, \end{equation} $

进而

$ \begin{equation} \frac{\rm d}{{\rm d}t}(e^{\sigma t}|u_m|^2) + (\mu\lambda_1+\alpha - \sigma)e^{\sigma t}|u_m|^2 \leq \frac{1}{\mu\lambda_1+\alpha}e^{\sigma t}|f|^2. \end{equation} $

将(4.5)式从$ \tau $$ t $积分, 可得

$ \begin{equation} |u_m(t)|^2 \leq e^{-\sigma t}e^{\sigma \tau}|u(\tau)|^2 + \frac{e^{-\sigma t}}{\mu\lambda_1+\alpha}\int_{-\infty}^te^{\sigma s}|f|^2{\rm d}s. \end{equation} $

由(4.3)和(4.6)式可知

又因$ Au_m, \;B(u_m, u_m)\in L^2(\tau, T;V') $, 由(4.2)式可得

i.e., $ \frac{\partial}{\partial t}u_m \in L^2(\tau, T;V'). $

根据Aubin-Lions定理, 存在子列$ \{u_{m'}(t)\} $使得

可证$ \eta=\frac{\partial}{\partial t}u $, 且由Lions-Magenes定理可得$ u\in C([\tau, T];H) $.

下面讨论解的唯一性及关于初值的连续依赖性. 不妨设$ u, v $分别是系统(3.3)关于初值$ u(\tau), v(\tau) $的弱解, 则

$ \begin{eqnarray} &&\frac{\partial u}{\partial t} + \nu Au + B(u, u) + \partial u = P_Lf, \end{eqnarray} $

$ \begin{eqnarray} &&\frac{\partial v}{\partial t} + \nu Av + B(v, v) + \partial v= P_Lf. \end{eqnarray} $

(4.7)式减(4.8)式, 令$ w=u-v $, 得

$ \begin{equation} \frac{\partial}{\partial t}w + \nu Aw + B(w, u) + B(v, w) + \partial w = 0. \end{equation} $

将(4.9)式两端乘以$ w $, 有

i.e., $ \frac{\rm d}{{\rm d}t}|w|^2 \leq C\|u\|^2\cdot|w|^2 $, 由Gronwall不等式可得

结论得证.

基于解的整体适定性, 可定义系统(1.1)在$ H $中的过程$ \{U_\alpha(t, \tau)\} $. 下面讨论解$ u(t, x) $的正则性.

定理4.2  已知$ u(\tau)\in H $, $ u(t, x) $是系统$ (1.1) $的解, 则$ u(t, x)\in L^{\infty}(\tau, T;D(A^\frac{1}{4})) $.

  由(4.2)式可得

$ \begin{equation} \langle \frac{\partial}{\partial t}u_m, A^\frac{1}{2}u_m \rangle + \mu\langle Au_m, A^\frac{1}{2}u_m \rangle+ b(u_m, u_m, A^\frac{1}{2}u_m) + \alpha\langle u_m, A^\frac{1}{2}u_m \rangle = \langle P_mP_Lf, A^\frac{1}{2}u_m \rangle, \end{equation} $

利用Sobolev不等式, Hölder不等式及Young不等式, 得到

i.e.

$ \begin{equation} \frac{\rm d}{{\rm d}t}|A^\frac{1}{4}u_m|^2 + \mu|A^\frac{3}{4}u_m|^2 \leq \frac{C}{\mu}|A^\frac{1}{2}u_m|^2|A^\frac{1}{4}u_m|^2 + \frac{C}{\mu}|f|^2, \end{equation} $

$ \begin{equation} \frac{\rm d}{{\rm d}t}(e^{\sigma t}|A^\frac{1}{4}u_m|^2) \leq \frac{C}{\mu}|A^\frac{1}{2}u_m|^2e^{\sigma t}|A^\frac{1}{4}u_m|^2 + \frac{C}{\mu}e^{\sigma t}|f|^2. \end{equation} $

(4.12)式两端在$ [s, t] $积分, 得

$ \begin{equation} e^{\sigma t}|A^\frac{1}{4}u_m(t)|^2 \leq \exp \left(\frac{C}{\mu}\int_s^t|A^\frac{1}{2}u_m|^2{{\rm d}p}\right) \times \left(e^{\sigma s}|A^\frac{1}{4}u_m(s)|^2 + \frac{C}{\mu}\int_s^te^{\sigma p}|f|^2{{\rm d}p}\right). \end{equation} $

与(4.3)式相似, 还可推出

$ \begin{equation} \frac{\rm d}{{\rm d}t}|u_m|^2 + \mu\|u_m\|^2 \leq \frac{1}{\mu\lambda_1 + \alpha}|f|^2, \end{equation} $

进而

$ \begin{equation} \frac{\rm d}{{\rm d}t}(e^{\sigma t}|u_m|^2) + \frac{\mu}{2} e^{\sigma t}\|u_m\|^2 \leq \frac{1}{\mu\lambda_1 + \alpha}e^{\sigma t}|f|^2. \end{equation} $

将(4.15)式两端在$ [s, t] $上积分并利用(4.6)式, 得出

$ \begin{eqnarray} \frac{\mu}{2}\int_s^te^{\sigma p}\|u_m(p)\|^2{{\rm d}p} &\leq& e^{\sigma s}|u_m(s)|^2 + \frac{1}{\mu\lambda_1 + \alpha}\int_s^te^{\sigma p}|f|^2{{\rm d}p}\\ &\leq& e^{\sigma \tau}|u(\tau)|^2 + \frac{1}{\mu\lambda_1 + \alpha}\int_{-\infty}^{t}e^{\sigma p}|f|^2{{\rm d}p}, \end{eqnarray} $

进而

$ \begin{equation} \int_s^te^{\sigma p}\|u_m\|^2{{\rm d}p} \leq \frac{2}{\mu}e^{\sigma\tau}|u(\tau)|^2 + \frac{2}{\mu(\mu\lambda_1+\alpha)}\int_{-\infty}^{t}e^{\sigma p}|f|^2{{\rm d}p}. \end{equation} $

选取

可知在任意闭区间$ [t-k-1, t-k]\ (k\in {\mathbb N}) $中, 存在$ p $使得

进而由(4.13)和(4.15)式得到

$ \begin{equation} |A^\frac{1}{4}u_m(t)|^2 \leq C_{T, \tau}. \end{equation} $

因为$ u_m\rightarrow u $$ L^{2}(\tau, T;V) $中弱收敛, $ V $紧嵌入到$ D(A^\frac{1}{4}) $中, 则存在子列$ \{u_m\} $使得

进而存在另一子列$ \{u_m\} $使得在$ D(A^\frac{1}{4}) $

结论得证.

5 拉回吸引子的存在性

定理5.1  已知$ u(\tau)\in H $, 对任意$ \alpha >0 $, 系统$ (1.1) $$ H $中存在拉回吸引子$ {\cal A}_\alpha(t) = \{A_\alpha(t)\}_{t\in {{\Bbb R}} } $满足

其中$ {\cal D}_\alpha(t) = \{D_\alpha(t)\}_{t\in {{\Bbb R}} } $为系统$ (1.1) $的拉回吸收集.

  第一步  $ H $中拉回吸收集$ {\mathcal D}_\alpha(t) = \{D_\alpha(t)\}_{t\in {{\Bbb R}} } $的存在性.

(3.3)式两端乘以$ u $, 得

进而

上式两端在$ [\tau, t] $上积分, 推出

$ \begin{equation} |u(t)|^2 \leq e^{-\sigma t}e^{\sigma \tau}|u(\tau)|^2 + \frac{1}{\mu\lambda_1 + \alpha}e^{-\sigma t}\int_\tau^t e^{\sigma s}|f|^2{\rm d}s, \end{equation} $

$ \begin{equation} |u(t)|^2 \leq e^{-\sigma \tau}|u(t-\tau)|^2 + \frac{1}{\mu\lambda_1 + \alpha}e^{-\sigma t}\int_{t-\tau}^t e^{\sigma s}|f|^2{\rm d}s, \end{equation} $

即拉回吸收集$ {\cal D}_\alpha(t) = \{D_\alpha(t)\}_{t\in {{\Bbb R}} } $存在, 其中

$ u_{t-\tau} \in D_\alpha(t-\tau) $, 则

存在$ T>0 $使得对任意的$ t\in {{\Bbb R}} $, 有

第二步  过程$ \{U_\alpha(t, \tau)\} $的渐近紧性.

分别满足

$ \begin{equation} \left\{ \begin{array}{ll} { } \frac{\partial}{\partial t}u_{1} + \nu Au_1 + \alpha u_1 = 0, \;\;&(t, x)\in {{\Bbb R}} _\tau\times\Omega, \\ {\rm div} u_1 = 0, &(t, x)\in {{\Bbb R}} _\tau\times\Omega, \\ u_1(t, x)|_{\partial\Omega} = 0, &t\in {{\Bbb R}} _\tau, \\ u_1(\tau) = u(\tau), &x\in \Omega \end{array} \right. \end{equation} $

$ \begin{equation} \left\{ \begin{array}{ll} { } \frac{\partial}{\partial t}u_{2} + \nu Au_2 + B(u, u) + \alpha u_2 = P_Lf, \;\;&(t, x)\in {{\Bbb R}} _\tau\times\Omega, \\ {\rm div} u_2 = 0, &(t, x)\in {{\Bbb R}} _\tau\times\Omega, \\ u_2(t, x)|_{\partial\Omega} = 0, &t\in {{\Bbb R}} _\tau, \\ u_2(\tau) = 0, &x\in \Omega. \end{array} \right. \end{equation} $

(5.3)式乘以$ u_1 $, 得

由Gronwall不等式可知

从而对任意的$ t\in {{\Bbb R}} $, $ \lim\limits_{\tau\rightarrow \infty}|L_\alpha(t-\tau)u(\tau)|^2 = 0 $.

(5.4)式两端乘以$ A^\frac{1}{2}u_2 $, 有

i.e.

利用Gronwall不等式及定理4.2可得

因为$ D(A^{1/4}) $紧嵌入到$ H $中, $ \{Q_{\alpha}(t, \tau)\} $$ H $是紧的, 由定理2.2可知过程$ \{U_{\alpha}(t, \tau)\} $拉回渐近紧. 根据定理2.1, 可得证系统(1.1)具有拉回吸引子$ {\cal A}_\alpha(t) = \{A_\alpha(t)\}_{t\in {{\Bbb R}} } $. 证毕.

相应地, 也可证明由系统(1.2)生成的过程$ \{U_{0}(t, \tau)\} $具有拉回吸引子$ {\cal A}_0(t) = \{A_0(t)\}_{t\in {{\Bbb R}} } $及拉回吸收集$ {\cal D}_0(t) = \{D_0(t)\}_{t\in {{\Bbb R}} } $, 其中

6 吸引子的上半连续性

下面, 我们讨论拉回吸引子$ {\cal A}_\alpha(t) $的收敛性.

引理6.1  已知$ t\in {{\Bbb R}} $, $ \tau \in {{\Bbb R}} ^+ $, $ 0\leq\alpha_n < \frac{1}{2}\mu\lambda_1 $, $ \alpha_n\rightarrow 0\ (n\rightarrow \infty) $, 且对任意的$ \mathring{u_{n, t-\tau}} $, $ \mathring{u_{t-\tau}} $满足$ \mathring{u_{n, t-\tau}}\rightarrow \mathring{u_{t-\tau}} $, 则

  不妨假设$ U_{\alpha_n}(t, t-\tau)\mathring{u_{n, t-\tau}} = u^{\alpha_n}(t) $$ U_0(t, t-\tau)\mathring{u_{t-\tau}} = u(t) $分别满足

$ \begin{equation} \frac{\partial}{\partial t}u^{\alpha_n}(t) + \nu Au^{\alpha_n}(t) + B(u^{\alpha_n}) + \alpha_nu^{\alpha_n} = P_Lf \end{equation} $

$ \begin{equation} \frac{\partial}{\partial t}u + \nu Au + B(u) = P_Lf. \end{equation} $

$ z^n(t) = u^{\alpha_n}(t) - u(t) $, 则有

$ \begin{equation} \frac{\partial}{\partial t}z^n + \nu Az^n + B(u^{\alpha_n}) - B(u) + \alpha_nu^{\alpha_n} = 0. \end{equation} $

(6.3)式两端乘以$ z^n $, 有

进而

由Gronwall不等式可知

引理6.1得证.

引理6.2  对任意的$ t\in {{\Bbb R}} $$ \tau\in {{\Bbb R}} ^+ $, 有常数$ \theta\in(0, 1) $, 使得存在$ T=T(t) $满足

  根据拉回吸引子$ \mathcal {A}_\alpha(t) = \{A_{\alpha}(t)\}_{t\in {{\Bbb R}} } $的结构可得

且由定理5.1可知

在定理5.1中已证得对任意的$ t\in {{\Bbb R}} $, 总存在常数$ T>0 $使得

进而

即, 当$ \tau>T $时, 对任意的$ \theta\in(0, 1) $, 成立

引理6.2结论得证.

引理6.3  对任意的$ t\in {{\Bbb R}} $, $ \mathop\bigcup\limits_{0\leq\alpha\leq\frac{1}{2}\mu\lambda_1}A_\alpha(t) $$ H $中预紧.

  对任意的$ t\in {{\Bbb R}} $, 固定$ \tau\in {{\Bbb R}} ^+ $, $ \{\alpha_n\}_{n\in {\mathbb N}}\subset[0, \frac{1}{2}\mu\lambda_1] $. 不妨设$ u_n(t) $是对应于初值的解, 且

$ u_m $$ u_n $分别满足

$ \begin{equation} \frac{\partial}{\partial t}u_m + \mu Au_m + B(u_m) + \alpha_mu_m = P_Lf \end{equation} $

$ \begin{equation} \frac{\partial}{\partial t}u_n + \mu Au_n + B(u_n) + \alpha_nu_n = P_Lf, \end{equation} $

则有

$ w=u_m-u_n $, 可得

$ \begin{equation} \frac{\partial}{\partial t}w + \mu Aw + B(u_m)-B(u_n) + \alpha_mu_m - \alpha_nu_n = 0, \end{equation} $

(6.6)式两端乘以$ w $, 有

i.e.

另外

上式两端在$ [\tau, t] $上积分, 利用定理4.2, 成立

i.e.

由定理4.1可知

根据定理4.1结论, 有

因为序列$ \{\alpha_m\}_{m\in {\mathbb N}}\subset[0, \frac{1}{2}\mu\lambda_1] $有界, 则存在Cauchy序列满足

则对任意的$ t\in {{\Bbb R}} $$ \tau>0 $, $ \Phi_\tau(\cdot, \cdot, \cdot, \cdot) $为定义在

上的收缩函数, 引理6.3结论得证.

基于引理6.1, 引理6.2和引理6.3, 上半连续的充分条件($ C_1 $), ($ C_2 $)和($ C_3 $)得以验证, 以下结论自然成立.

定理6.1  已知$ u(\tau)\in H $, 对任意的$ t\in {{\Bbb R}} $, 拉回吸引子$ {\cal A}_\alpha(t) = \{A_\alpha(t)\}_{t\in {{\Bbb R}} } $具有上半连续性, 即

参考文献

Amick C .

Existence of solutions to the nonhomogeneous steady Navier-Stokes equations

Indiana Univ Math J, 1984, 3 (6): 431- 461

[本文引用: 1]

Babin A V, Vishik M I. Attractors of Evolution Equations. North-Holland: Amsterdam, 1992

[本文引用: 2]

Cheskidov A , Foias C .

On global attractors of the 3D Navier-Stokes equations

J Differential Equations, 2006, 231: 714- 754

DOI:10.1016/j.jde.2006.08.021      [本文引用: 1]

Caraballo T , Langa J A .

On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems

Dyn Contin Discrete Impuls Syst, 2003, 10: 491- 513

[本文引用: 1]

Caraballo T , Langa J A , Robinson J C .

Upper semicontinuity of attractors for small random perturbations of dynamical systems

Commun Partial Diff Eqns, 1998, 23: 1557- 1581

DOI:10.1080/03605309808821394      [本文引用: 1]

Carvalho A N , Langa J A , Robinson J C .

On the continuity of pullback attractors for evolution processes

Nonlinear Anal, 2009, 71: 1812- 1824

DOI:10.1016/j.na.2009.01.016      [本文引用: 1]

Chepyzhov V V , Pata V , Vishik M I .

Averaging of 2D Navier-Stokes equations with singularly oscillating forces

Nonlinearity, 2009, 22 (22): 351- 370

[本文引用: 1]

Chepyzhov V V , Titi V V , Vishik E S .

On the convergence of solutions of the Leray-α model to the trajectory attractor of the 3D Navier-Stokes system

Discrete Contin Dyn Syst, 2007, 17: 481- 500

DOI:10.3934/dcds.2007.17.481      [本文引用: 1]

Chepyzhov V V, Vishik M I. Attractors for Equations of Mathematical Physics. Providence, Rhode Island: American Mathematical Society, 2002

[本文引用: 2]

Erban R .

On the existence of solutions to the Navier-Stokes equations of a two-dimensional compressible flow

Math Meth Appl Sci, 2003, 26: 489- 517

DOI:10.1002/mma.362      [本文引用: 1]

Flandoli F , Schmalfuß B .

Weak solutions and attractors for three-dimensional Navier-Stokes equations with nonregular force

J Dyn Diff Equ, 1999, 11 (2): 355- 398

DOI:10.1023/A:1021937715194      [本文引用: 1]

Hale J K. Asymptotic Behavior of Dissipative Systems. Providence, Rhode Island: American Mathematical Society, 1991

[本文引用: 1]

Ladyzhenskaya O A. The Mathematical Theorem of Viscous Incompressible Flow. New York: Gordon and Breach, 1969

[本文引用: 1]

Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. New York: Springer-Verlag, 1997

[本文引用: 2]

Vishik M I , Chepyzhov V V .

Trajectory and global attractors of three-dimensional Navier-Stokes systems

Math Notes, 2002, 71: 177- 193

DOI:10.1023/A:1014190629738      [本文引用: 1]

Wang B X .

Upper semicontinuity of random attractors for non-compact random dynamical systems

Electron J Diff Equ, 2009, 2009: 1- 18

[本文引用: 1]

Wang Y .

On the upper semicontinuity of pullback attractors with applications to plate equations

Commun Pure Appl Anal, 2010, 9: 1653- 1673

DOI:10.3934/cpaa.2010.9.1653      [本文引用: 3]

Wang Y , Zhong C .

Upper semicontinuity of pullback attractors for nonautonomous Kirchhoff wave models

Discrete Contin Dyn Syst, 2013, 33 (7): 3189- 3209

DOI:10.3934/dcds.2013.33.3189      [本文引用: 3]

Yang X , Li L , Lu Y .

Regularity of uniform attractor for 3D non-autonomous Navier-Stokes-Voigt equation

Appl Math Compu, 2018, 334: 11- 29

[本文引用: 1]

Yang X , Feng B , Thales Maier de Souza , Wang T .

Long-time dynamics for a non-autonomous Navier-Stokes-Voigt equation in Lipschitz domains

Discrete Contin Dyn Syst B, 2019, 24 (1): 363- 389

[本文引用: 1]

Zelati M C , Gal C G .

Singular limits of voigt models in fluid dynamics

J Math Fluid Mech, 2015, 17: 233- 259

DOI:10.1007/s00021-015-0201-1      [本文引用: 1]

/