数学物理学报, 2022, 42(4): 1103-1111 doi:

论文

渐近线性Klein-Gordon-Maxwell系统正解的存在性

段誉,, 孙歆,

贵州工程应用技术学院理学院 贵州 毕节 551700

Existence of Positive Solutions for Klein-Gordon-Maxwell Systems with an Asymptotically Linear Nonlinearity

Duan Yu,, Sun Xin,

College of Science, Guizhou University of Engineering Science, Guizhou Bijie 551700

通讯作者: 段誉, E-mail: duanyu3612@163.com

收稿日期: 2021-03-9  

基金资助: 国家自然科学基金.  11661021
贵州省教育厅自然科学基金.  KY[2019]065
贵州省教育厅自然科学基金.  KY[2020]144

Received: 2021-03-9  

Fund supported: the NSFC.  11661021
the Natural Science Foundation of Education of Guizhou.  KY[2019]065
the Natural Science Foundation of Education of Guizhou.  KY[2020]144

作者简介 About authors

孙歆,E-mail:sunxinwan@163.com , E-mail:sunxinwan@163.com

Abstract

This article concerns the following Klein-Gordon-Maxwell systemwhere $ \omega> 0 $ is a constant and $ \lambda\geq1 $ is a parameter. When the nonlinearity satisfies asymptotically linear growth at infinity, the existence result of positive solutions for the system is obtained via variational methods. Our result completes some recent works concerning the existence of solutions of this system.

Keywords: Klein-Gordon-Maxwell system ; Variational methods ; Asymptotically linear ; Positive solutions

PDF (332KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

段誉, 孙歆. 渐近线性Klein-Gordon-Maxwell系统正解的存在性. 数学物理学报[J], 2022, 42(4): 1103-1111 doi:

Duan Yu, Sun Xin. Existence of Positive Solutions for Klein-Gordon-Maxwell Systems with an Asymptotically Linear Nonlinearity. Acta Mathematica Scientia[J], 2022, 42(4): 1103-1111 doi:

1 引言及主要结果

研究如下Klein-Gordon-Maxwell系统

$ \begin{equation} \left\{\begin{array}{ll} -\Delta u+\lambda V(x)u-K(x)(2\omega+\phi)\phi u=f(x, u), &x\in {{\Bbb R}} ^{3}, \\ \Delta \phi=K(x)(\omega+\phi)u^2, &x\in {{\Bbb R}} ^{3}, \end{array}\right. \end{equation} $

其中$ \omega> 0 $是一个常数, $ \lambda\geq1 $是一个参数, $ u, \phi: {{\Bbb R}} ^{3}\rightarrow {{\Bbb R}} , f: {{\Bbb R}} ^{3}\times {{\Bbb R}} \rightarrow {{\Bbb R}} $, $ V: {{\Bbb R}} ^{3}\rightarrow {{\Bbb R}} $. 问题(1.1)起源于数学物理领域中的某些应用问题. 为了描述三维空间中非线性Klein-Gordon场与静电场之间相互作用所产生的孤立波问题, 作者在文献[1]中首次提出了如下Klein-Gordon-Maxwell系统模型

$ \begin{equation} \left\{\begin{array}{ll} -\Delta u+[m_0^2-(\omega+e\phi)^2]u=|u|^{q-2}u, &x\in {{\Bbb R}} ^{3}, \\ \Delta \phi=(e\omega+e^2\phi)u^2, &x\in {{\Bbb R}} ^{3}, \end{array}\right. \end{equation} $

其中$ 0<\omega<m_0, \ 4<q<6 $, $ m_0 $$ e $分别表示粒子的质量和电量, $ \omega $表示相位, 系统的未知因素是联系粒子的场$ u $和电磁位势$ \phi $. 有关此系统物理方面的详述可参见文献[1-2]. 作为系统(1.2)的一般情形, 系统(1.1)近年来受到了众多学者的关注. 当非线性项$ f $满足$ (AR) $条件, $ K(x)\equiv1 $$ \lambda\equiv1 $时, 文献[3]首次研究了系统(1.1)无穷多解的存在性. 至此以后有关系统(1.1)解的存在性和多解性引起众多学者的兴趣, 众多关于非线性项$ f $在无穷远处的可解性条件被陆续给出, 如次线性条件[4], 超线性条件[5-18], 具有凹凸组合项条件[19, 20]. 据我们所了解,有关具有渐近非线性项的Klein-Gordon-Maxwell系统(1.1)的研究暂时还没有结果. 本文的主要目的是考虑非线性项$ f $在满足渐近线性条件且空间嵌入不具有紧性的情形下, 利用变分法给出了问题(1.1) 解的存在性结果, 完善了已有文献的相关结果. 本文的主要结果如下.

定理1.1   假设$ V, K, f $满足如下条件

$ (V_1) $$ V\in {\cal C}({{\Bbb R}} ^{3}, {{\Bbb R}} ) $, $ V_0=\inf\limits_{{{\Bbb R}} ^{3}} V(x)>0 $;

$ (V_2) $存在常数$ d>0 $, 使得meas$ \big\{x\in {{\Bbb R}} ^{3}: V(x)\leq d\big\}<\infty $, 其中meas$ \{\cdot\} $表示$ {{\Bbb R}} ^{3} $空间的Lebesgue测度;

$ (K) $$ K(x)\in L^\infty({{\Bbb R}} ^{3}) $$ K(x)\geq 0, K(x)\not\equiv 0 $关于$ x\in {{\Bbb R}} ^{3} $几乎处处成立;

$ (F_1) $$ f\in {\cal C}({{\Bbb R}} ^{3}\times {{\Bbb R}} , {\mathbb R}^+) $, 对任意的$ t<0 $, $ f(x, t)\equiv 0, $$ \lim\limits_{t\rightarrow0^+}\frac{f(x, t)}{t}=0 $关于$ x\in {{\Bbb R}} ^{3} $一致成立;

$ (F_2) $存在常数$ l\in (0, +\infty) $满足$ \lim\limits_{t\rightarrow +\infty}\frac{f(x, t)}{t}=l $关于$ x\in {{\Bbb R}} ^{3} $一致成立;

$ (F_3) $对任意的$ u\in H $, 有

其中$ F(x, t)=\int_{0}^{t}f(x, s){\rm d}s $, $ H $由下文(2.1)式所定义的.

则存在$ \Lambda_0>0 $, 当$ \lambda>\Lambda_0 $时问题(1.1) 至少存在一个正解.

注1.1   与上述已有文献中对非线性项的假设要求(超线性条件或次线性件)不同, 本文考虑的是非线性项满足渐近线性条件. 故定理1.1补充和完善了已有结果.

注1.2   存在$ V $$ f $满足定理1.1中的条件. 对给定$ R_0>0 $, 考虑如下正连续函数

则可以验证上述例子在指标选取某些范围下满足$ (V_1) $$ (V_1) $$ (F_1) $$ (F_3) $.

2 预备知识

$ \begin{equation} H:=\bigg\{u\in H^{1}({{\Bbb R}} ^3):\int_{{{\Bbb R}} ^3}V(x)u^2{\rm d}x<+\infty\bigg\}, \end{equation} $

其内积和范数定义为

对任意的$ \lambda\geq1 $, 定义如下内积和范数

$ H_\lambda=\big(H, \|\cdot\|_\lambda\big) $, 则由条件$ (V_1), (V_2) $及Poincaré不等式知, 嵌入映射$ H_\lambda\hookrightarrow L^{s}({{\Bbb R}} ^3) $是连续的. 即对任意的$ 2\leq p\leq 6 $, 存在$ S_ p>0 $, 有

$ \begin{equation} \|u\|_p\leq S_ p\|u\|_\lambda\ \ \forall u\in H_\lambda. \end{equation} $

系统(1.1)具有变分结构, 定义其能量泛函如下: 对任意的$ (u, \phi)\in H_\lambda\times D^{1, 2}({{\Bbb R}} ^3) $, 有

易知系统(1.1)的弱解$ (u, \phi)\in H_\lambda\times D^{1, 2}({{\Bbb R}} ^3) $对应着泛函$ J_{\lambda} $的临界点. 由于$ J_{\lambda} $是强不定的,为了克服这种困难, 需要对泛函进行一些简化: 将泛函$ J_{\lambda} $转化成只含有一个变量$ \; u\; $的式子. 为此, 现给出如下引理.

引理2.1[17]  假设$ K $满足条件$ (K) $, 则对任何$ u\in H^1({{\Bbb R}} ^3) $, 存在唯一的$ \phi=\phi_u\in{\cal D}^{1, 2}({{\Bbb R}} ^3) $, 满足方程

$ \begin{equation} \Delta \phi=K(x)(\omega+\phi)u^2. \end{equation} $

更进一步, 映射$ \Phi:u \in H^1({{\Bbb R}} ^3)\rightarrow \Phi[u]:=\phi_u \in {\cal D}^{1, 2}({{\Bbb R}} ^3) $是连续可微的并且满足

(i) 在集合$ \{x|u(x)\neq 0\} $上, $ -\omega\leq \phi_u\leq 0 $;

(ii) $ \|\phi_u\|_{{\cal D}^{1, 2}}\leq C|K|_\infty\|u\|^2_{\lambda}, $$ \int_{{{\Bbb R}} ^3}| K(x)\phi_u|u^2\leq C|K|^2_\infty\|u\|^4_{\lambda} $.

在(2.3)式左右两端同时乘以$ \phi_u $,并分部积分可得

$ \begin{equation} \int_{{{\Bbb R}} ^3}|\nabla\phi_u|^2{\rm d}x=-\int_{{{\Bbb R}} ^3}\omega K(x)\phi_uu^2{\rm d}x-\int_{{{\Bbb R}} ^3}K(x)\phi_u^2u^2{\rm d}x. \end{equation} $

从而结合(2.4)式及$ J_{\lambda} $的定义知, $ I_{\lambda}(u):=J_{\lambda}(u, \phi_u) $可化简为如下形式

$ (V_1), $$ (V_2) $, $ (F_1), $$ (F_2) $及引理2.1易知, $ I_{\lambda} $定义在空间$ H_\lambda $上是有意义的且$ I_{\lambda}\in C^1(H_\lambda, {{\Bbb R}} ) $, 其所对应的导数为

由文献[1, 命题3.5]知, $ u $是泛函$ I_{\lambda} $的临界点当且仅当$ (u, \phi)\in H_\lambda\times D^{1, 2}({{\Bbb R}} ^3) $是系统(1.1)的解, 并且$ \phi=\phi_u $. 因此, 为了得到问题(1.1)非零解, 我们只需寻找泛函$ I_{\lambda} $的非零的临界点即可.

$ B_R=\big\{x\in {{\Bbb R}} ^{3}: |x|<R\big\}, $$ B^{C}_R={{\Bbb R}} ^3\setminus B_R=\big\{x\in {{\Bbb R}} ^{3}: |x|\geq R\big\}. $

3 主要结果的证明

为了证明定理1.1, 下面给出几个引理.

引理3.1   假设$ (V_1) $$ (V_2) $, $ (K) $$ (F_1) $$ (F_3) $成立, 则泛函$ I_{\lambda}(u) $满足如下山路结构

(i) 存在$ \alpha>0 $, $ \rho>0 $使得$ I_{\lambda}(u)\big|_{\|u\|_\lambda= \rho}\geq \alpha>0; $

(ii) 存在$ \lambda_0>0, v\in H_\lambda $, 使得当$ \lambda>\lambda_0 $, $ \|v\|_\lambda>\rho $时, $ I_{\lambda}(v)<0 $.

   (i) 由$ (F_1) $$ (F_2) $知, 对任意的$ 2\leq q< 6, \varepsilon>0 $, 存在$ c(\varepsilon)>0 $,

$ \begin{equation} f(x, u)\leq\varepsilon|u|+c(\varepsilon)|u|^{q-1}, \ \ \forall (x, u)\in{{\Bbb R}} ^3\times {{\Bbb R}} , \end{equation} $

从而

$ \begin{equation} F(x, u)\leq\frac{\varepsilon}{2}|u|^2+\frac{c(\varepsilon)}{q}|u|^q, \ \ \forall (x, u)\in{{\Bbb R}} ^3\times {{\Bbb R}} . \end{equation} $

因此, 由(3.2)式, $ (K) $及引理2.1(i)知

$ \varepsilon\in (0, \frac{1}{S_2^2}) $, 则当$ \|u\|_\lambda= \rho $充分小时, $ \frac{1-\varepsilon S_2^2}{2}-\frac{c(\varepsilon)S_q^q}{q}\rho^{q-2}>0 $.

$ \alpha>0 $$ I_{\lambda}\mid_{\|u\|_\lambda= \rho}\geq \alpha>0 $.

(ii) 由条件$ (F_3) $知, 存在$ v\in H $满足

$ \begin{eqnarray} I_{\lambda}(v) &=& \frac{1}{2}\int_{{{\Bbb R}} ^3}\big(|\nabla v|^2+\lambda V(x)v^2\big){\rm d}x-\frac{1}{2}\int_{{{\Bbb R}} ^3}\omega K(x)\phi_vv^2{\rm d}x-\int_{{{\Bbb R}} ^3}F(x, v){\rm d}x{}\\ &\leq& \bigg(\frac{\omega^2 |K|_\infty}{2\lambda V_0}+\frac{1}{2}\bigg)\|v\|_\lambda^2-\int_{{{\Bbb R}} ^3}F(x, v){\rm d}x. \end{eqnarray} $

易知存在$ \lambda_0>0 $, 使得当$ \lambda>\lambda_0 $时, 有

故当$ \lambda>\lambda_0 $时, 有

从而存在$ \lambda_0>0 $, 使得当$ \lambda>\lambda_0 $时, 对充分小的$ \rho $满足$ \|v\|_\lambda>\rho $, $ I_{\lambda}(v)<0 $. 证毕.

引理3.2  假设$ (V_1) $$ (V_2) $成立, 则对任意的$ \varepsilon>0, p\in [2, 6), u\in H_\lambda $, 存在$ R_\varepsilon>0, \lambda_\varepsilon>0 $使得当$ \lambda\geq \lambda_\varepsilon $时, 有

   对任意的$ R>0 $, 定义

$ \begin{equation} \int_{A(R)}u^2{\rm d}x\leq\frac{1}{\lambda d}\int_{A(R)}\lambda V(x)u^2{\rm d}x\leq \frac{1}{\lambda d}\int_{{{\Bbb R}} ^3}\big(|\nabla u|^2+\lambda V(x)u^2\big){\rm d}x=\frac{1}{\lambda d}\|u\|_\lambda^2. \end{equation} $

对任意的$ p\in (2, 6) $, 令$ p^*=\frac{p}{p-2} $, 则由$ (V_1) $$ (V_2) $, Hölder不等式和(2.2)式知

$ \begin{equation} \int_{B(R)}u^2{\rm d}x \leq |B(R)|^{\frac{1}{p^*}}\bigg(\int_{B(R)}u^p{\rm d}x\bigg)^{\frac{2}{p}} \leq |B(R)|^{\frac{1}{p^*}}\|u\|_p^{2} \leq S_p^2|B(R)|^{\frac{1}{p^*}}\|u\|_\lambda^{2}. \end{equation} $

由(3.4), (3.5)式和Gagliardo-Nirenberg不等式知

$ \begin{eqnarray} \|u\|^{p}_{L^p_{B^C_{R}}}= \int_{_{L^p_{B^C_{R}}}}u^p{\rm d}x &\leq& C\|\nabla u\|_{_{L^2_{B^C_{R}}}}^{\frac{3(p-2)}{2}}\|u\|^{p-\frac{3(p-2)}{2}}_{L^2_{B^C_{R}}}{}\\ &\leq& C\| u\|_\lambda^{\frac{3(p-2)}{2}}\bigg(\int_{A(R)}u^2{\rm d}x+\int_{B(R)}u^2{\rm d}x\bigg)^{\frac{p}{2}-\frac{3(p-2)}{4}}{}\\ &\leq& C\| u\|_\lambda^{\frac{3(p-2)}{2}}\bigg(\frac{1}{\lambda d}\|u\|_\lambda^2+S_p^2|B(R)|^{\frac{1}{p^*}}\|u\|_\lambda^{2}\bigg)^{\frac{p}{2}-\frac{3(p-2)}{4}}{}\\ &=& C\| u\|_\lambda^p\bigg(\frac{1}{\lambda d}+S_p^2|B(R)|^{\frac{1}{p^*}}\bigg)^{\frac{p}{2}-\frac{3(p-2)}{4}}. \end{eqnarray} $

由条件$ (V_2) $知, $ |B(R)|\rightarrow 0, R\rightarrow +\infty. $故结合(3.6)式知, 对任意的$ \varepsilon>0, p\in [2, 6), u\in H_\lambda $, 存在$ R_\varepsilon>0, \lambda_\varepsilon>0 $使得当$ \lambda\geq \lambda_\varepsilon $时, 有

证毕.

引理3.3   假设$ (V_1) $$ (V_2) $, $ (K) $$ (F_1) $$ (F_3) $成立, 则存在$ \Gamma_0>0 $使得当$ \lambda>\Gamma_0 $时, 泛函$ I_{\lambda}(u) $满足$ (C)_c $条件.

   设$ \{u_{n}\}\subset H_\lambda $是泛函$ I_\lambda $$ (C)_c $序列,即

$ \begin{equation} I_{\lambda}(u_n)\rightarrow c, \; \; \; \; \|I_{\lambda}'(u_n)\|(1+\|u_n\|_\lambda)\rightarrow 0, \; \; \; \; n\rightarrow \infty. \end{equation} $

首先证明: $ \{u_{n}\} $有界. 采用反证法证明$ \|u_n\|_\lambda $有界, 假设$ \|u_n\|_\lambda\rightarrow \infty $.$ \omega_n=u_n/\|u_n\|_\lambda $, 则$ \|\omega_n\|_\lambda=1 $. 从而存在$ \{\omega_n\} $的一个子列(不失一般性, 仍记之为$ \{\omega_n\} $)$ \omega\in H_\lambda $使得

$ \begin{equation} \omega_n\rightharpoonup \omega, \; \mbox{于}\; H_\lambda;\; \omega_n\rightarrow \omega, \; \mbox{于}\; L_{loc}^2({{\Bbb R}} ^3);\; \omega_n(x)\rightarrow \omega(x), \mbox{关于}\; {\rm a.e.}\; x\in {{\Bbb R}} ^3. \end{equation} $

下面通过排除$ \{\omega_n\} $的消失性和非消失性两种情况来导出矛盾.

$ \{\omega_n\} $是消失的, 即对任意的$ R>0 $, 有

$ \begin{equation} \lim\limits_{n\rightarrow \infty}\sup\limits_{y\in {{\Bbb R}} ^3} \int_{B_R(y)}|\omega_n|^2{\rm d}x=0. \end{equation} $

$ (F_1) $$ (F_2) $知, 存在常数$ \bar{C}>0 $使得对任意的$ (x, t)\in {{\Bbb R}} ^3\times{{\Bbb R}} $, 有

$ \begin{equation} F(x, t)\leq\frac{\bar{C}}{2}t^2. \end{equation} $

由引理3.2知, 对任意的$ 0<\varepsilon'<1 $, 存在$ R_{\varepsilon'}>0, \lambda_{\varepsilon'}>0 $使得当$ \lambda\geq \lambda_{\varepsilon'}\geq1 $时, 有

$ \begin{equation} \int_{B^C_{R_{\varepsilon'}}}\omega_n^2{\rm d}x\leq \frac{\varepsilon'}{\bar{C}}. \end{equation} $

由条件(3.9)–(3.11)知, 对任意的$ 0<\varepsilon'<1 $, 存在$ R_{\varepsilon'}>0, \lambda_{\varepsilon'}>0 $使得当$ \lambda\geq \lambda_{\varepsilon'}\geq1 $时, 有

$ \begin{eqnarray} \lim\limits_{n\rightarrow \infty}\int_{{{{\Bbb R}} }^3}\frac{F(x, u_n)}{u_n^2}\omega_n^2{\rm d}x &\leq& \frac{\bar{C}}{2}\lim\limits_{n\rightarrow \infty}\int_{{{{\Bbb R}} }^N}\omega_n^2{\rm d}x{}\\ &=& \frac{\bar{C}}{2}\lim\limits_{n\rightarrow \infty}\bigg(\int_{B^C_{R_{\varepsilon'}}}\omega_n^2{\rm d}x+\int_{B_{R_{\varepsilon'}}}\omega_n^2{\rm d}x\bigg){}\\ &\leq& \frac{\varepsilon'}{2}. \end{eqnarray} $

因为

所以结合条件(3.12)知

这显然是矛盾的. 故$ \{\omega_{n}\} $是非消失的, 即存在$ R, \alpha>0 $及有界序列$ \{y_{n}\}\subset {{\Bbb R}} ^3 $满足

$ \begin{equation} \lim\limits_{n\rightarrow \infty}\int_{B_R(y_n)}|\omega_n|^2{\rm d}x\geq \alpha>0. \end{equation} $

由(3.8)式易知$ \omega\neq 0 $. 由条件$ (V_1) $, $ (K) $, (3.10)式及引理2.1(i)知

$ \begin{eqnarray} I_{\lambda}(u_n)&=& \frac{1}{2}\int_{{{\Bbb R}} ^3}\big(|\nabla u_n|^2+\lambda V(x)u_n^2\big){\rm d}x-\frac{1}{2}\int_{{{\Bbb R}} ^3}\omega K(x)\phi_{u_n}u_n^2{\rm d}x-\int_{{{\Bbb R}} ^3}F(x, u_n){\rm d}x {}\\ &\geq& \frac{1}{2}\int_{{{\Bbb R}} ^3}\lambda V(x)u_n^2{\rm d}x-\int_{{{\Bbb R}} ^3}F(x, u_n){\rm d}x{}\\ &\geq& \bigg(\frac{\lambda V_0}{2}\int_{{{\Bbb R}} ^3}\omega_n^2{\rm d}x-\int_{{{\Bbb R}} ^3}\frac{F(x, u_n)}{u_n^2}\omega_n^2{\rm d}x\bigg)\|u_n\|_\lambda^2{}\\ &\geq& \bigg(\frac{\lambda V_0}{2}-\frac{\bar{C}}{2}\bigg)\|u_n\|_\lambda^2\int_{{{\Bbb R}} ^3}\omega_n^2{\rm d}x. \end{eqnarray} $

由(3.14)式知, 当$ \lambda>\frac{\bar{C}}{V_0} $时, 有

从而结合条件(3.13)知

这显然也是矛盾的. 综合以上两种情况的讨论可知, 当$ \lambda>\max\{\lambda_{\varepsilon'}, \frac{\bar{C}}{V_0}\} $时, $ \{u_{n}\} $在空间$ H_\lambda $中是有界的.

其次证明:$ \{u_{n}\} $在空间$ H_\lambda $中有一个强收敛的子列. 因为$ \{u_{n}\} $在空间$ H_\lambda $中是有界的, 所以存在$ \{u_n\} $的一个子列(不失一般性, 仍记之为$ \{u_n\} $)$ u\in H_\lambda $使得

$ \omega_n=u_n-u $, 则$ \|\omega_n\|_\lambda $关于$ n $是一致有界的且$ \omega_n\rightharpoonup0 $. 下证$ \omega_n\rightarrow0 $即可. 由$ (F_1), (F_2) $易知, 对任意的$ 0<\varepsilon_1<\frac{1}{2S_2^2}, 1<q<5 $, 存在$ c(\varepsilon_1)>0 $使得

从而有

$ \begin{eqnarray} \int_{{{{\Bbb R}} }^3}f(x, \omega_n)\omega_n{\rm d}x &\leq&\varepsilon_1\int_{{{{\Bbb R}} }^3}|\omega_n|^2{\rm d}x+c(\varepsilon_1)\int_{{{{\Bbb R}} }^3}|\omega_n|^{q+1}{\rm d}x{}\\ &\leq& \varepsilon_1S_2^2\|\omega_n\|_\lambda^2+c(\varepsilon_1)\int_{{{{\Bbb R}} }^3}|\omega_n|^{q+1}{\rm d}x. \end{eqnarray} $

因为$ \|\omega_n\|_\lambda $关于$ n $是一致有界的, 所以一定存在$ \varepsilon_2>0 $使得

$ \begin{equation} \varepsilon_1S_2^2\|\omega_n\|_\lambda^2\geq\varepsilon_2\|\omega_n\|_\lambda^{q+1}. \end{equation} $

由引理3.2可知, 对上述给定的$ \varepsilon_2>0 $, 存在$ R_{\varepsilon_2}>0, \lambda_{\varepsilon_2}>0 $使得当$ \lambda\geq \lambda_{\varepsilon_2}>1 $时, 有

故结合$ \omega_n\rightarrow 0\; \mbox{于}\; L_{loc}^{q+1}({{\Bbb R}} ^3) $及(3.16)式知

$ \begin{eqnarray} c(\varepsilon_1)\int_{{{{\Bbb R}} }^3}|\omega_n|^{q+1}{\rm d}x &=&c(\varepsilon_1)\bigg(\int_{B^C_{R_{\varepsilon_2}}}|\omega_n|^{q+1}{\rm d}x+\int_{B_{R_{\varepsilon_2}}}|\omega_n|^{q+1}{\rm d}x\bigg){}\\ &\leq& \varepsilon_2 \|\omega_n\|_\lambda^{q+1}+o(1){}\\ &\leq& \varepsilon_1S_2^2\|\omega_n\|_\lambda^2+o(1). \end{eqnarray} $

由引理2.1(i)易知

由文献[17, 引理2.8]的结论知

从而结合条件(3.7), (3.15)和(3.17)知

这意味着$ \omega_n\rightarrow0 $, 即$ u_n\rightarrow u $.$ \Gamma_0:=\max\{\lambda_{\varepsilon'}, \lambda_{\varepsilon_2}, \frac{\bar{C}}{V_0}\} $, 则由上述讨论可知, 当$ \lambda>\Gamma_0 $时, 泛函$ I_{\lambda}(u) $满足$ (C)_c $条件. 证毕.

定理1.1的证明   令$ \Lambda_0:=\max\{\lambda_0, \lambda_{\varepsilon'}, \lambda_{\varepsilon_2}, \frac{\bar{C}}{V_0}\} $. 则当$ \lambda>\Lambda_0>0 $时, 由引理3.1知, $ I_{\lambda} $具有山路结构; 由引理3.3知, $ I_{\lambda} $满足$ (C)_c $条件. 故由山路定理(参见文献[21, 定理2.2]) 知, 存在$ u_0\in H_\lambda $满足$ I_{\lambda}^{'}(u_0)=0 $$ I_{\lambda}(u_0)>0 $. 即问题(1.1)存在一个非平凡解. 下证$ u_0>0 $.$ u^{-}=\max\{0, -u\} $.$ (F_1) $

这意味着$ u_0^-=0 $, 故在空间$ {{\Bbb R}} ^{3} $上, $ u_0\geq 0 $ a.e. 成立. 从而根据强极大值原理知: $ u_0 $是问题(1.1)的正解. 证毕.

参考文献

Benci V , Fortunato D .

Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations

Rev Math Phys, 2002, 14 (4): 409- 420

DOI:10.1142/S0129055X02001168      [本文引用: 3]

Benci V , Fortunato D .

The nonlinear Klein-Gordon equation coupled with the Maxwell equations

Nonlinear Anal, 2001, 47 (9): 6065- 6072

DOI:10.1016/S0362-546X(01)00688-5      [本文引用: 1]

He X M .

Multiplicity of solutions for a nonlinear Klein-Gordon-Maxwell system

Acta Appl Math, 2014, 130 (1): 237- 250

DOI:10.1007/s10440-013-9845-0      [本文引用: 1]

Li L , Tang C L .

Infinitely many solutions for a nonlinear Klein-Gordon-Maxwell system

Nonlinear Anal, 2014, 110: 157- 169

DOI:10.1016/j.na.2014.07.019      [本文引用: 1]

Che G F , Chen H B .

Existence and Multiplicity of nontrivial solutions for Klein-Gordon-Maxwell system with a parameter

J Korean Math Soc, 2017, 54 (3): 1015- 1030

DOI:10.4134/JKMS.j160344      [本文引用: 1]

Ding L , Li L .

Infinitely many standing wave solutions for the nonlinear Klein-Gordon-Maxwell system with sign-changing potential

Comput Math Appl, 2014, 68 (5): 589- 595

DOI:10.1016/j.camwa.2014.07.001     

Chen S T , Tang X H .

Infinitely many solutions and least energy solutions for Klein-Gordon-Maxwell systems with general superlinear nonlinearity

Comput Math Appl, 2018, 75 (9): 3358- 3366

DOI:10.1016/j.camwa.2018.02.004     

Chen S J , Li L .

Infinitely many solutions for Klein-Gordon-Maxwell system with potentials vanishing at infinity

Zeitschrift für Analysis und ihre Anwendungen, 2018, 37 (1): 39- 51

DOI:10.4171/ZAA/1601     

Moura D E L , Miyagaki O H , Ruviaro R .

Positive ground state solutions for quasicritical Klein-Gordon-Maxwell type systems with potential vanishing at infinity

Electronic Journal of Differential Equations, 2017, 154: 1- 11

URL    

Miyagaki O H , Moura D E L , Ruviaro R .

Positive ground state solutions for quasicritical the fractional Klein-Gordon-Maxwell system with potential vanishing at infinity

Complex Variables and Elliptic Equations, 2019, 64 (2): 315- 329

DOI:10.1080/17476933.2018.1434625     

Xu L P , Chen H B .

Existence and multiplicity of solutions for nonhomogeneous Klein-Gordon-Maxwell equations

Electronic Journal of Differential Equations, 2015, 102: 1- 12

Wang L X .

Two solutions for a nonhomogeneous Klein-Gordon-Maxwell system

Electronic Journal of Qualitative Theory of Differential Equations, 2019, 40: 1- 12

URL    

Liu X Q , Chen S J , Tang C L .

Ground state solutions for Klein-Gordon-Maxwell system with steep potential well

Appl Math Lett, 2019, 90: 175- 180

DOI:10.1016/j.aml.2018.11.002     

Gan C L , Xiao T , Zhang Q F .

Improved results of nontrivial solutions for a nonlinear nonhomogeneous Klein-Gordon-Maxwell system involving sign-changing potential

Adv Differ Equ, 2020, 167: 1- 16

Zhang Q F , Gan C L , Xiao T , et al.

An improved result for Klein-Gordon-Maxwell systems with steep potential well

Math Meth Appl Sci, 2021, 44 (15): 11856- 11862

DOI:10.1002/mma.6514     

Chen S J , Song S Z .

Multiple solutions for nonhomogeneous Klein-Gordon-Maxwell equations on $\R.3$

Nonlinear Anal Real World Appl, 2015, 22: 259- 271

DOI:10.1016/j.nonrwa.2014.09.006     

Wang L X , Chen S J .

Two solutions for nonhomogeneous Klein-Gordon-Maxwell system with sign-changing potential

Electronic Journal of Differential Equations, 2018, 124: 1- 21

[本文引用: 1]

Shi H X , Chen H B .

Multiple positive solutions for nonhomogeneous Klein-Gordon-Maxwell equations

Applied Mathematics and Computation, 2018, 337: 504- 513

DOI:10.1016/j.amc.2018.05.052      [本文引用: 1]

谢苏静, 黄文念.

一类Klein-Gordon-Maxwell方程无穷多解的存在性

高校应用数学学报, 2018, 33A (3): 315- 323

URL     [本文引用: 1]

Xie S J , Huan W N .

Existence of infinitely many solutions for a Klein-Gordon-Maxwell system

Applied Mathematics-A Journal of Chinese Universities, 2018, 33A (3): 315- 323

URL     [本文引用: 1]

陈丽珍, 李安然, 李刚.

带有次线性项和超线性项的Klein-Gordon-Maxwell系统多重解的存在性

数学物理学报, 2017, 37A (4): 663- 670

URL     [本文引用: 1]

Chen L Z , Li A R , Li G .

Existence of infinitely many solutions to a class of Klein-Gordon-Maxwell system with superlinear and sublinear terms

Acta Math Sci, 2017, 37A (4): 663- 670

URL     [本文引用: 1]

Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. Providencn, RI: The American Mathematical Society, 1986

/