渐近线性Klein-Gordon-Maxwell系统正解的存在性
Existence of Positive Solutions for Klein-Gordon-Maxwell Systems with an Asymptotically Linear Nonlinearity
通讯作者:
收稿日期: 2021-03-9
基金资助: |
|
Received: 2021-03-9
Fund supported: |
|
This article concerns the following Klein-Gordon-Maxwell system
Keywords:
本文引用格式
段誉, 孙歆.
Duan Yu, Sun Xin.
1 引言及主要结果
研究如下Klein-Gordon-Maxwell系统
其中
其中
定理1.1 假设
其中
则存在
注1.1 与上述已有文献中对非线性项的假设要求(超线性条件或次线性件)不同, 本文考虑的是非线性项满足渐近线性条件. 故定理1.1补充和完善了已有结果.
注1.2 存在
则可以验证上述例子在指标选取某些范围下满足
2 预备知识
令
其内积和范数定义为
对任意的
令
系统(1.1)具有变分结构, 定义其能量泛函如下: 对任意的
易知系统(1.1)的弱解
引理2.1[17] 假设
更进一步, 映射
(i) 在集合
(ii)
在(2.3)式左右两端同时乘以
从而结合(2.4)式及
由
由文献[1, 命题3.5]知,
令
3 主要结果的证明
为了证明定理1.1, 下面给出几个引理.
引理3.1 假设
(i) 存在
(ii) 存在
证 (i) 由
从而
因此, 由(3.2)式,
取
则
(ii) 由条件
故
易知存在
故当
从而存在
引理3.2 假设
证 对任意的
则
对任意的
由(3.4), (3.5)式和Gagliardo-Nirenberg不等式知
由条件
证毕.
引理3.3 假设
证 设
首先证明:
下面通过排除
若
由
由引理3.2知, 对任意的
由条件(3.9)–(3.11)知, 对任意的
因为
所以结合条件(3.12)知
这显然是矛盾的. 故
由(3.8)式易知
由(3.14)式知, 当
从而结合条件(3.13)知
这显然也是矛盾的. 综合以上两种情况的讨论可知, 当
其次证明:
令
从而有
因为
由引理3.2可知, 对上述给定的
故结合
由引理2.1(i)易知
由文献[17, 引理2.8]的结论知
从而结合条件(3.7), (3.15)和(3.17)知
这意味着
定理1.1的证明 令
这意味着
参考文献
Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations
,DOI:10.1142/S0129055X02001168 [本文引用: 3]
The nonlinear Klein-Gordon equation coupled with the Maxwell equations
,DOI:10.1016/S0362-546X(01)00688-5 [本文引用: 1]
Multiplicity of solutions for a nonlinear Klein-Gordon-Maxwell system
,DOI:10.1007/s10440-013-9845-0 [本文引用: 1]
Infinitely many solutions for a nonlinear Klein-Gordon-Maxwell system
,DOI:10.1016/j.na.2014.07.019 [本文引用: 1]
Existence and Multiplicity of nontrivial solutions for Klein-Gordon-Maxwell system with a parameter
,DOI:10.4134/JKMS.j160344 [本文引用: 1]
Infinitely many standing wave solutions for the nonlinear Klein-Gordon-Maxwell system with sign-changing potential
,DOI:10.1016/j.camwa.2014.07.001
Infinitely many solutions and least energy solutions for Klein-Gordon-Maxwell systems with general superlinear nonlinearity
,DOI:10.1016/j.camwa.2018.02.004
Infinitely many solutions for Klein-Gordon-Maxwell system with potentials vanishing at infinity
,DOI:10.4171/ZAA/1601
Positive ground state solutions for quasicritical Klein-Gordon-Maxwell type systems with potential vanishing at infinity
,
Positive ground state solutions for quasicritical the fractional Klein-Gordon-Maxwell system with potential vanishing at infinity
,DOI:10.1080/17476933.2018.1434625
Existence and multiplicity of solutions for nonhomogeneous Klein-Gordon-Maxwell equations
,
Ground state solutions for Klein-Gordon-Maxwell system with steep potential well
,
Improved results of nontrivial solutions for a nonlinear nonhomogeneous Klein-Gordon-Maxwell system involving sign-changing potential
,
An improved result for Klein-Gordon-Maxwell systems with steep potential well
,DOI:10.1002/mma.6514
Multiple solutions for nonhomogeneous Klein-Gordon-Maxwell equations on $\R.3$
,DOI:10.1016/j.nonrwa.2014.09.006
Two solutions for nonhomogeneous Klein-Gordon-Maxwell system with sign-changing potential
,
Multiple positive solutions for nonhomogeneous Klein-Gordon-Maxwell equations
,DOI:10.1016/j.amc.2018.05.052 [本文引用: 1]
一类Klein-Gordon-Maxwell方程无穷多解的存在性
,
Existence of infinitely many solutions for a Klein-Gordon-Maxwell system
带有次线性项和超线性项的Klein-Gordon-Maxwell系统多重解的存在性
,
Existence of infinitely many solutions to a class of Klein-Gordon-Maxwell system with superlinear and sublinear terms
/
〈 | 〉 |