Processing math: 2%

数学物理学报, 2022, 42(2): 379-386 doi:

论文

带平均曲率算子的离散混合边值问题凸解的存在性

段磊,, 陈天兰,

西北师范大学数学与统计学院 兰州 730070

Existence of Convex Solutions for a Discrete Mixed Boundary Value Problem with the Mean Curvature Operator

Duan Lei,, Chen Tianlan,

College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070

通讯作者: 陈天兰, E-mail: chentianlan511@126.com

收稿日期: 2021-06-23  

基金资助: 国家自然科学基金.  11801453
国家自然科学基金.  11901464
甘肃省青年科技基金.  20JR10RA100

Received: 2021-06-23  

Fund supported: the NSFC.  11801453
the NSFC.  11901464
the Youth Science and Technology Fund of Gansu Province.  20JR10RA100

作者简介 About authors

段磊,E-mail:gsxsdl@163.com , E-mail:gsxsdl@163.com

Abstract

In this paper, by using the fixed point theorem in cones, we discuss the existence of

Δ[ϕ(Δv(t1))]=f(t,v(t)),t[2,T1]Z,
Δv(1)=0,v(T)=0
nontrivial convex solutions for a discrete mixed boundary value problem of mean curvature operator in Minkowski space, where ϕ(s)=s1s2,s(1,1),[2,T1]Z:={2,3,,T2,T1},T and T\in{\Bbb N}^{\ast} , the nonlinear term f(t, u) is nonnegative and continuous, and singularity is allowed at u=1 .

Keywords: Mean curvature operator ; Discrete mixed boundary value problem ; Nontrivial convex solutions ; Cone ; Fixed point theorem

PDF (296KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

段磊, 陈天兰. 带平均曲率算子的离散混合边值问题凸解的存在性. 数学物理学报[J], 2022, 42(2): 379-386 doi:

Duan Lei, Chen Tianlan. Existence of Convex Solutions for a Discrete Mixed Boundary Value Problem with the Mean Curvature Operator. Acta Mathematica Scientia[J], 2022, 42(2): 379-386 doi:

1 引言

{\Bbb Z} 是整数集, 对任意 a, b\in{\Bbb Z} a<b , 记 [a, b]_{{\Bbb Z}}:=\{a, a+1, \cdots, b\} .

平均曲率问题来源于微分几何与相对论, 在力学、天体物理、相对论及非线性分析中有着广泛的应用, 近年来, Minkowski空间中有关平均曲率算子的各类问题受到许多学者广泛关注和研究[1-4], 然而, 关于奇异平均曲率方程解的研究相对较少[5-7]. 特别地, 离散形式的则更少, 参见文献[8, 9], 他们主要研究径向凹解的存在性和多重性, 对于非平凡凸解的研究涉足却很少. 因此, 对该类问题的研究是非常有必要和有意义的. 本文将运用锥上的不动点定理讨论Minkowski空间中带平均曲率算子的离散混合边值问题

\begin{equation} \Delta[\phi(\Delta v(t-1))]=f(t, -v(t)), {\quad} t\in[2, T-1]_{{\Bbb Z}} \end{equation}
(1.1)

\begin{equation} \Delta v(1)=0, {\quad} v(T)=0 \end{equation}
(1.2)

非平凡凸解的存在性, 而且处理的非线性项更加广泛.

Wang[10]研究了Dirichlet边值问题

\begin{equation} \big((u'(t))^{n}\big)'=nt^{n-1}f(-u(t)), {\quad} 0<t<1, \end{equation}
(1.3)

\begin{equation} u'(0)=0, {\quad} u(1)=0 \end{equation}
(1.4)

凸解的存在性, 其中 n\geqslant1 . 运用不动点指数证明了问题(1.3)–(1.4) 至少存在一个非平凡凸解, 并且在 [0, 1) 上是负的. 此类问题源于研究Monge-Ampère方程的Dirichlet问题

\begin{equation} \begin{array}{ll}\det D^{2}u=f(-u), & x\in B, \\ u=0, & x\in\partial B\end{array} \end{equation}
(1.5)

径向凸解的存在性, 这里 B=\{x\in{\Bbb R}^{n}:|x|<1\} , 关于问题(1.5) 径向凸解的详细结果可参见文献[11].

Chen等[9]运用拓扑度理论、上下解方法及临界点理论研究了一类带平均曲率算子的离散边值问题

\Delta\Big[\frac{\Delta u(t-1)}{\sqrt{1-(\Delta u(t-1))^{2}}}\Big]+\lambda\mu(t)u^{q}(t)=0, {\quad} t\in [2, n-1]_{{\Bbb Z}},

\Delta u(1)=0=u(n)

多个正解的存在性, 其中 \lambda>0 为参数, n>4, q>1, \mu:[2, n-1]_{{\Bbb Z}}\rightarrow (0, +\infty) 连续, 他们证明了存在 \Lambda>0 , 当 \lambda\in(0, \Lambda), \lambda=\Lambda \lambda>\Lambda 时, 上述问题分别有零个, 至少一个或两个正解.

Liang等[6]运用锥上的不动点定理研究了一类Minkowski平均曲率算子的奇异Dirichlet问题

\begin{array}{ll} { } \mbox{div}\Big(\frac{\nabla v}{\sqrt{1-|\nabla v|^{2}}}\Big)=f(|x|, -v), & x\in B(1), \\ v=0, & x\in\partial B(1)\end{array}

非平凡径向凸解的存在性, 其中 f [0, 1]\times[0, 1) 非负连续且在 u=1 处允许具有奇异性.

基于上述工作以及[12, 13]的启发, 一个自然的想法是考虑带平均曲率算子的离散边值问题凸解的存在性. 为此, 本文将讨论问题(1.1)–(1.2) 非平凡凸解的存在性.

本文总假定:

(H _{\phi} ) \phi:(-1, 1)\rightarrow {\Bbb R} 是一个奇的递增同胚映射, 且 \phi(0)=0 .

(H _{f} ) f:[2, T-1]_{{\Bbb Z}}\times[0, 1)\rightarrow [0, +\infty) 连续, 且在 u=1 处允许具有奇异性.

显然, 若 v(t) 满足问题(1.1)–(1.2), 且对任意 t\in[2, T-1]_{{\Bbb Z}}, v(t)\leqslant0, \Delta^{2}v(t-1)\geqslant0 , 则 v(t) 是问题(1.1)–(1.2) 的非平凡负的凸解. 运用变量代换 u(t)=-v(t) , 则问题(1.1)–(1.2) 转化为

\begin{equation} \Delta[\phi(-\Delta u(t-1))]=f(t, u(t)), t\in[2, T-1]_{{\Bbb Z}}, \end{equation}
(1.6)

\begin{equation} \Delta u(1)=0, u(T)=0. \end{equation}
(1.7)

又因 \phi 是奇函数, 所以问题(1.6)–(1.7) 等价于

\begin{equation} \Delta[-\phi(\Delta u(t-1))]=f(t, u(t)), t\in[2, T-1]_{{\Bbb Z}}, \end{equation}
(1.8)

\begin{equation} \Delta u(1)=0, u(T)=0. \end{equation}
(1.9)

问题(1.8)–(1.9) 的正凹解对应问题(1.1)–(1.2) 的非平凡凸解. 因此, 我们只需要讨论问题(1.8)–(1.9) 正凹解的存在性.

下面给出一些简单记号.

\Delta[-\phi(\Delta u(t-1))]=\phi(\Delta u(t-1))-\phi(\Delta u(t)), t\in[2, T-1]_{{\Bbb Z}},

注意到 \Delta u(t-1)=u(t)-u(t-1) 是前向差分算子, 对任意 l, m\in{\Bbb N} m>l , 有 \sum\limits^{l}_{t=m}u(t)=0 .

2 预备知识

X 是一个实Banach空间, K X 的一个非空闭子集, \Omega X 的子集, 记

\Omega_{K}=\Omega\cap K, {\quad} \partial_{K}\Omega=(\partial\Omega)\cap K.

下面引入本文使用的工具.

引理2.1[14]  设 K\subset X X 中的一个锥, \Omega^{a}, \Omega^{b} X 的有界开子集, \overline{\Omega^{a}}_{K}\subset\Omega^{b}_{K}, \Omega^{a}_{K}\neq\emptyset , 若全连续算子 A:\overline{\Omega^{b}}_{K}\rightarrow K 满足:

(ⅰ) \|Au\|\leqslant\|u\|, u\in\partial_{K}\Omega^{a} ;

(ⅱ) 存在 e\in K\setminus\{0\} , 使得 u\neq Au+\lambda e, u\in\partial_{K}\Omega^{b}, \lambda>0 .

A \overline{\Omega^{b}}_{K}\setminus\Omega^{a}_{K} 上至少有一个不动点.

下面引入本文使用的空间. 设 T\in{\Bbb N} T>6 , 记

X=V^{T-2}=\{{\bf{u}}\in{\Bbb R}^{T} | \Delta u(1)=0, u(T)=0\},

定义范数 \|{\bf{u}}\|=\max\limits_{t\in[1, T-1]_{{\Bbb Z}}}|u(t)| , 则 X 按该范数 \|\cdot\| 构成Banach空间.

{\bf{u}}=(u(1), \cdots, u(T))\in{\Bbb R}^{T} , 则

\Delta{\bf{u}}=(\Delta u(1), \cdots, \Delta u(T-1))\in{\Bbb R}^{T-1},

其范数 \|\Delta{\bf{u}}\|=\max\limits_{t\in[1, T-1]_{{\Bbb Z}}}|\Delta u(t)| .

定义锥 K 如下

K=\Big\{{\bf{u}}\in X:u(t)\geqslant0\ \mbox{于}\ t\in[1, T]_{{\Bbb Z}} \ \mbox{且}\ \min\limits_{t\in[3, T-2]_{{\Bbb Z}}}u(t)\geqslant\sigma\|{\bf{u}}\|\Big\},

其中 0<\sigma<1 .

\Omega^{a}=\Big\{{\bf{u}}\in X:\min\limits_{t\in[3, T-2]_{{\Bbb Z}}}u(t)<\sigma a\}, B^{a}=\{{\bf{u}}\in X:\|{\bf{u}}\|<a\Big\}.

在陈述主要结果之前, 先回顾以下结果:

引理2.2[15, 16]  集合 \Omega^{a} B^{a} 具有以下性质:

(ⅰ) \Omega^{a}_{K} B^{a}_{K} 相对 K 是开的;

(ⅱ) B^{\sigma a}_{K}\subset\Omega^{a}_{K}\subset B^{a}_{K} ;

(ⅲ) u\in\partial_{K}\Omega^{a} 当且仅当 \min\limits_{t\in[\sigma, 1-\sigma]}u(t)=\sigma a ;

(ⅳ) 若 u\in\partial_{K}\Omega^{a} , 则 a\geqslant u(t)\geqslant\sigma a, t\in[\sigma, 1-\sigma] .

显然, 对于每个 a>0 , 集合 \Omega^{a} 是无界的, 不能对 \Omega^{a} 直接应用引理2.1, 因此, 对任意 b>a , 令

\Omega^{a}_{K}=(\Omega^{a}\cap B^{b})_{K}, {\quad} \overline{\Omega^{a}}_{K}=(\overline{\Omega^{a}\cap B^{b}})_{K},

第一个等式直接从(ⅱ) 可推出, 对第二个等式, 显然有 (\overline{\Omega^{a}\cap B^{b}}) _{K}\subseteq\overline{\Omega^{a}}_{K} , 由(ⅲ) 知, 对任意 {\bf{u}}\in\overline{\Omega^{a}}_{K} , 有

\sigma\|{\bf{u}}\|\leqslant\min\limits_{t\in[3, T-2]_{{\Bbb Z}}}u(t)\leqslant\sigma a<\sigma b,

这意味着 {\bf{u}}\in(\overline{\Omega^{a}}\cap B^{b})_{K} , 由于集合 \Omega^{a} B^{b} 是开集, 所以 \overline{\Omega^{a}}\cap B^{b}\subset\overline{\Omega^{a}\cap B^{b}} , 从而 {\bf{u}}\in(\overline{\Omega^{a}\cap B^{b}})_{K}, \overline{\Omega^{a}}_{K}\subseteq(\overline{\Omega^{a}\cap B^{b}})_{K} , 综上可得第二个等式成立.

引理2.3  设 {\bf{u}}=(u(1), u(2), \cdots, u(T))\in{\Bbb R}^{T} u(t)\geqslant0 , \Delta u(t) [1, T-1]_{{\Bbb Z}} 上递减, 则存在 0<\sigma<1 , 使得 \min\limits_{t\in[3, T-2]_{{\Bbb Z}}}u(t)\geqslant\sigma\|{\bf{u}}\|.

  由于 \Delta u(t) [1, T-1]_{{\Bbb Z}} 上递减, 则对任意 t, t_{0}, t_{1}\in[1, T-1]_{{\Bbb Z}} t_{0}<t<t_{1} , 有

u(t)-u(t_{0})=\sum\limits^{t-1}_{\tau=t_{0}}\Delta u(\tau)\geqslant(t-t_{0})\Delta u(t-1),

u(t_{1})-u(t)=\sum\limits^{t_{1}-1}_{\tau=t}\Delta u(\tau)\leqslant(t_{1}-t)\Delta u(t-1),

所以

u(t)\geqslant\frac{(t_{1}-t)u(t_{0})+(t-t_{0})u(t_{1})}{t_{1}-t_{0}},

选择 p\in[1, T]_{{\Bbb Z}} , 使得 u(p)=\|{\bf{u}}\| , 考虑 [t_{0}, t_{1}]_{{\Bbb Z}} [1, p]_{{\Bbb Z}} [p, T]_{{\Bbb Z}} 中的任意一个, 有

u(t)\geqslant\frac{t-1}{T-1}\|{\bf{u}}\|, {\quad} t\in[1, p]_{{\Bbb Z}},

u(t)\geqslant\frac{T-t}{T-1}\|{\bf{u}}\|, {\quad} t\in[p, T]_{{\Bbb Z}},

因此, u(t)\geqslant\min\{\frac{t-1}{T-1}, \frac{T-t}{T-1}\}\|{\bf{u}}\|.

\sigma=\min\limits_{t\in[3, T-2]_{{\Bbb Z}}}\{\frac{t-1}{T-1}, \frac{T-t}{T-1}\} , 则 0<\sigma<1 , 即 \min\limits_{t\in[3, T-2]_{{\Bbb Z}}}u(t)\geqslant\sigma\|{\bf{u}}\| .

3 主要结果

B^{1}_{K} 上定义一个非线性算子 A :

Au(t)=\sum\limits^{T-1}_{k=t}\phi^{-1}\bigg[\sum\limits^{k}_{j=2}f(j, u(j))\bigg], {\quad} t\in[2, T]_{{\Bbb Z}}.

显然, 若 {\bf{u}}\in B^{1}_{K} A 的一个不动点, 则 {\bf{u}} 是问题(1.8)–(1.9) 的一个解, 易得 A{\bf{u}}\in X . 对任意 {\bf{u}}\in B^{1}_{K} , 有

\Delta(Au)(t)=-\phi^{-1}\bigg[\sum\limits^{t}_{j=2}f(j, u(j))\bigg]\leqslant0, {\quad} t\in[2, T-1]_{{\Bbb Z}},

Au(t) [2, T]_{{\Bbb Z}} 上递减, 从而

\begin{align} Au(t)\geqslant Au(T)=0, {\quad} t\in[2, T-1]_{{\Bbb Z}}, \end{align}
(3.1)

对任意 {\bf{u}}\in B^{1}_{K} , 有

\Delta[\phi(\Delta(Au)(t))]=-f(t, u(t))\leqslant0, {\quad} t\in[2, T-1]_{{\Bbb Z}},

\phi(\Delta(Au)(t))=-\sum\limits^{t}_{j=2}f(j, u(j)) [2, T-1]_{{\Bbb Z}} 上递减, 又因 \phi 是递增的, 所以 \Delta(Au)(t) [2, T-1]_{{\Bbb Z}} 上递减, 由引理2.3得

\begin{align} \min\limits_{t\in[3, T-2]_{{\Bbb Z}}}Au(t)\geqslant\sigma\|A{\bf{u}}\|, \end{align}
(3.2)

由(3.1)和(3.2) 式可知: A(B^{1}_{K})\subset K .

显然, 对任意 a\in(0, 1) , 易证 A \overline{B^{a}}_{K} 上的全连续算子.

下面给出本文的一个主要结果.

定理3.1  假定 ({\rm{H}}_{f})成立且 f 满足

(H1) 存在一个正常数 c\in(0, 1), \alpha>0 , 非减函数 \varphi_{1}\in C([0, 1), [0, +\infty)) , 使得

f(t, u)\leqslant\alpha\varphi_{1}(u), {\quad} (t, u)\in[2, T-1]_{{\Bbb Z}}\times[0, c],

\alpha\varphi_{1}(\frac{c}{T-2})\leqslant\frac{\phi(\frac{c}{T-2})}{(T-2)M_{1}} , 其中 M_{1}>1 满足 \varphi_{1}(u)\leqslant M_{1}\varphi_{1}(\frac{u}{T-2}), u\in[0, c] .

(H2) 存在一个正常数 d\in(0, 1), \beta>0 , 非减函数 \varphi_{2}\in C([0, 1), [0, +\infty)) , 使得

f(t, u)\geqslant\beta\varphi_{2}(u), {\quad} (t, u)\in[2, T-1]_{{\Bbb Z}}\times[\sigma d, d],

2\phi^{-1}\big[(T-3)\beta\varphi_{2}(\sigma d)\big]\geqslant\sigma d .

那么如下结论成立:

(Ⅰ) 若 c<\sigma d , 则问题(1.8)–(1.9) 至少有一个正凹解 {\bf{u}} , 且

\begin{align} d\geqslant\|{\bf{u}}\|\geqslant c, {\quad} \sigma d\geqslant\min\limits_{t\in[3, T-2]_{{\Bbb Z}}}u(t)\geqslant\sigma c; \end{align}
(3.3)

(Ⅱ) 若 c>d , 则问题(1.8)–(1.9) 至少有一个正凹解 {\bf{u}} , 且

\begin{align} c\geqslant\|{\bf{u}}\|\geqslant\sigma d, {\quad} \min\limits_{t\in[3, T-2]_{{\Bbb Z}}}u(t)\geqslant\sigma d. \end{align}
(3.4)

  由(H1) 知: 设 {\bf{u}}\in\partial_{K}B^{c} , 对任意 t\in[2, T-1]_{{\Bbb Z}} , 有

\begin{eqnarray*} Au(t)&=&\sum\limits^{T-1}_{k=t}\phi^{-1}\bigg[\sum\limits^{k}_{j=2}f(j, u(j))\bigg]\\ &\leqslant&\sum\limits^{T-1}_{k=t}\phi^{-1}\bigg[\sum\limits^{k}_{j=2}\alpha\varphi_{1}(c)\bigg] =\sum\limits^{T-1}_{k=t}\phi^{-1}\big[(k-1)\alpha\varphi_{1}(c)\big]\\ &\leqslant&(T-2)\phi^{-1}\big[(T-2)\alpha\varphi_{1}(c)\big]\\ &\leqslant&(T-2)\phi^{-1}\big[(T-2)\alpha M_{1}\varphi_{1}(\frac{c}{T-2})\big]\\ &\leqslant& c=\|{\bf{u}}\|. \end{eqnarray*}

故引理2.1中(ⅰ) 成立.

e\equiv1\in K\setminus\{0\} , 下证

{\bf{u}}\neq A{\bf{u}}+\lambda, {\quad} {\bf{u}}\in\partial_{K}\Omega^{d}, \lambda>0.

反设存在 {\bf{u_{0}}}\in\partial_{K}\Omega^{d}, \lambda_{0}>0 , 使得 {\bf{u_{0}}}=A{\bf{u_{0}}}+\lambda_{0} , 由引理2.2的性质(ⅳ) 可得

\sigma d=\sigma\|{\bf{u_{0}}}\|\leqslant u_{0}(t)\leqslant d, {\quad} t\in[3, T-2]_{{\Bbb Z}}.

借助(H2), 对任意 t\in[3, T-2]_{{\Bbb Z}} , 有

\begin{eqnarray*} u_{0}(t)&=&Au_{0}(t)+\lambda_{0}=\sum\limits^{T-1}_{k=t}\phi^{-1}\bigg[\sum\limits^{k}_{j=2}f(j, u_{0}(j))\bigg]+\lambda_{0}\\ &\geqslant&\sum\limits^{T-1}_{k=T-2}\phi^{-1}\bigg[\sum\limits^{k}_{j=2}\beta\varphi_{2}(\sigma d)\bigg]+\lambda_{0}=\sum\limits^{T-1}_{k=T-2}\phi^{-1}\big[(k-1)\beta\varphi_{2}(\sigma d)\big]+\lambda_{0}\\ &\geqslant&2\phi^{-1}\big[(T-3)\beta\varphi_{2}(\sigma d)\big]+\lambda_{0}\\ &\geqslant&\sigma d+\lambda_{0}, \end{eqnarray*}

这意味着

\min\limits_{t\in[3, T-2]_{{\Bbb Z}}}u_{0}(t)\geqslant\sigma d+\lambda_{0}>\sigma d,

这与引理2.2的性质(ⅲ) 矛盾, 故引理2.1中(ⅱ) 成立.

c<\sigma d , 由引理2.2的性质(ⅱ) 得

\overline{B^{c}}_{K}\subset B^{\sigma d}_{K}\subset\Omega^{d}_{K},

由引理2.1知: A 至少有一个不动点 {\bf{u}}\in\overline{\Omega^{d}}_{K}\setminus B^{c}_{K} , 且 \sigma d\geqslant\min\limits_{t\in[3, T-2]_{{\Bbb Z}}}u(t)\geqslant\sigma c, \|{\bf{u}}\|\geqslant c , 因此 \sigma d\geqslant\min\limits_{t\in[3, T-2]_{{\Bbb Z}}}u(t)\geqslant\sigma\|{\bf{u}}\| , 从而 \|{\bf{u}}\|\leqslant d , 故(3.3) 式成立.

c>d , 有 \overline{\Omega^{d}}_{K}\subset B^{c}_{K} , 由引理2.1知, A 至少有一个不动点 {\bf{u}}\in\overline{B^{c}}_{K}\setminus\Omega^{d}_{K} , 且 c\geqslant\|{\bf{u}}\|\geqslant\sigma d, \min\limits_{t\in[3, T-2]_{{\Bbb Z}}}u(t)\geqslant\sigma d , 故(3.4) 式成立.

下面给出更一般的非线性项的结果.

定理3.2  若存在非负函数 l_{k}:[2, T-1]_{{\Bbb Z}}\rightarrow [0, +\infty), k=1, 2 , 使得

\limsup\limits_{u\rightarrow0^{+}}\frac{f(t, u)}{\phi(u)}=l_{1}(t), {\quad} \liminf\limits_{u\rightarrow1^{-}}\frac{f(t, u)}{\phi(u)}=l_{2}(t),

[2, T-1]_{{\Bbb Z}} 上一致成立, 且

0\leqslant l_{1}(t)<\frac{1}{(T-2)M_{1}}, {\quad} \frac{1}{T-3}<l_{2}(t)\leqslant+\infty,

其中 M_{1}>1 , 则问题(1.1)–(1.2) 至少有一个非平凡凸解.

  由 0\leqslant l_{1}(t)<\frac{1}{(T-2)M_{1}} 得, 存在一个正常数 0<c<1, M_{2}>1 , 使得

f(t, u)\leqslant\frac{1}{(T-2)M_{1}}\phi(u), {\quad} (t, u)\in[2, T-1]_{{\Bbb Z}}\times[0, c],

\phi(u)\leqslant M_{2}\phi(\frac{u}{T-2}), {\quad} u\in[0, c],

选择 \alpha=\frac{1}{(T-2)M_{1}}, \varphi_{1}(u)=\phi(u), M_{1}=M_{2}, \varphi_{1}(\frac{u}{T-2})=\phi(\frac{u}{T-2}) , 则

f(t, u)\leqslant\alpha\varphi_{1}(u), {\quad} (t, u)\in[2, T-1]_{{\Bbb Z}}\times[0, c],

\varphi_{1}(u)\leqslant M_{1}\varphi_{1}(\frac{u}{T-2}), {\quad} u\in[0, c],

\alpha\varphi_{1}(\frac{c}{T-2})\leqslant\frac{\phi(\frac{c}{T-2})}{(T-2)M_{1}} . 故(H1) 成立.

\frac{1}{T-3}<l_{2}(t)\leqslant+\infty 得: 存在一个正常数 0<d<1 , 使得 \sigma d>c ,

f(t, u)\geqslant\frac{1}{T-3}\phi(u)\geqslant\frac{1}{T-3}\phi(\frac{u}{2}), {\quad} t\in[2, T-1]_{{\Bbb Z}}, \ u\geqslant\sigma d,

选择 \beta=\frac{1}{T-3}, \varphi_{2}(u)=\phi(u) , 则

f(t, u)\geqslant\beta\varphi_{2}(u), {\quad} t\in[2, T-1]_{{\Bbb Z}}, \ u\geqslant\sigma d,

2\phi^{-1}[(T-3)\beta\varphi_{2}(\sigma d)]\geqslant\sigma d . 故(H2) 成立.

由定理3.1知, 问题(1.8)–(1.9) 至少有一个正凹解, 因此问题(1.1)–(1.2) 至少有一个非平凡凸解.

定理3.3  若存在非负函数 l_{k}:[2, T-1]_{{\Bbb Z}}\rightarrow [0, +\infty), k=3, 4 , 使得

\limsup\limits_{u\rightarrow1^{-}}\frac{f(t, u)}{\phi(u)}=l_{3}(t), {\quad} \liminf\limits_{u\rightarrow0^{+}}\frac{f(t, u)}{\phi(u)}=l_{4}(t),

[2, T-1]_{{\Bbb Z}} 上一致成立, 且

0\leqslant l_{3}(t)<\frac{1}{(T-2)M_{1}}, {\quad} \frac{1}{T-3}<l_{4}(t)\leqslant+\infty,

其中 M_{1}>1 , 则问题(1.1)–(1.2)至少有一个非平凡凸解.

  类同定理3.2的证明.

参考文献

Bereanu C , Jebelean P , Mawhin J .

Radial solutions for Neumann problems involving mean curvature operators in Euclidean and Minkowski spaces

Math Nachr, 2010, 283 (3): 379- 391

DOI:10.1002/mana.200910083      [本文引用: 1]

Bereanu C , Jebelean P , Torres P J .

Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space

J Funct Anal, 2013, 265 (4): 644- 659

DOI:10.1016/j.jfa.2013.04.006     

Ma R Y .

Positive solutions for Dirichlet problems involving the mean curvature operator in Minkowski space

Monatsh Math, 2018, 187 (2): 315- 325

DOI:10.1007/s00605-017-1133-z     

Dai G W .

Bifurcation and positive solutions for problem with mean curvature operator in Minkowski space

Calc Var Partial Differ Equ, 2016, 55 (72): 1- 17

[本文引用: 1]

Pei M H , Wang L B .

Multiplicity of positive radial solutions of a singular mean curvature equations in Minkowski space

Appl Math Lett, 2016, 60: 50- 55

DOI:10.1016/j.aml.2016.04.001      [本文引用: 1]

Liang Z T , Yang Y J .

Radial convex solutions of a singular Dirichlet problem with the mean curvature operator in Minkowski space

Acta Math Sci, 2019, 39B (2): 395- 402

[本文引用: 1]

Pei M H , Wang L B .

Positive radial solutions of a mean curvature equation in Minkowski space with strong singularity

Proc Amer Math Soc, 2017, 145: 4423- 4430

DOI:10.1090/proc/13587      [本文引用: 1]

Bereanu C , Mawhin J .

Boundary value problems for second order nonlinear difference equations with discrete ϕ-Laplacian and singular ϕ

J Diff Equ Appl, 2008, 14 (10/11): 1099- 1118

[本文引用: 1]

Chen T L , Ma R Y , Liang Y W .

Multiple positive solutions of second-order nonlinear difference equations with discrete singular ϕ-Laplacian

J Diff Equ Appl, 2019, 25 (1): 38- 55

DOI:10.1080/10236198.2018.1554064      [本文引用: 2]

Wang H Y .

Convex solutions of boundary value problems

J Math Anal Appl, 2006, 318: 246- 252

DOI:10.1016/j.jmaa.2005.05.067      [本文引用: 1]

Kutev N D .

Nontrivial solutions for the equations of Monge-Ampère type

J Math Anal Appl, 1988, 132: 424- 433

DOI:10.1016/0022-247X(88)90071-6      [本文引用: 1]

Hu S C , Wang H Y .

Convex solutions of boundary value problems arising from Monge-Ampère equations

Discrete Contin Dyn Syst, 2006, 16: 705- 720

DOI:10.3934/dcds.2006.16.705      [本文引用: 1]

Chen T L , Duan L .

Ambrosetti-Prodi type results for a Neumann problem with a mean curvature operator in Minkowski spaces

Rocky Mountain J Math, 2020, 50 (5): 1627- 1635

[本文引用: 1]

Krasnoselskii M A. Positive Solutions of Operator Equations. Noordhoff: Groningen, 1964

[本文引用: 1]

Infante G , Webb J R L .

Nonzero solutions of Hammerstein integral equations with discontinuous kernels

J Math Anal Appl, 2002, 272: 30- 42

DOI:10.1016/S0022-247X(02)00125-7      [本文引用: 1]

Lan K Q .

Multiple positive solutions of semilinear differential equations with singularities

J London Math Soc, 2001, 63: 690- 704

DOI:10.1112/S002461070100206X      [本文引用: 1]

/