数学物理学报, 2022, 42(1): 306-320 doi:

论文

Lévy模型下的最优寿险、消费和投资

陈旭,

湖南师范大学数学与统计学院 长沙 410081

Optimal Life Insurance, Consumption and Investment Problem in a Lévy Model

Chen Xu,

College of Mathematics and Statistics, Hunan Normal University, Changsha 410081

收稿日期: 2019-10-16  

基金资助: 湖南省教育厅重点项目.  19A294

Received: 2019-10-16  

Fund supported: the Key Projects of Hunan Provincial Department of Education.  19A294

作者简介 About authors

陈旭,E-mail:chenxu981388@hunnu.edu.cn , E-mail:chenxu981388@hunnu.edu.cn

Abstract

In this paper, we employ the Minimax martingale measure to investigate an optimal life insurance-consumption-investment problem faced by a wage-eaener with an uncertain lifetime. The financial market is comprised of one risk-free security and a risky security whose price is determined by an exponential Lévy process. The object of the wage-eaener is to maximize the expected utility. Based on the Minimax martingale measure, the explicit solutions for various utility functions are obtained. Furthermore, a numerical example is considered, and numerical simulations are presented to illustrate the effect of the parameters on the optimal strategies.

Keywords: Optimal life insurance-consumption-investment ; Lévy process ; Minimax martingale measure

PDF (457KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陈旭. Lévy模型下的最优寿险、消费和投资. 数学物理学报[J], 2022, 42(1): 306-320 doi:

Chen Xu. Optimal Life Insurance, Consumption and Investment Problem in a Lévy Model. Acta Mathematica Scientia[J], 2022, 42(1): 306-320 doi:

1 引言

最优寿险消费投资是寿险研究中的一个重要问题. Richard[1]首次将人寿保险与著名的Merton连续时间模型[2, 3]相结合, 研究了最优消费和投资问题. 从那时起, 许多学者对这一问题进行了深入研究. 分析该优化问题的经典方法是随机动态规划, 例如, Pliska和Ye[4]使用动态规划研究了具有随机寿命的有薪雇员的最优人寿保险和消费规则. Huang等[5]研究了具有随机收益情况下的最优人寿保险, 消费和投资选择问题. Mousa等[6]研究了存在多家人寿保险提供商的市场中, 消费, 投资和人寿保险选择的最佳决策.

研究优化问题的另一种方法是基于等价鞅测度和鞅表示定理的鞅方法. Ye[7]考虑了具有随机寿命的最优人寿保险, 消费和投资组合选择问题, 并用鞅方法进行了求解. Michelbrink和Le[8]使用鞅方法研究了跳-扩散模型下使消费和终端财富的预期效用最大化的最优投资-消费策略, 并获得了幂和对数效用函数情形下最优策略的显式解. Kwak等[9]探讨了一个家庭的最优投资, 消费和人寿保险购买问题, 利用鞅方法找到了价值函数和最优策略的显式解. Liang和Guo[10]研究了不完备市场中工资型企业的最优保险消费投资问题, 利用鞅方法得到了最优策略. Guambe和Kufakunesu[11]研究了当投资者受限于资本担保时的最优投资, 消费和人寿保险问题, 并得到了幂效用函数下的最优策略的显式解.

该文采用最小最大鞅测度的纯概率方法研究Lévy模型中的最优寿险消费投资问题. 最小最大局部鞅测度由He和Pearson[12]引入, Karatzas等[13], Bellini和Frittelli[14, 15]和Goll和Rüschendorf[16]对该方法的理论和应用进行多方面的研究. 基于最小最大鞅测度, 该文给出了最优寿险消费投资问题在对数效用函数, 指数效用函数和幂效用函数下的显式解.

2 模型

$ (\Omega, {\cal F}, ({\cal F}_{t})_{0\leq t\leq T}, {\mathbb{P}}) $为一域流概率空间, 该文中的所有随机过程均定义在该空间中. 假设金融市场中存在一个无风险资产和一个风险资产, 其运动状态由下面的随机微分方程刻画

$ \begin{equation} {\rm d}S_{0}(t)=S_{0}(t)r{\rm d}t, \end{equation} $

$ \begin{equation} {\rm d}S_{1}(t)=S_{1}(t) \bigg[\mu{\rm d}t+\sigma{\rm d}W(t)+\int_{{\mathbb{R}}}({\rm e}^{y}-1)N({\rm d}t, {\rm d}y)\bigg], \end{equation} $

$ Y(t)=\ln\frac{S_{1}(t)}{S_{1}(0)} $, 则$ Y(t)=\mu t-\frac{1}{2}\sigma^{2}t+\sigma W(t)+\int_{0}^{t}\int_{{\mathbb{R}}}yN({\rm d}u, {\rm d}y) $, 其中$ \mu $, $ \sigma $$ r $为正常数. 在概率空间$ (\Omega, {\cal F}, ({\cal F}_{t})_{0\leq t\leq T}, {\mathbb{P}}) $中, $ W(t) $是一标准布朗运动, $ N({\rm d}t, {\rm d}y) $点过程$ \triangle Y(t)=Y(t)-Y(t-) $的Poisson测度, $ Y(t-)=\lim\limits_{u\uparrow t}Y(u) $, $ N({\rm d}t, {\rm d}y) $的补偿为$ \nu({\rm d}y){\rm d}t $, 其中$ \nu({\rm d}y) $$ Y(t) $的Lévy测度, 其满足条件

$ \begin{equation} \int_{-\infty}^{\infty}\frac{y^{2}}{1+y^{2}}\nu({\rm d}y)<\infty. \end{equation} $

该文假定$ \int_{|y|\leq1}|y|\nu({\rm d}y)<\infty $.

在保险市场中, 令$ \lambda(t) $为瞬时死亡力, 由下式定义

$ \begin{equation} \lambda(t)=\lim\limits_{\varepsilon\rightarrow0}\frac{P(t<\tau\leq t+\varepsilon|\tau>t)}{\varepsilon}, \end{equation} $

其中$ \tau\geq0 $是随机生存时间. 另外有$ \tau $的条件分布

$ \begin{equation} {\mathbb{P}}(\tau<s|\tau>t)=1-\exp\bigg\{-\int_{t}^{s}\lambda(u){\rm d}u\bigg\}, \end{equation} $

$ \begin{equation} {\mathbb{P}}(\tau>T|\tau>t)=\exp\bigg\{-\int_{t}^{T}\lambda(u){\rm d}u\bigg\}. \end{equation} $

假设一职员在退休时间$ T $之前有一个非随机的收入率函数$ i(t) $.$ c(t):\Omega\times [0, T]\rightarrow {\mathbb{R}}^{+} $$ ({\cal F})_{t} $ -循序可测的消费过程, 其满足$ \int_{0}^{t}c(s){\rm d}s<\infty $ a.s.; $ \theta(t):\Omega\times [0, T]\rightarrow {\mathbb{R}} $是一$ ({\cal F})_{t} $ -循序可测投资组合过程, 其满足条件$ \int_{0}^{t}\theta^{2}(s){\rm d}s<\infty $ a.s.; $ p(t):\Omega\times [0, T]\rightarrow {\mathbb{R}} $是一$ ({\cal F})_{t} $-循序可测保费过程, 其满足条件$ \int_{0}^{t}p(s){\rm d}s<\infty $ a.s.; 则该职员在$ \pi(t)=(c(t), p(t), \theta(t)) $的控制过程下的财富过程为

$ \begin{eqnarray} {\rm d}X(t)&=&[rX(t)+\theta(t)(\mu-r)+i(t)-p(t)-c(t)]{\rm d}t{}\\ &&+\theta(t)\sigma{\rm d}W(t)+\theta(t)\int_{{\mathbb{R}}}({\rm e}^{y}-1)N({\rm d}t, {\rm d}y), \end{eqnarray} $

$ X(0)=x_{0}>0 $.

在死亡时刻$ \tau=t $, 保险公司支付给投保人保险金$ \frac{p(t)}{\eta(t)} $, 其中$ \eta:[0, T]\rightarrow {\mathbb{R}}^{+} $是一个连续的确定函数, 其满足条件$ \eta(t)\geq\lambda(t) $.

定义准则函数

$ \begin{eqnarray} J(X(t), \pi(t))&=&E_{t}\bigg[\int_{t}^{T\wedge\tau}{\rm e}^{-\delta(s-t)}U_{1}(c(s)){\rm d}s {}\\ &&+{\rm e}^{-\delta(\tau-t)}U_{2}(M(\tau))I_{\{\tau\leq T\}}+{\rm e}^{-\delta(T-t)}U_{3}(X(T))I_{\{\tau>T\}}\bigg], \end{eqnarray} $

其中$ \delta>0 $是折现率, $ E_{t}[.]=E[.|{\cal F}_{t}] $表示概率测度$ {\mathbb{P}} $下的条件期望, $ M(t)=X(t)+\frac{p(t)}{\eta(t)} $, $ I_{\{.\}} $为示性函数. 效用函数$ U_{i}: {\mathbb{R}}_{+}\rightarrow {\mathbb{R}}, i=1, 2, 3 $$ {\rm dom}(U_{i}):=\{x\in {\mathbb{R}}, U_{i}(x)>-\infty\} $上连续可微, 严格增的凹函数.假设$ U'_{i}(\infty)=\lim\limits_{x\rightarrow \infty}U'_{i}(x)=0 $, 且$ U'_{i}(\bar{x})=\lim\limits_{x\downarrow \bar{x}} U'_{i}(x)=\infty $, 其中$ \bar{x}=\inf\{x\in{\mathbb{R}}|U_{i}(x)>-\infty\} $.$ I_{i}(.):=(U_{i}')^{-1} $. $ U_{i} $的凸共轭函数$ \tilde{U_{i}}: {\mathbb{R}}_{+}\rightarrow {\mathbb{R}} $定义为$ \tilde{U_{i}}(y):=\sup_{x\in{\mathbb{R}}}\{U_{i}(x)-xy\}=U_{i}(I_{i}(y))-yI_{i}(y) $.

$ {\cal A}(t) $表示使得(2.8)式成立的可允许策略集, 即满足

$ \begin{equation} E_{t}\bigg[\int_{t}^{T\wedge\tau}{\rm e}^{-\delta(s-t)}U^{-}_{1}(c(s)){\rm d}s +{\rm e}^{-\delta(\tau-t)}U^{-}_{2}(M(\tau))I_{\{\tau\leq T\}}+{\rm e}^{-\delta(T-t)}U^{-}_{3}(X(T))I_{\{\tau>T\}}\bigg]<\infty, \end{equation} $

其中$ U^{-}_{i}(x)=\max(-U_{i}(x), 0) $.

值函数定义为

$ \begin{equation} V(t, X(t))=\sup\limits_{\pi\in {\cal A}(t)}J(X(t), \pi). \end{equation} $

$ \tau $的条件分布(1.5)和(1.6), 值函数可表示为

$ \begin{equation} V(t, X(t))=\sup\limits_{\pi\in {\cal A}(t, X(t))}E_{t}\bigg[\int_{t}^{T}\xi'_{ts}U_{1}(c(s)){\rm d}s +\int_{t}^{T}\lambda(s)\xi'_{ts}U_{2}(M(s)){\rm d}s+\xi'_{tT}U_{3}(X(T))\bigg], \end{equation} $

其中$ \xi'_{ts}={\rm e}^{-\int_{t}^{s}(\lambda(u)+\delta){\rm d}u}, t\leq s\leq T $.

3 最优解的一般形式

$ {\cal P} $表示$ \Omega\times[0, T] $上的可料$ \sigma $ -代数, $ {\cal K} $表示$ v=(\phi_{1}(t), \phi_{2}(t, y)) $的集合, 其中$ \phi_{1}(t) $是可料实值过程, $ \phi_{2}(t, y) $是正的$ {\cal P}\times {\cal B}(R) $可测过程, 其满足如下两个条件

$ \begin{equation} \int_{0}^{T}\phi_{1}^{2}(t){\rm d}t<\infty, \end{equation} $

$ \begin{equation} \int_{0}^{T}\int_{{\mathbb{R}}}|\phi_{2}(t, y)-1|\nu({\rm d}y){\rm d}t<\infty. \end{equation} $

$ v=(\phi_{1}, \phi_{2})\in{\cal K} $考虑一组随机指数鞅

$ \begin{eqnarray} Z^{v}(t)&=&{\cal E}\bigg(\int_{0}^{t}\phi_{1}(u){\rm d}W(u) +\int_{0}^{t}\int_{{\mathbb{R}}}(\phi_{2}(u, y)-1)(N({\rm d}u, {\rm d}y)-\nu({\rm d}y){\rm d}u)\bigg){}\\ &=&\exp\bigg\{\int_{0}^{t}\phi_{1}(u){\rm d}W(u)+\int_{0}^{t}\int_{{\mathbb{R}}}\ln\phi_{2}(u, y)N({\rm d}u, {\rm d}y){}\\ &&+\int_{0}^{t}\bigg[-\frac{1}{2}\phi_{1}(u)^{2}-\int_{{\mathbb{R}}}(\phi_{2}(u, y)-1)\nu({\rm d}y)\bigg]{\rm d}u\bigg\}, \end{eqnarray} $

其是下面方程的解

$ Z^{v}(0)=1 $. 其中$ {\cal E}(.) $表示随机指数. 令$ {\cal K}_{m}=\{v\in{\cal K};Z^{v} $$ {\mathbb{P}} $下的鞅$ \} $. 则对任意的$ v\in{\cal K}_{m} $, 可以在$ (\Omega, {\cal F}) $上定义密度函数为$ Z^{v}(t) $的概率测度$ {\mathbb{P}}^{v}\sim{\mathbb{P}} $.$ {\cal Z}=\{Z^{v};Z^{v} $满足(3.3)式及$ \int_{0}^{T}\phi_{1}^{2}(t){\rm d}t<\infty, \ \int_{0}^{T}\int_{{\mathbb{R}}}|\phi_{2}(t, y)-1|\nu({\rm d}y){\rm d}t<\infty\ {\mathbb{P}} $-a.s.}. 由无套利原理, 对$ \forall v\in {\cal K}_{m} $, $ {\rm e}^{-rt}S_{1}(t) $$ {\mathbb{P}}^{v} $下的鞅, 因此

$ \begin{equation} \mu-r+\sigma\phi_{1}(t)+\int_{{\mathbb{R}}}({\rm e}^{y}-1)\phi_{2}(t, y)\nu({\rm d}y)=0. \end{equation} $

(3.4)式被称为鞅条件, 关于鞅条件的详细讨论可参见文献[17]. 由Girsanov定理, 有

$ \begin{equation} W^{v}(t)=W(t)-\int_{0}^{t}\phi_{1}(u){\rm d}u \end{equation} $

是测度$ {\mathbb{P}}^{v} $下的布朗运动,

$ \begin{equation} \nu^{v}({\rm d} y){\rm d}t=\phi_{2}(t, y)\nu({\rm d}y){\rm d}t \end{equation} $

$ N({\rm d}t, {\rm d}y) $$ {\mathbb{P}}^{v} $补偿. 对$ \forall v\in {\cal K}_{m} $, 定义

$ \begin{eqnarray} U(t, Z^{v}):&=&\sup\limits_{\pi\in{\cal A}(t)}\bigg\{J(X(t), \pi):{}\\ &&E_{t}^{v}\bigg[\int_{t}^{T}\xi_{0s}(c(s)+\eta(s)M(s)){\rm d}s+\xi_{0T}X(T)\bigg]\leq(X(t)+b(t))\xi_{0t}\bigg\}, \end{eqnarray} $

其中$ b(t)=\int_{t}^{T}\xi_{ts}i(s){\rm d}s $, $ \xi_{ts}=\exp\{-\int_{t}^{s}(\eta(u)+r){\rm d}u\} $, $ E_{t}^{v}[.]={\rm e}^{v}[.|{\cal F}_{t}] $表示$ {\mathbb{P}}^{v} $下的条件期望.

定义3.1[12, 定义1]  若(3.7)式的解存在且与(2.10) 式的解吻合, 则称$ Z^{v^{*}}\in{\cal Z} $定义了一个局部最小最大鞅测度.

下面讨论优化问题(2.10)的对偶问题

$ \begin{equation} \inf\limits_{Z^{v}\in{\cal Z}}U(t, Z^{v}). \end{equation} $

利用Lagrange乘子$ \lambda>0 $, 问题(3.8)可退化为无限制的最大化问题,

$ \begin{eqnarray} L(\lambda, v)&=&E_{t}\bigg[\int_{t}^{T}\xi_{ts}'U_{1}(c(s)){\rm d}s +\int_{t}^{T}\xi_{ts}'\lambda(s)U_{2}(M(s)){\rm d}s+\xi'_{tT}U_{3}(X(T))\bigg]{}\\ &&+\lambda\xi_{0t}'^{-1}\bigg\{(X(t)+b(t))\xi_{0t}Z^{v}(t){}\\ &&-E_{t}\bigg[Z^{v}(T)\xi_{0T}X(T) +\int_{t}^{T}\xi_{0s}Z^{v}(s)(c(s)+\eta(s)M(s)){\rm d}s\bigg]\bigg\}{}\\ &=&\lambda\xi_{0t}'^{-1}\xi_{0t}(X(t)+b(t))Z^{v}(t){}\\ && +E_{t}\bigg[\int_{t}^{T}(\xi_{ts}'U_{1}(c(s))-\lambda\xi_{0s}\xi'^{-1}_{0t}Z^{v}(s)c(s)){\rm d}s\bigg]{}\\ &&+E_{t}\bigg[\int_{t}^{T}(\xi_{ts}'\lambda(s)U_{2}(M(s))-\lambda\xi_{0s}\xi'^{-1}_{0t}\eta(s)Z^{v}(s)M(s)){\rm d}s\bigg]{}\\ &&+E_{t}\bigg[\xi_{tT}'U_{3}(X(T))-\lambda\xi_{0T}\xi'^{-1}_{0t}Z^{v}(T)X(T)\bigg]{}\\ &\leq&\lambda\xi_{0t}'^{-1}\xi_{0t}(X(t)+b(t))Z^{v}(t){}\\ &&+E_{t}\bigg[\int_{t}^{T}(\xi_{ts}'\tilde{U}_{1}(\frac{\lambda\xi_{0s}Z^{v}(s)}{\xi'_{0s}}) +\lambda(s)\xi_{ts}'\tilde{U}_{2}(\frac{\lambda\xi_{0s}\eta(s)Z^{v}(s)}{\lambda(s)\xi'_{0s}})){\rm d}s {}\\ &&+\xi_{tT}'\tilde{U}_{3}(\frac{\lambda\xi_{0T}Z^{v}(T)}{\xi'_{0T}})\bigg], \end{eqnarray} $

等号成立当且仅当$ c(s)=I_{1}(\frac{\lambda\xi_{0s}Z^{v}(s)}{\xi'_{0s}}), M(s)=I_{2}(\frac{\lambda\xi_{0s}\eta(s)Z^{v}(s)}{\lambda(s)\xi'_{0s}}) $$ X(T)=I_{3}(\frac{\lambda\xi_{0T}Z^{v}(T)}{\xi'_{0T}}) $. 则问题(2.10)的对偶问题定义为

$ \begin{eqnarray} &&\inf\limits_{\lambda>0}\bigg\{\inf\limits_{v\in{\cal K}_{m}}E_{t}\bigg[\int_{t}^{T}(\xi_{ts}'\tilde{U}_{1}(\frac{\lambda\xi_{0s}Z^{v}(s)}{\xi'_{0s}}) +\lambda(s)\xi_{ts}'\tilde{U}_{2}(\frac{\lambda\xi_{0s}\eta(s)Z^{v}(s)}{\lambda(s)\xi'_{0s}})){\rm d}s{}\\ &&+\xi_{tT}'\tilde{U}_{3}(\frac{\lambda\xi_{0T}Z^{v}(T)}{\xi'_{0T}})\bigg]+\lambda\xi_{0t}'^{-1}\xi_{0t}(X(t)+b(t))Z^{v}(t)\bigg\}. \end{eqnarray} $

对任意$ Z^{v}\in{\cal Z} $, 定义

并假定$ \forall\tilde{\lambda}>0 $, 若$ H_{v}(\tilde{\lambda})<\infty $, 则存在一个常数$ \delta_{\lambda}\in(0, \tilde{\lambda}) $使得$ H_{v}(\tilde{\lambda}-\delta_{\lambda})<\infty $.

定理3.1  若(3.10)式有解, 则(3.8)和(3.7)式有解. 用$ (\lambda_{0}, v^{*}) $表示(3.10) 式的解, 则$ Z^{v^{*}} $是(3.8)式的解, $ Z^{v^{*}} $定义了一个最小最大局部鞅值测度. $ (c^{*}, p^{*}, \theta^{*}) $是(3.7)式的解, 其中$ c^{*}(t)=I_{1}(\frac{\lambda_{0}\xi_{0t}Z^{v^{*}}(t)}{\xi'_{0t}}), X(t)+\frac{p^{*}(t)}{\eta(t)}=I_{2}(\frac{\lambda_{0}\xi_{0t}\eta(t)Z^{v^{*}}(t)}{\lambda(t)\xi'_{0t}}) $, $ \lambda_{0} $是关于(3.7)式的Lagrange乘子.

  考虑函数

$ \begin{eqnarray} h(\lambda)&=&E_{t}\bigg[\int_{t}^{T}(\xi_{ts}'\tilde{U}_{1}(\frac{\lambda\xi_{0s}Z^{v^{*}}(s)}{\xi'_{0s}}) +\lambda(s)\xi_{ts}'\tilde{U}_{2}(\frac{\lambda\xi_{0s}\eta(s)Z^{v^{*}}(s)}{\lambda(s)\xi'_{0s}})){\rm d}s{}\\ &&+\xi_{tT}'\tilde{U}_{3}(\frac{\lambda\xi_{0T}Z^{v^{*}}(T)}{\xi'_{0T}})\bigg]+\lambda\xi_{0t}'^{-1}\xi_{0t}(X(t)+b(t))Z^{v^{*}}(t). \end{eqnarray} $

$ \lambda\in(\lambda_{0}-\delta_{\lambda_{0}}, +\infty) $时, $ h $关于$ \lambda $可微, 其中$ \delta_{\lambda_{0}}>0 $. 由于$ h(\lambda) $$ \lambda=\lambda_{0} $达到最小值, $ h'_{\lambda}(\lambda_{0})=0 $; i.e.

$ \begin{eqnarray} &&E_{t}\bigg[\int_{t}^{T}Z{v^{*}}(\xi_{ts}'\tilde{U}_{1}(\frac{\lambda_{0}\xi_{0s}Z^{v^{*}}(s)}{\xi'_{0s}}) +\lambda(s)\xi_{ts}'\tilde{U}_{2}(\frac{\lambda_{0}\xi_{0s}\eta(s)Z^{v^{*}}(s)}{\lambda(s)\xi'_{0s}})){\rm d}s{}\\ &&+\xi_{tT}'\tilde{U}_{3}(\frac{\lambda_{0}\xi_{0T}Z^{v^{*}}(T)}{\xi'_{0T}})\bigg] +\lambda_{0}\xi_{0t}'^{-1}\xi_{0t}(X(t)+b(t))Z^{v^{*}}(t)=0. \end{eqnarray} $

由于$ c^{*}(t)=I_{1}(\frac{\lambda_{0}\xi_{0t}Z^{v^{*}}(t)}{\xi'_{0t}}) $, 且$ X(t)+\frac{p^{*}(t)}{\eta(t)}=I_{2}(\frac{\lambda_{0}\xi_{0t}\eta(t)Z^{v^{*}}(t)}{\lambda(t)\xi'_{0t}}) $, 故$ (c^{*}, p^{*}, \theta^{*}) $是(3.7)式的解.

下面证明对$ \forall\lambda>0 $, $ Z^{v}\in{\cal Z} $, 有

$ \begin{eqnarray} &&\inf\limits_{\lambda>0}\bigg\{\inf\limits_{v\in{\cal K}_{m}}E_{t}\bigg[\int_{t}^{T}(\xi_{ts}'\tilde{U}_{1}(\frac{\lambda\xi_{0s}Z^{v}(s)}{\xi'_{0s}}) +\lambda(s)\xi_{ts}'\tilde{U}_{2}(\frac{\lambda\xi_{0s}\eta(s)Z^{v}(s)}{\lambda(s)\xi'_{0s}})){\rm d}s{}\\ &&+\xi_{tT}'\tilde{U}_{3}(\frac{\lambda\xi_{0T}Z^{v}(T)}{\xi'_{0T}})\bigg]+\lambda\xi_{0t}'^{-1}\xi_{0t}(X(t)+b(t))Z^{v}(t)\bigg\} {}\\&\leq& E_{t}\bigg[\int_{t}^{T}(\xi_{ts}'\tilde{U}_{1}(\frac{\lambda\xi_{0s}Z^{v}(s)}{\xi'_{0s}}) +\lambda(s)\xi_{ts}'\tilde{U}_{2}(\frac{\lambda\xi_{0s}\eta(s)Z^{v}(s)}{\lambda(s)\xi'_{0s}})){\rm d}s{}\\ &&+\xi_{tT}'\tilde{U}_{3}(\frac{\lambda\xi_{0T}Z^{v}(T)}{\xi'_{0T}})\bigg]+\lambda\xi_{0t}'^{-1}\xi_{0t}(X(t)+b(t))Z^{v}(t). \end{eqnarray} $

$ \lambda=\lambda_{0} $$ Z^{v}=Z^{v^{*}} $时, 上式两边均等于$ U(t, Z^{v^{*}}) $, 故$ Z^{v^{*}} $定是(3.8) 式的解. 证毕.

4 效用函数为$ U(x)=\ln(x), x>0 $时的最优策略

假设职员的效用函数为$ U_{i}(x)=k_{i}\ln x $, 其中$ k_{i}>0, i=1, 2, 3 $为常数. 则$ I_{i}(y)=\frac{k_{i}}{y}, i=1, 2, 3. $对(3.9)式, 由一阶条件可得

$ \begin{equation} c(s)=\frac{k_{1}\xi'_{0s}}{\lambda_{0}\xi_{0s}Z^{v}(s)}, \ \ M(s)=X(t)+\frac{p(t)}{\eta(t)}=\frac{k_{2}\lambda(s)\xi'_{0s}}{\lambda_{0}\xi_{0s}\eta(s)Z^{v}(s)}, \ \ X(T)=\frac{k_{3}\xi'_{0T}}{\lambda_{0}\xi_{0T}Z^{v}(T)}, \end{equation} $

其中$ \lambda_{0} $满足

$ \begin{equation} E_{t}^{v}\bigg[\int_{0}^{T}\xi_{0s}(c(s)+\eta(s)M(s)){\rm d}s+\xi_{0T}X(T)\bigg]=(X(t)+b(t))\xi_{0t}. \end{equation} $

将(4.1)式代入(4.2)式可得

$ \begin{equation} \xi_{tT}E_{t}[Z^{v}(T)X(T)]+E_{t}\bigg[\int_{t}^{T}\xi_{ts}Z^{v}(s)(c(s)+\eta(s)M(s)){\rm d}s\bigg]=(X(t)+b(t))Z^{v}(t), \end{equation} $

解该方程得到

$ \begin{equation} \frac{X(t)+b(t)}{G_{t, T}}=\lambda_{0}^{-1}\xi_{0t}^{-1}Z^{v}(t)^{-1}, \end{equation} $

其中$ G_{t, T}=\int_{t}^{T}(k_{1}\xi'_{0s}+k_{2}\lambda(s)\xi'_{0s}){\rm d}s+k_{3}\xi'_{0T} $.$ X(t)+b(t) $采用Itô's公式, 可得

$ \begin{eqnarray} {\rm d}(X(t)+b(t))&=&G_{t, T}\lambda_{0}^{-1}\xi_{0t}^{-1}{\rm d}Z^{v}(t)^{-1}+\lambda_{0}Z^{v}(t)^{-1}{\rm d}(G_{t, T}\xi_{0t}^{-1}){}\\ &=&-(X(t)+b(t))\phi_{1}(t){\rm d}W(t){}\\ &&+(X(t)+b(t))\int_{{\mathbb{R}}}(\frac{1}{\phi_{2}(t, y)}-1)N({\rm d}t, {\rm d}y){}\\ &&-(X(t)+b(t))\bigg[\int_{{\mathbb{R}}}(1-\phi_{2}(t, y))\nu({\rm d}y)-\phi_{1}^{2}(t)-\eta(t)-r\bigg]{\rm d}t{}\\ &&-\lambda_{0}^{-1}(k_{1}+k_{2}\lambda(t))Z^{v}(t)^{-1}\xi'_{0t}\xi_{0t}^{-1}{\rm d}t. \end{eqnarray} $

$ b(t) $的定义, 有

$ \begin{equation} {\rm d}b(t)=-i(t){\rm d}t+(\eta(t)+r)b(t){\rm d}t. \end{equation} $

将(4.6)式代入(4.5)式可得

$ \begin{eqnarray} {\rm d}X(t)&=&-(X(t)+b(t))\phi_{1}(t){\rm d}W(t)\\ &&+(X(t)+b(t))\int_{{\mathbb{R}}}(\frac{1}{\phi_{2}(t, y)}-1)N({\rm d}t, {\rm d}y)\\ & &+\{(X(t)+b(t))\bigg[\int_{{\mathbb{R}}}(\phi_{2}(t, y)-1)\nu({\rm d}y)+\phi_{1}^{2}(t)\bigg]+(\eta(t)+r)X(t)+i(t)\\ &&-\lambda_{0}^{-1}\xi_{0t}^{-1}\xi'_{0t}(k_{1}+k_{2}\lambda(t))Z^{v}(t)^{-1}\}{\rm d}t. \end{eqnarray} $

将(4.1)式代入(2.7)式可得

$ \begin{eqnarray} {\rm d}X(t)&=&\theta(t)\sigma{\rm d}W(t)+\theta(t)\int_{{\mathbb{R}}}({\rm e}^{y}-1)N({\rm d}t, {\rm d}y){}\\ &&+\bigg[(\eta(t)+r)X(t)+i(t)-\lambda_{0}^{-1}\xi_{0t}^{-1}\xi'_{0t}(k_{1}+k_{2}\lambda(t))Z^{v}(t)^{-1}+\theta(t)(\mu-r)\bigg]{\rm d}t. \end{eqnarray} $

比较(4.7)和(4.8)式中$ {\rm d}W $, $ N({\rm d}t, {\rm d}y) $$ {\rm d}t $系数可得

$ \begin{equation} -(X(t)+b(t))\phi_{1}(t)=\theta(t)\sigma, \end{equation} $

$ \begin{equation} (X(t)+b(t))(\frac{1}{\phi_{2}(t, y)}-1)=\theta(t)({\rm e}^{y}-1), \end{equation} $

$ \begin{equation} (X(t)+b(t))\bigg[\int_{{\mathbb{R}}}(\phi_{2}(t, y)-1)\nu({\rm d}y)+\phi_{1}^{2}(t)\bigg]=\theta(t)(\mu-r). \end{equation} $

可验证当$ \theta(t)\neq0 $和(4.9)–(4.11)式成立时鞅条件(3.4)满足.

将(4.1)式代入(3.8)式可得

$ \begin{eqnarray} \inf\limits_{Z^{v}\in {\cal Z}}U(t, Z^{v})&=&\inf\limits_{Z^{v}\in {\cal Z}}E_{t}\bigg[\int_{t}^{T}\xi'_{ts}(k_{1}\ln\frac{k_{1}\xi'_{0s}}{\lambda_{0}\xi_{0s}Z^{v}(s)} +\lambda(s)k_{2}\ln\frac{k_{2}\lambda(s)\xi'_{0s}}{\lambda_{0}\xi_{0s}\eta(s)Z^{v}(s)}){\rm d}s\\ &&+\xi'_{tT}k_{3}\ln\frac{k_{3}\xi'_{0T}}{\lambda_{0}\xi_{0T}Z^{v}(T)}\bigg]\\ &=&\inf\limits_{Z^{v}\in {\cal Z}}\bigg\{H_{t, T}-E_{t}\bigg[\int_{t}^{T}\xi'_{ts}(k_{1}\ln Z^{v}(s) +\lambda(s)k_{2}\ln Z^{v}(s)){\rm d}s\\ & &+k_{3}\xi'_{tT}\ln Z^{v}(T)\bigg]\bigg\}, \end{eqnarray} $

其中$ H_{t, T}=\int_{t}^{T}\xi'_{ts}(k_{1}\ln\frac{k_{1}\xi'_{0s}}{\lambda_{0}\xi_{0s}} +\lambda(s)k_{2}\ln\frac{k_{2}\lambda(s)\xi'_{0s}}{\lambda_{0}\xi_{0s}\eta(s)}){\rm d}s +\xi'_{tT}k_{3}\ln\frac{k_{3}\xi'_{0T}}{\lambda_{0}\xi_{0T}} $. 由于$ k_{i}>0, i=1, 2, 3 $, 且$ \xi'_{ts}>0 $, (3.12)式等价于

$ \begin{equation} \sup\limits_{Z^{v}\in{\cal Z}}E[\ln Z^{v}(s)] =\ln Z^{v}(t)+\sup\limits_{Z^{v}\in{\cal Z}}\int_{t}^{s}(-\frac{1}{2}\phi_{1}(u)^{2}+\int_{{\mathbb{R}}}(\ln\phi_{2}(u, y)-\phi_{2}(u, y)+1)\nu({\rm d}y)){\rm d}u. \end{equation} $

因此, 只需计算

$ \begin{equation} \sup\limits_{v\in {\cal K}_{m}}\bigg\{-\frac{1}{2}\phi_{1}(u)^{2}+\int_{{\mathbb{R}}}(\ln\phi_{2}(u, y)-\phi_{2}(u, y)+1)\nu({\rm d}y)\bigg\}, \forall u>0, \end{equation} $

其中$ \phi_{1}, \phi_{2} $应当满足(3.9)–(3.10)式. 由(4.9)式可得

$ \begin{equation} \phi_{1}(t)=-\frac{\theta(t)\sigma}{X(t)+b(t)}. \end{equation} $

由(4.10)式可得

$ \begin{equation} \phi_{2}(t)=\frac{X(t)+b(t)}{X(t)+b(t)+({\rm e}^{y}-1)\theta(t)}. \end{equation} $

将(4.15)和(4.16)式代入(4.11)式可得

$ \begin{equation} (X(t)+b(t))\bigg\{\frac{\sigma^{2}\theta(t)^{2}}{(X(t)+b(t))^{2}} +\int_{{\mathbb{R}}}(\frac{X(t)+b(t)}{X(t)+b(t)+({\rm e}^{y}-1)\theta(t)}-1)\nu({\rm d}y)\bigg\}=\theta(t)(\mu-r). \end{equation} $

$ {\cal D}(\theta) $表示(4.17)式所有解的集合. 定义

(4.18)

问题(4.14)可表示为

(4.19)

定理4.1  对$ U_{i}=k_{i}\ln x, i=1, 2, 3 $, 值函数$ V(t, X(t)) $由下式给出

$ \begin{equation} V(t, X(t))=H_{t, T}-\int_{t}^{T}(\xi'_{st}k_{1}+\lambda(s)\xi'_{ts}k_{2})\int_{t}^{s}g(u){\rm d}u{\rm d}s-\xi'_{tT}k_{3}\int_{t}^{T}g(s){\rm d}s, \end{equation} $

其中$ g(.) $表示(4.19)式的上确界,

最优保险、消费和投资策略为

$ \begin{equation} \begin{array}{ll} { } \theta^{*}(t)=-\frac{\phi_{1}^{*}(t)(X(t)+b(t))}{\sigma}, \ \ c^{*}(t)=\frac{k_{1}\xi'_{0t}(X(t)+b(t))}{G_{t, T}}, \\ { } p^{*}(t)=\frac{k_{2}\lambda(t)\xi'_{0t}(X(t)+b(t))}{G_{t, T}}-X(t)\eta(t), \end{array} \end{equation} $

其中$ v=(\phi_{1}^{*}, \phi_{2}^{*}) $是(3.19)式的解, $ G_{t, T}=\int_{t}^{T}(k_{1}\xi'_{0s}+k_{2}\lambda(s)\xi'_{0s}){\rm d}s+k_{3}\xi'_{0T} $.

5 效用函数为$ U(x)=-\frac{1}{\alpha}\exp\{-\alphax\}, \alpha>0 $时的最优策略

本节讨论效用函数为指数效用函数时(2.10)的解, 即$ U_{i}(x)=-\frac{1}{\alpha_{i}}\exp\{-\alpha_{i} x\}, \alpha_{i}>0, i=1, 2, 3. $此时$ I_{i}(y)=-\frac{1}{\alpha_{i}}\ln y, i=1, 2, 3. $

对(3.9)式, 由一阶条件

$ \begin{eqnarray} c(s)&=&-\frac{1}{\alpha_{1}}\bigg[\ln\frac{\lambda_{0}\xi_{0s}}{\xi'_{0s}}+\ln Z^{v}(s)\bigg], {}\\ M(s)&=&X(s)+\frac{p(s)}{\eta(s)}=-\frac{1}{\alpha_{2}} \bigg[\ln\frac{\lambda_{0}\xi_{0s}\eta(s)}{\lambda(s)\xi'_{0s}}+\ln Z^{v}(s)\bigg], \\ X(T)&=&-\frac{1}{\alpha_{3}}\bigg[\ln\frac{\lambda_{0}\xi_{0T}}{\xi'_{0T}}+\ln Z^{v}(T)\bigg], {} \end{eqnarray} $

其中$ \lambda_{0} $满足

$ \begin{equation} \xi_{tT}E_{t}[Z^{v}(T)X(T)]+E_{t}\bigg[\int_{t}^{T}\xi_{ts}Z^{v}(s)(c(s)+\eta(s)M(s)){\rm d}s\bigg]=(X(t)+b(t))Z^{v}(t). \end{equation} $

将(5.1)式代入(5.3)式可得

$ \begin{eqnarray} &&\ln \lambda_{0}\bigg\{-\frac{\xi_{0T}}{\alpha_{3}}E_{t}[Z^{v}(T)] -\int_{t}^{T}(\frac{\xi_{0s}}{\alpha_{1}}+\frac{\eta(s)\xi_{0s}}{\alpha_{2}})E_{t}[Z^{v}(s)]{\rm d}s\bigg\} -\frac{\xi_{0T}}{\alpha_{3}}\ln\frac{\xi_{0T}}{\xi'_{0T}}E_{t}[Z^{v}(T)]{}\\ &&-\int_{t}^{T}(\frac{\xi_{0s}}{\alpha_{1}}\ln\frac{\xi_{0s}}{\xi'_{0s}}+ \frac{\eta(s)\xi_{0s}}{\alpha_{2}}\ln\frac{\xi_{0s}\eta(s)}{\lambda(s)\xi'_{0s}})E_{t}[Z^{v}(s)]{\rm d}s -\frac{\xi_{0T}}{\alpha_{3}}E_{t}[Z^{v}(T)\ln Z^{v}(T)]{}\\ &&-\int_{t}^{T}(\frac{\xi_{0s}}{\alpha_{1}}+\frac{\eta(s)\xi_{0s}}{\alpha_{2}})E_{t}[Z^{v}(s)\ln Z^{v}(s)]{\rm d}s=\xi_{0t}(X(t)+b(t))Z^{v}(t). \end{eqnarray} $

由Bayes'公式, (3.5)式和(3.6)式可得

$ \begin{eqnarray} \frac{1}{Z^{v}(t)}E_{t}[Z^{v}(s)\ln Z^{v}(s)]&=&E_{t}^{v}[\ln Z^{v}(s)]{}\\ &=&\ln Z^{v}(t)+\int_{t}^{s}\int_{{\mathbb{R}}}g_{1}(u, y)\nu({\rm d}y){\rm d}u+\int_{t}^{s}\frac{1}{2}\phi_{1}(u)^{2}{\rm d}u, \end{eqnarray} $

其中$ g_{1}(u, y)=\phi_{2}(u, y)\ln\phi_{2}(u, y)-\phi_{2}(u, y)+1 $.

将(5.4)式代入(5.3)式可得

$ \begin{eqnarray} &&-g_{2}(t)\ln(\lambda_{0}Z(t))-\frac{\xi_{0T}}{\alpha_{3}}\ln\frac{\xi_{0T}}{\xi'_{0T}} -\int_{t}^{T}(\frac{\xi_{0s}}{\alpha_{1}}\ln\frac{\xi_{0s}}{\xi'_{0s}}+\frac{\eta(s)\xi_{0s}}{\alpha_{2}}\ln\frac{\xi_{0s}\eta(s)}{\lambda(s)\xi'_{0s}}){\rm d}s{}\\ &&-\frac{\xi_{0T}}{\alpha_{3}}\bigg[\int_{t}^{T}\frac{1}{2}\phi_{1}(u)^{2}{\rm d}u+\int_{t}^{T}\int_{{\mathbb{R}}}g_{1}(u, y)\nu({\rm d}y){\rm d}u\bigg]{}\\ &&-\int_{t}^{T}(\frac{\xi_{0s}}{\alpha_{1}}+\frac{\eta(s)\xi_{0s}}{\alpha_{2}})\bigg[\int_{t}^{s}\frac{1}{2}\phi_{1}(u)^{2}{\rm d}u+\int_{t}^{s}\int_{{\mathbb{R}}}g_{1}(u, y)\nu({\rm d}y){\rm d}u\bigg]{\rm d}s{}\\ &=&\xi_{0t}(X(t)+b(t)), \end{eqnarray} $

其中$ g_{2}(t)=\frac{\xi_{0T}}{\alpha_{3}} +\int_{t}^{T}(\frac{\xi_{0s}}{\alpha_{1}}+\frac{\eta(s)\xi_{0s}}{\alpha_{2}}){\rm d}s $.$ (X(t)+b(t))\xi_{0t} $使用Itô公式可得

$ \begin{eqnarray} {\rm d}(X(t)+b(t))\xi_{0t}&=&\bigg[\frac{\xi_{0t}}{\alpha_{1}}\ln\frac{\lambda_{0}\xi_{0t}}{\xi'_{0t}} +\frac{\eta(t)\xi_{0t}}{\alpha_{2}}\ln\frac{\lambda_{0}\xi_{0t}\eta(t)}{\lambda(t)\xi'_{0t}}+g_{2}(t)(\phi_{1}(t)^{2}{}\\ &&+\int_{{\mathbb{R}}}\phi_{2}(t, y)\ln\phi_{2}(t, y)\nu({\rm d}y)) +\ln Z^{v}(t)(\frac{\xi_{0t}}{\alpha_{1}}+\frac{\eta(t)\xi_{0t}}{\alpha_{2}})\bigg]{\rm d}t{}\\ & &-g_{2}(t)\phi_{1}(t){\rm d}W(t)-\int_{{\mathbb{R}}}g_{2}(t, y)\ln\phi_{2}(t, y)N({\rm d}t, {\rm d}y). \end{eqnarray} $

另一方面

$ \begin{equation} {\rm d}(X(t)+b(t))\xi_{0t}=-(X(t)+b(t))\xi_{0t}(\eta(t)+r){\rm d}t+\xi_{0t}{\rm d}(X(t)+b(t)). \end{equation} $

将(5.1)式代入上面的方程可得

$ \begin{eqnarray} {\rm d}(X(t)+b(t))\xi_{0t}&=&\bigg\{\frac{\xi_{0t}}{\alpha_{1}}\ln\frac{\lambda_{0}\xi_{0t}}{\xi'_{0t}} +\frac{\eta(t)\xi_{0t}}{\alpha_{2}}\ln\frac{\lambda_{0}\xi_{0t}\eta(t)}{\lambda(t)\xi'_{0t}} +(\frac{\xi_{0t}}{\alpha_{1}} +\frac{\eta(t)\xi_{0t}}{\alpha_{2}})\ln Z^{v}(t){}\\ &&+\theta(t)(\mu-r)\bigg\}{\rm d}t +\theta(t)\sigma{\rm d}W(t)+\theta(t)\int_{{\mathbb{R}}}({\rm e}^{y}-1)N({\rm d}t, {\rm d}y). \end{eqnarray} $

比较(5.6)式和(5.8)式中$ {\rm d}W $, $ N({\rm d}t, {\rm d}y) $$ {\rm d}t $的系数可得

$ \begin{equation} -g_{2}(t)\phi_{1}(t)=\theta(t)\sigma, \end{equation} $

$ \begin{equation} -g_{2}(t)\ln\phi_{2}(t, y)=\theta(t)({\rm e}^{y}-1), \end{equation} $

$ \begin{equation} g_{2}(t)[\phi_{1}(t)^{2}+\int_{{\mathbb{R}}}\phi_{2}(t, y)\ln\phi_{2}(t, y)\nu({\rm d}y)]=\theta(t)(\mu-r). \end{equation} $

可验证$ \theta(t)\neq0 $且(5.9)–(5.11)式成立时鞅条件(3.4)满足. 将(5.1)式代入(3.8)式可得

$ \begin{eqnarray} \inf\limits_{Z^{v}\in {\cal Z}}U(t, Z^{v}) &=&\inf\limits_{Z^{v}\in {\cal Z}}E_{t}\bigg[-\int_{t}^{T}(\frac{\lambda_{0}\xi_{0s}}{\alpha_{1}\xi'_{0t}} +\frac{\lambda_{0}\xi_{0s}\eta(s)}{\alpha_{2}\xi'_{0t}})Z^{v}(s){\rm d}s-\frac{\lambda_{0}\xi_{0T}}{\alpha_{3}\xi'_{0t}}Z^{v}(T)\bigg]{}\\ &=&-\bigg[\int_{t}^{T}(\frac{\xi_{0s}}{\alpha_{1}\xi'_{0t}} +\frac{\xi_{0s}\eta(s)}{\alpha_{2}\xi'_{0t}}){\rm d}s+\frac{\xi_{0T}}{\alpha_{3}\xi'_{0t}}\bigg]\lambda_{0}Z^{v}(t), \end{eqnarray} $

其是$ {\cal F}_{t} $可测的. 因此最优解$ v^{*} $只需满足(5.9)–(5.10)式. 由(5.9)和(5.10)式可得

$ \begin{equation} \phi_{1}(t)=-\frac{\theta(t)\sigma}{g_{2}(t)}, \ \ \phi_{2}(t, y)=\exp\bigg\{\frac{\theta(t)}{g_{2}(t)}(1-{\rm e}^{y})\bigg\}. \end{equation} $

将(5.13)式代入(5.11)式可得

$ \begin{equation} \frac{\theta(t)\sigma^{2}}{g_{2}(t)}+\int_{{\mathbb{R}}}\exp\bigg\{\frac{\theta(t)}{g_{2}(t)}(1-{\rm e}^{y})\bigg\}(1-{\rm e}^{y})\nu({\rm d}y)=\mu-r. \end{equation} $

定理5.1  对$ U_{i}=-\frac{1}{\alpha_{i}}\exp\{-\alpha_{i} x\}, \alpha_{i}>0, i=1, 2, 3 $, 值函数$ V(t, X(t)) $

$ \begin{equation} V(t, X(t))=-\bigg[\int_{t}^{T}(\frac{\xi_{0s}}{\alpha_{1}\xi'_{0t}}+\frac{\xi_{0s}\eta(s)}{\alpha_{2}\xi'_{0t}}){\rm d}s +\frac{\xi_{0T}}{\alpha_{3}\xi'_{0t}}\bigg]\exp\bigg\{\frac{\tilde{H}_{t, T}+\xi_{0t}(X(t)+b(t))}{-g_{2}(t)}\bigg\}. \end{equation} $

最优保险、消费和投资策略为

$ \begin{equation} \begin{array}{ll} { } \theta^{*}(t), \ \ c^{*}(t)=-\frac{1}{\alpha_{1}}\bigg[\ln\frac{\xi_{0t}}{\xi'_{0t}}+\frac{\tilde{H}_{t, T}+\xi_{0t}(X(t)+b(t))}{-g_{2}(t)}\bigg], \\ { } X(t)+\frac{p^{*}(t)}{\eta(t)}=-\frac{1}{\alpha_{2}} \bigg[\ln\frac{\eta(t)\xi_{0t}}{\lambda(t)\xi'_{0t}}+\frac{\tilde{H}_{t, T}+\xi_{0t}(X(t)+b(t))}{-g_{2}(t)}\bigg], \end{array} \end{equation} $

其中

$ \begin{eqnarray} \tilde{H}_{t, T}&=&\frac{\xi_{0T}}{\alpha_{3}}\ln\frac{\xi_{0T}}{\xi'_{0T}} +\int_{t}^{T}\bigg(\frac{\xi_{0s}}{\alpha_{1}}\ln\frac{\xi_{0s}}{\xi'_{0s}} +\frac{\xi_{0s}\eta(s)}{\alpha_{2}}\ln\frac{\eta(s)\xi_{0s}}{\lambda(s)\xi'_{0s}}\bigg){\rm d}s{}\\& &+\frac{\xi_{0T}}{\alpha_{3}}\int_{t}^{T}\bigg(\int_{{\mathbb{R}}}g_{1}^{*}(u, y)\nu({\rm d}y)+\frac{1}{2}\phi_{1}^{*}(u)^{2}\bigg){\rm d}u{}\\ &&+\int_{t}^{T}\bigg(\frac{\xi_{0s}}{\alpha_{1}}+\frac{\xi_{0s}\eta(s)}{\alpha_{2}}\bigg)\int_{t}^{s} \bigg(\int_{{\mathbb{R}}}g_{1}^{*}(u, y)\nu({\rm d}y) +\frac{1}{2}\phi_{1}^{*}(u)^{2}\bigg){\rm d}u{\rm d}s, \end{eqnarray} $

$ \begin{equation} g_{1}^{*}(u, y)=\phi_{2}^{*}(u, y)\ln\phi_{2}^{*}(u, y)-\phi^{*}_{2}(u, y)+1, \end{equation} $

$ \begin{equation} g_{2}(t)=\frac{\xi_{0T}}{\alpha_{3}} +\int_{t}^{T}\bigg(\frac{\xi_{0s}}{\alpha_{1}}+\frac{\eta(s)\xi_{0s}}{\alpha_{2}}\bigg){\rm d}s, \end{equation} $

$ \begin{equation} \phi_{1}^{*}(t)=-\frac{\theta^{*}(t)\sigma}{g_{2}(t)}, \ \ \phi_{2}^{*}(t, y)=\exp \bigg\{\frac{\theta^{*}(t)}{g_{2}(t)}(1-{\rm e}^{y})\bigg\}, \end{equation} $

其中$ \theta^{*}(t) $是(5.14)式的实数解.

6 效用函数为$ U(x)=\beta\frac{x^{\gamma}}{\gamma}, \beta>0, \gamma\neq0, \gamma<1 $时的最优策略

假设职员的效用函数为幂效用函数, 即$ U_{i}(x)=\beta_{i}\frac{x^{\gamma}}{\gamma}, \beta_{i}>0, \gamma\neq0, \gamma<1, i=1, 2, 3, $其中$ \beta_{i} $为常数, 则$ I_{i}(y)=(\frac{y}{\beta_{i}})^{\frac{1}{\gamma-1}}, i=1, 2, 3. $由一阶条件可得

$ \begin{equation} c(t)=\bigg(\frac{\lambda_{0}\xi_{0t}Z^{v}(t)}{\beta_{1}\xi'_{0t}}\bigg)^{\frac{1}{\gamma-1}}, \ M(t)=\bigg(\frac{\lambda_{0}\xi_{0t}\eta(t)Z^{v}(t)}{\beta_{2}\lambda(t)\xi'_{0t}}\bigg)^{\frac{1}{\gamma-1}}, \ X(T)=\bigg(\frac{\lambda_{0}\xi_{0T}Z^{v}(T)}{\beta_{3}\xi'_{0T}}\bigg)^{\frac{1}{\gamma-1}}, \end{equation} $

其中$ \lambda_{0} $满足(5.2)式, 将(6.1)式代入(5.2)式, 可得

$ \begin{equation} (\lambda_{0}Z^{v}(t))^{\frac{1}{\gamma-1}}F_{2}(t, T)=X(t)+b(t), \end{equation} $

其中

$ X(t)+b(t) $使用Itô公式可得

$ \begin{eqnarray} {\rm d}(X(t)+b(t))&=&(X(t)+b(t))\bigg\{\frac{1}{\gamma-1}\phi_{1}(t){\rm d}W(t)+\int_{{\mathbb{R}}}(\phi_{2}(t, y)^{\frac{1}{\gamma-1}}-1)N({\rm d}t, {\rm d}y){}\\ &&+(\eta(t)+r+\frac{1}{\gamma-1}\phi_{1}(t)^{2}+\int_{{\mathbb{R}}}(\phi_{2}(t, y)-\phi_{2}(t, y)^{\frac{\gamma}{\gamma-1}})\nu({\rm d}y)){\rm d}t\bigg\}{}\\ &&-(\lambda_{0}Z^{v}(t))^{\frac{1}{\gamma-1}}f_{1}(t, t){\rm d}t, \end{eqnarray} $

其中$ f_{1}(t, s)=(\xi_{ts}(\frac{\beta_{1}\xi'_{0s}}{\xi_{0s}})^{\frac{1}{1-\gamma}} +\xi_{ts}\eta(s)(\frac{\beta_{2}\xi'_{0s}\lambda(s)}{\eta(s)\xi_{0s}})^{\frac{1}{1-\gamma}})F_{1}(t, s) $.

另一方面

$ \begin{eqnarray} {\rm d}(X(t)+b(t))&=&\{(\eta(t)+r)(X(t)+b(t))+\theta(t)(\mu-r)-(\lambda_{0}Z^{v}(t))^{\frac{1}{\gamma-1}}f_{1}(t, t)\}{\rm d}t{}\\ & &+\theta(t)\sigma{\rm d}W(t)+\int_{{\mathbb{R}}}\theta(t)({\rm e}^{y}-1)N({\rm d}t, {\rm d}y). \end{eqnarray} $

比较(6.3)和(6.4)式中$ {\rm d}W $, $ N({\rm d}t, {\rm d}y) $$ {\rm d}t $的系数可得

$ \begin{equation} \theta(t)\sigma=\frac{(X(t)+b(t))\phi_{1}(t)}{\gamma-1}, \end{equation} $

$ \begin{equation} \theta(t)({\rm e}^{y}-1)=(X(t)+b(t))(\phi_{2}(t, y)^{\frac{1}{\gamma-1}}-1), \end{equation} $

$ \begin{equation} \theta(t)(\mu-r)=(X(t)+b(t))\bigg\{\frac{1}{\gamma-1}\phi_{1}(t)^{2} +\int_{{\mathbb{R}}}(\phi_{2}(t, y)-\phi_{2}(t, y)^{\frac{\gamma}{\gamma-1}})\nu({\rm d}y)\bigg\}. \end{equation} $

可验证鞅条件(3.4)满足. 将(6.1)式代入(3.8)式可得

$ \begin{eqnarray} &&\inf\limits_{Z^{v}\in {\cal Z}}U(t, Z^{v}){}\\ &=&\inf\limits_{Z^{v}\in {\cal Z}}E_{t}\bigg[\int_{t}^{T}\frac{\xi'_{ts}}{\gamma} (\beta_{1}^{\frac{1}{1-\gamma}}(\frac{\lambda_{0}\xi_{0s}}{\xi'_{0s}})^{\frac{\gamma}{\gamma-1}} +\lambda(s)\beta_{2}^{\frac{1}{1-\gamma}}(\frac{\lambda_{0}\eta(s)\xi_{0s}}{\lambda(s)\xi'_{0s}})^{\frac{\gamma}{\gamma-1}})Z^{v}(s)^{\frac{\gamma}{\gamma-1}}{\rm d}s{}\\ & &+\frac{\xi'_{tT}}{\gamma} \beta_{3}^{\frac{1}{1-\gamma}}(\frac{\lambda_{0}\xi_{0T}}{\xi'_{0T}})^{\frac{\gamma}{\gamma-1}}Z^{v}(T)^{\frac{\gamma}{\gamma-1}}\bigg], \end{eqnarray} $

等价于

$ \begin{eqnarray} \inf\limits_{Z^{v}\in{\cal Z}}E[ Z^{v}(s)^{\frac{\gamma}{\gamma-1}}] &=&Z^{v}(t)^{\frac{\gamma}{\gamma-1}}\inf\limits_{Z^{v}\in{\cal Z}} \exp\bigg\{\int_{t}^{s}(\frac{\gamma}{2(\gamma-1)^{2}}\phi_{1}(u)^{2}{}\\ &&+\int_{{\mathbb{R}}}(\phi_{2}(u, y)^{\frac{\gamma}{\gamma-1}} -\frac{\gamma\phi_{2}(u, y)}{\gamma-1}+\frac{1}{\gamma-1})\nu({\rm d}y)){\rm d}u\bigg\}, \end{eqnarray} $

$ \forall t<s<T $, 等价于计算

$ \begin{equation} \inf\limits_{v\in\tilde{{\cal K}'}_{m}}\bigg\{\frac{\gamma}{2(\gamma-1)^{2}}\phi_{1}(u)^{2}+\int_{{\mathbb{R}}}(\phi_{2}(u, y)^{\frac{\gamma}{\gamma-1}} -\frac{\gamma\phi_{2}(u, y)}{\gamma-1}+\frac{1}{\gamma-1})\nu({\rm d}y)\bigg\}, \end{equation} $

其中

$ {\cal D'}(\theta) $表示下面方程的解的集合

$ \begin{eqnarray} \theta(t)(\mu-r)&=&(X(t)+b(t))\int_{{\mathbb{R}}}\bigg[(\frac{\theta(t)({\rm e}^{y}-1)}{X(t)+b(t)}+1)^{\gamma-1} -(\frac{\theta(t)({\rm e}^{y}-1)}{X(t)+b(t)}+1)^{\gamma}\bigg]\nu({\rm d}y){}\\ &&+\frac{\sigma^{2}\theta(t)^{2}(1-\gamma)}{X(t)+b(t)}. \end{eqnarray} $

定理6.1  对$ U_{i}=\beta_{i}\frac{x^{\gamma}}{\gamma}, \gamma\neq0, \gamma<1, \beta_{i}>0, i=1, 2, 3 $, 值函数$ V(t, X(t)) $

$ \begin{equation} V(t, X(t))=\frac{\xi_{0t}}{\gamma\xi'_{0t}}(\frac{X(t)+b(t)}{F^{*}_{2}(t, T)})^{\gamma}F^{*}_{2}(t, T), \end{equation} $

最优保险、消费和投资的最优策略为

$ \begin{equation} \begin{array}{lll} { } \theta^{*}(t)=\frac{\phi_{1}^{*}(t)(X(t)+b(t))}{\sigma(\gamma-1)}, \ \ c^{*}(t)=(\frac{\beta_{1}\xi'_{0t}}{\xi_{0t}})^{\frac{1}{1-\gamma}}\frac{X(t)+b(t)}{F^{*}_{2}(t, T)}\\ { } X(t)+\frac{p^{*}(t)}{\eta(t)}=(\frac{\beta_{2}\xi'_{0t}\eta(t)}{\lambda(t)\xi_{0t}})^{\frac{1}{1-\gamma}}\frac{X(t)+b(t)}{F^{*}_{2}(t, T)}, \end{array} \end{equation} $

其中$ v=(\phi_{1}^{*}, \phi_{2}^{*}) $是(6.10)式的解, 且

7 数值实例

本节给出一个数值例子来研究股票价格的跳如何影响最优策略. 假设Lévy测度$ \nu({\rm d}y) $是如下的离散形式

假设职员年龄为25, 她/他将在$ T=65 $岁退休. 金融市场参数为$ r=0.01, \lambda(t)=\eta(t)=\frac{1}{10.54}\exp\{\frac{t-87.24}{10.54}\}, i(s)=5000{\rm e}^{0.02(s-t)} $($ s\geq t $时), $ \lambda_{1}=\lambda_{2}=2, X_{t}=100000, \delta=0.05 $$ \mu=0.1 $.

图 1图 2展示了对数效用函数情况下股票价格的跳对最优策略$ \theta^{*} $的影响. 图 3图 8展示了幂效用函数情况下股票价格的跳对最优策略$ \theta^{*}, c^{*} $$ p^{*} $的影响. 图 9图 14展示了指数效用函数情况下股票价格的跳对最优策略$ \theta^{*}, c^{*} $$ p^{*} $的影响. 从图中可以发现对三种效用函数$ \theta^{*} $关于股票价格的正跳是增函数, 关于股票价格的负跳是减函数. 对指数效用函数和幂效用函数, $ c^{*} $$ p^{*} $关于股票价格的负跳是减函数, 关于股票价格的正跳是凹函数.

图 1

图 1   对数效用函数的$ \theta^{*} $关于$ a_{1} $的变化


图 2

图 2   对数效用函数的$ \theta^{*} $关于$ a_{2} $的变化


图 3

图 3   幂效用函数的$ \theta^{*} $关于$ a_{1} $的变化


图 4

图 4   幂效用函数的$ \theta^{*} $关于$ a_{2} $的变化


图 5

图 5   幂效用函数的$ c^{*} $关于$ a_{1} $的变化


图 6

图 6   幂效用函数的$ c^{*} $关于$ a_{2} $的变化


图 7

图 7   幂效用函数的$ p^{*} $关于$ a_{1} $的变化


图 8

图 8   幂效用函数的$ p^{*} $关于$ a_{2} $的变化


图 9

图 9   指数效用函数的$ \theta^{*} $关于$ a_{1} $的变化


图 10

图 10   指数效用函数的$ \theta^{*} $关于$ a_{2} $的变化


图 11

图 11   指数效用函数的$ c^{*} $关于$ a_{1} $的变化


图 12

图 12   指数效用函数的$ c^{*} $关于$ a_{2} $的变化


图 13

图 13   指数效用函数的$ p^{*} $关于$ a_{1} $的变化


图 14

图 14   指数效用函数的$ p^{*} $关于$ a_{2} $的变化


参考文献

Richard S .

Optimal consumption, portfolio and life insurance rules for an uncertain lived individual in a continuous time model

Journal of Financial Economics, 1975, 2: 187- 203

DOI:10.1016/0304-405X(75)90004-5      [本文引用: 1]

Merton R C .

Lifetime portfolio selection under uncertainty: the continuous time case

Review of Economics and Statistics, 1969, 51: 247- 257

DOI:10.2307/1926560      [本文引用: 1]

Merton R C .

Optimal consumption and portfolio rules in a continuous-time model

Journal of Economic Theory, 1971, 3: 373- 413

DOI:10.1016/0022-0531(71)90038-X      [本文引用: 1]

Pliska S R , Ye J .

Optimal life insurance purchase and consumption/investmet under uncertain lifetime

Journal of Banking and Finance, 2007, 31: 1307- 1319

DOI:10.1016/j.jbankfin.2006.10.015      [本文引用: 1]

Huang H , Milevsky M A , Wang J .

Portfolio choice and life insurance: the CRRA case

Journal of Risk and Insurance, 2008, 75 (8): 847- 872

URL     [本文引用: 1]

Mousa A S , Pinheiro D , Pinto A A .

Optimal life-insurance selection and purchase within a market of several life-insurance providers

Insurance: Mathematics and Economics, 2016, 67: 133- 141

DOI:10.1016/j.insmatheco.2016.01.002      [本文引用: 1]

Ye J. Optimal Life Insurance Purchase, Consumption, and Portfolio Under an Uncertain Life[D]. Chicago: University of Illinois at Chicago, 2006

[本文引用: 1]

Michelbrink D , Le H L .

A martingale approach to optimal portfolios with jump-diffusions

SIAM Journal on Control and Optimization, 2012, 50 (1): 583- 599

DOI:10.1137/100784412      [本文引用: 1]

Kwak M , Shin Y H , Choi U J .

Optimal investment and consumption decision of a family with life insurance

Insurance: Mathematics and Economics, 2011, 48 (2): 176- 188

DOI:10.1016/j.insmatheco.2010.10.012      [本文引用: 1]

Liang X Q , Guo J Y .

Optimal investment, consumption, and life insurance in an incomplete market

Communications in Statistics-Theory and Methods, 2016, 45 (13): 3884- 3903

DOI:10.1080/03610926.2014.911907      [本文引用: 1]

Guambe C , Kufakunesu R .

Optimal investment-consumption and life insurance with capital constraints

Communications in Statistics-Theory and Methods, 2020, 49 (3): 648- 669

DOI:10.1080/03610926.2018.1549246      [本文引用: 1]

He H , Pearson Neil D .

Consumption and portfolio policies with incomplete markets and short-sale constraints: the infinite dimensional case

Journal of Economic Theory, 1991, 54: 259- 304

DOI:10.1016/0022-0531(91)90123-L      [本文引用: 2]

Karatzas I , Lehoczky J , Shreve S , Xu G .

Martingale and duality methods for utility maximization in an incomplete market

SIAM J Contr Optim, 1991, 29: 702- 730

DOI:10.1137/0329039      [本文引用: 1]

Bellini F, Frittelli M. Certainty Equivalent and no Arbitrage: A Reconciliation via Duality Theory[R]. Brescia: Brescia University, 1997

[本文引用: 1]

Bellini F, Frittelli M. On the Existence of Minimax Martingale Measures[R]. Milano: University of Milano, 1998

[本文引用: 1]

Goll T , Rüschendorf L .

Minimax and minimal distance martingale measures and their relationship to portfolio optimization

Finance and Stochastic, 2001, 5: 557- 581

DOI:10.1007/s007800100052      [本文引用: 1]

Huên Pham .

A predictable decomposition in an infinite assets model with jumps. Application to hedging and optimal investment

Stochastics and Stochastics Reports, 2003, 75 (5): 343- 368

DOI:10.1080/104511203100001621237      [本文引用: 1]

/