一类反三角算子矩阵的本质谱
The Essential Spectrum of a Class of Anti-Triangular Operator Matrices
通讯作者:
收稿日期: 2022-02-9
基金资助: |
|
Received: 2022-02-9
Fund supported: |
|
In this paper, the essential spectrum of a class of unbounded unself-adjoint anti-triangular operator matrices is studied. Firstly, we describe the essential spectrum of operator matrices by using the quadratic operator pencil and the properties of its operator entries, and estimate the essential spectrum of the whole operator matrix. On this basis, the accumulation point of the non-real spectrum of the operator matrix is analyzed.
Keywords:
本文引用格式
花蕊, 齐雅茹.
Hua Rui, Qi Yaru.
1 引言
算子矩阵是以线性算子为元素的矩阵, 在数学物理问题中有广泛的应用. 例如, 流体力学、磁流体力学、弹性力学和量子力学等领域中涉及的微分方程的有关研究可转化为其相关算子矩阵的谱、半群、变分原理及特征值问题的研究. 而实际应用与高阶微分方程相关联的算子矩阵往往是一类非自伴无界
本质谱在线性算子的定量研究及控制论等领域有重要的应用. 对于自伴算子, 谱可以分解为本质谱和代数重数有限的离散点谱; 而对于预解集非空的非自伴算子, 当本质谱为空集时, 谱集也仅由代数重数有限的离散点谱构成, 这对于利用分离变量法研究其特征值问题提供了基础. 但本质谱难以利用数值的方法进行研究, 所以有必要从分析的角度刻画其性质和分布.
本文讨论一类无界非自伴的反三角算子矩阵的本质谱, 具体如下
令
其中
因此原问题的研究可转化为形如无界算子
则
设
定义1.1 设
并称集合
定义1.2[20] 设
定义1.3[21] 设
则称
引理1.1[21] 设
引理1.2[22] 设
定义1.4[23] 设
且
引理1.3[23] 设
2 主要结果及其证明
命题2.1 设
证 由
即
证毕.
下面刻画反三角算子矩阵
定理2.1 设
若
证 当
其中
由于
若
定理2.2 设
进一步, 当
证 根据命题2.1可知
由
进一步, 由
推论2.1 设
证 由
下面为了估计
引理2.1 设
成立, 则
1.
2.
3. 若
4. 若
证 由(2.4) 式有
根据(2.3), (2.5) 式可知在Hilbert空间
当
由(2.7), (2.8) 两式可得
进一步结合(2.8), (2.9) 式有
当
综上所述, 结论成立.
下面对于
定理2.3 设
特别地, 当
证 根据文献[20, 定理1.2.12]可得
由
令
是Hilbert空间
由
由
又因
下面应用定理2.3, 对于方程(1.2) 中
例2.1 当方程(1.2) 中
而(1.5)式中的
定理2.4 设
特别地, 当
证 由定理2.3的证明可知
令
为Hilbert空间
由
由于
因
基于以上本质谱的研究, 下面讨论反三角算子矩阵
定理2.5 设
证 设
根据(2.15) 式可知
由定义1.4和引理1.3可知, 在区间
参考文献
Limiting behavior for strongly damped nonlinear wave equations
,DOI:10.1016/0022-0396(83)90098-0 [本文引用: 1]
On the mathematical model for linear elastic systems with analytic damping
,DOI:10.1137/0326041
Exponential stability of semigroups related to operator models in mechanics
,
How to get a conservative well-posed linear system out of thin air. Part Ⅱ. Controllability and stability
,
Exponential decay of 2 × 2 operator matrix semigroups
,
一类无界算子的二次数值域和谱
,DOI:10.3969/j.issn.1003-3998.2020.06.002 [本文引用: 1]
The quadratic numerical range and the spectrum of some unbounded block operator matrices
DOI:10.3969/j.issn.1003-3998.2020.06.002 [本文引用: 1]
Location of the spectrum of operator matrices which are associated to second order equations
,
Analyticity and riesz basis property of semigroups associated to damped vibrations
,
Spectrum and analyticity of semigroups arising in elasticity theory and hydromechanics
,DOI:10.1007/s00233-009-9148-y [本文引用: 1]
Estimate of the decay exponent of an operator semigroup associated with a second-order linear differential equation
,
Variational principles for self-adjoint operator functions arising from second order systems
,
Systems with strong damping and their spectra
,DOI:10.1002/mma.5166 [本文引用: 1]
Some problems for linear elastic systems with damping
,DOI:10.1016/S0252-9602(18)30405-3 [本文引用: 1]
A dirichlet boundary contral problem for the strongly damped wave equation
,
Spectrum and stability for elastic systems with global or local Kelvin-Voigt damping
,
A singular control approach to highly damped second-order abstract equations and applications
,
Exponential decay of eigenfunctions and generalized eigenfunctions of a non-self-adjoint matrix Schrödinger operator related to NLS
,DOI:10.1112/blms/bdm065 [本文引用: 1]
Spectral points of type π+ and π- of self-adjoint operators in Krein spaces
,DOI:10.1016/j.jfa.2005.03.009 [本文引用: 2]
/
〈 | 〉 |