数学物理学报, 2021, 41(6): 1925-1936 doi:

论文

纵向数据下自适应设计广义估计方程的大样本性质

尹长明,, 石岳鑫

广西大学数学与信息科学学院 南宁 530004

Large Sample Properties of Generalized Estimating Equations with Adaptive Designs for Longitudinal Data

Yin Changming,, Shi Yuexin

School of Mathematics and Information Science, Guangxi University, Nanning 530004

通讯作者: 尹长明, E-mail: 2814294510@qq.com

收稿日期: 2020-10-26  

基金资助: 国家自然科学基金.  11061002
国家自然科学基金.  11701109
广西自然科学基金.  2015GXNSFAA139006
广西自然科学基金.  2018GXN-SFBA281016

Received: 2020-10-26  

Fund supported: the NSFC.  11061002
the NSFC.  11701109
the NSF of Guangxi.  2015GXNSFAA139006
the NSF of Guangxi.  2018GXN-SFBA281016

Abstract

Generalized estimating equation (GEE) is widely adopted in analyzing longitudinal (clustered) data with discrete or nonnegative responses. In this paper, we prove the existence, weak consistency and asymptotic normality of generalized estimating equations estimator with adaptive designs under some mild regular conditions. The accuracy of the asymptotic approximation is examined via numerical simulations. Our results extend the elegant work of Xie and Yang (Ann Statist, 2003, 31: 310-347) and Balan and Schiopu-Kratina (Ann Statist, 2005, 33: 522-541).

Keywords: Generalized estimating equations ; Adaptive designs ; Longitudinal data ; Asymptotic normality

PDF (376KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

尹长明, 石岳鑫. 纵向数据下自适应设计广义估计方程的大样本性质. 数学物理学报[J], 2021, 41(6): 1925-1936 doi:

Yin Changming, Shi Yuexin. Large Sample Properties of Generalized Estimating Equations with Adaptive Designs for Longitudinal Data. Acta Mathematica Scientia[J], 2021, 41(6): 1925-1936 doi:

1 引言

纵向数据或称集团数据、面板数据, 经常出现在生物、医学、经济和社会科学的研究中. 它是对同同一个个体进行多次观测, 所得数据是相关的, 但相关系数未知. 广义估计方程(GEE)[1]是分析响应变量是离散或非负的纵向数据回归问题的重要方法. GEE方法的一个显著特点是即使每个个体多次观测值之间的相关系数(方差)假定错误, 只要均值函数假定正确, 所得回归系数的GEE估计仍具有相合性和渐近正态性. 若相关系数假定也正确, 则得到的GEE估计方差最小.

$ Y_{ij} $是第$ i $个个体的第$ j $次观测响应变量的值, 回归因子$ X_{ij} $$ p\times 1 $设计阵, $ i = 1, 2, \cdots , n $, $ j = 1, 2, \cdots , m_i $.$ Y_i = (Y_{i1}, \cdots , Y_{im_i})^\tau $, $ X_i = (X_{i1}, \cdots , X_{im_i}) $, 单调递增的$ \sigma $代数$ {{\cal F}}_{i}: = \sigma\{(Y_k, X_k), k = 1, \cdots, i\} $.$ X_{i} $$ {\cal F}_{i-1} $可测, 即$ X_{i} $的设计依赖于前面的观察值, 称为自适应的, 且假设

$ \begin{equation} \mu_{ij}(\beta): = \mbox{E}(Y_{ij}|{{\cal F}}_{i-1}) = \mu(X_{ij}^\tau\beta), \end{equation} $

$ \begin{equation} \sigma_{ij}(\beta): = \mbox{Var}(Y_{ij}|{{\cal F}}_{i-1}) = \dot\mu(X_{ij}^\tau\beta), \end{equation} $

其中'$ \tau $'表示矩阵的转置, $ \mu(\theta) $称为联系函数(link), $ \dot\mu(\theta)>0 $是它的导数, $ \beta $是回归参数向量. 若$ \mu(\theta ) = \theta $, 就得到线性回归模型, $ \mu(\theta ) = e^\theta/(1+e^\theta) $就得到分析二分类数据的logit模型, $ \mu(\theta ) = e^\theta $就得到分析计数数据的对数线性Poisson模型. 记$ \mu_i(\beta) = (\mu_{i1}(\beta), \cdots , \mu_{im_i}(\beta))^\tau $, $ A_i(\beta) = \mbox{diag}(\sigma_{i1}(\beta), \cdots , \sigma_{im_i}(\beta)) $, 其中diag($ v $) 表示对角矩阵, 其对角线元素是向量$ v $的元素. 文献[2]和文献[3]定义GEE估计$ \hat\beta_n $为下列方程的根

$ \begin{eqnarray} g_n(\beta) = \sum\limits_{i = 1}^nX_iA_i^{1/2}(\beta) R_i^{-1} A_i^{-1/2}(\beta)(Y_i-\mu_i(\beta)) = 0, \end{eqnarray} $

其中$ R_i $是工作相关阵.

GEE是广义线性模型(GLM)的推广, GLM和GEE的建模可参看文献[1, 4-7]. GLM大样本性质的可参看文献[8-13]. GEE大样本性质的可参看文献[2, 3, 14]. 文献[2]严格证明了工作相关阵已知, 每个个体观测次数可以无界情形下GEE估计的大样本性质. 文献[14]证明了协变量的维数可以无界情形下GEE估计的渐近性质. 文献[3]证明了具有估计工作相关阵, 误差是鞅差情形GEE估计的相合性和渐近正态性. 文献[2, 14]都假设$ Y_i, i\ge 1 $是相互独立的, $ X_{ij} $是固定的. 文献[3]假设$ \mbox{E}(Y_{ij}|{{\cal F}}_{i-1}) = \mu(X_{ij}^\tau\beta) $, 而设计阵$ X_{ij} $也还是假设是固定的, 非随机的. 自适应设计在心里学研究, 控制理论有广泛地应用, 可参见文献[6, 7, 15, 16]. 该文在较弱的条件下证明了自适应设计GEE回归参数估计的渐近性质, 并做了数值模拟. 把文献[2]和[3]的相应结果推广到了设计阵是自适应情形, 并且对Fisher信息阵的特征根的要求降到了最低.

2 主要结果

在本文中, 函数在参数$ \beta $真值$ \beta_0 $点取值, 经常省略$ \beta_0 $, 如记$ A_i = A_i(\beta_0), \mu_i = \mu_i(\beta_0) $. $ C, C_1, C_2, \ldots $代表与$ n $无关的正常数, 在不同地方可以表示不同值. 为了得到我们的主要结果, 需要如下假设条件:

(A1) (ⅰ) $ \|X\|_n^2 / \lambda_{\min}(F_n)\to_{a.s} 0, $ (ⅱ) $ \sup\limits_{i\ge 1}m_i<\infty $, 其中Fisher信息阵$ F_n = $$ \sum\limits_{i = 1}^n X_iX_i^\tau $, $ \|X\|_n = \max\limits_{ i\le n, j\le m_i} \|X_{ij}\|^2 $, 对一个矩阵$ T $, $ \|T\| = [\mbox{trace}(TT^\tau)]^{1/2} $, $ \lambda_{\min}(T) $$ \lambda_{\max}(T) $分别表示矩阵$ T $的最小和最大特征值.

(A2) 未知参数$ \beta $属于紧集$ {\mathbb B}\subset {{\Bbb R}} ^{p} $, 参数真值$ \beta_{0} $$ \mathbb B $的内点.

(A3) 存在一个常数$ \alpha_0>2 $使得

其中$ Y_{ij}^* = Y_{ij}^*(\beta_0), Y_{ij}^*(\beta) = A_{ij}^{-1/2}(\beta)(Y_{ij}-\mu_{ij}(\beta)) $.

(A4) 概率为1, $ \inf\limits_{i\ge1}\lambda_{\min}( R_i)>0 $, $ \inf\limits_{i\ge1}\lambda_{\min}(\bar R_i)>0 $, 其中$ \bar R_i = E(Y_i^*(Y_i^*)^\tau|{\cal F}_{i-1}) $是真实相关阵, $ Y_{i}^* = Y_{i}^*(\beta_0), Y_{i}^*(\beta) = A_{i}^{-1/2}(\beta)(Y_{i}-\mu_{i}(\beta)). $

(A5) 存在一个非随机矩阵$ \bar M_n $使得$ \bar M_n^{-1}M_n^{1/2}\to_p I_p $, 其中$ I_p $$ p $阶单位阵, $ M_n = M_n(\beta_0), $$ M_n(\beta) = \sum\limits_{i = 1}^n X_iA_i^{1/2} R_i^{-1}\bar R_i R_i^{-1}A_i^{1/2}X_i^\tau $.

(A6) (ⅰ) $ \sup\limits_{n\ge 1}\sup\limits_{i\le n, j\le m_i, \beta\in \tilde B_n(r)} |\mu^{(k)}(X_{ij}^\tau\beta)|<\infty \; \; a.s. $, $ \mu^{(k)} $表示$ \mu $$ k $阶导数, $ k = 1, 2, 3 $. (ⅱ) $ \inf\limits_{n\ge 1}\inf\limits_{i\le n, j\le m_i, \beta\in \tilde B_n(r)}\dot \mu(X_{ij}^\tau\beta)>0\; \; a.s., $其中$ \tilde B_n(r) = \{\beta :\|\bar M_n^\tau(\beta-\beta_0)\|\le r\} $, $ r $是任意正常数.

定理2.1  若假设(A1)–(A6)成立. 则存在一个随机变量序列$ \{\hat\beta_n\} $使得

$ \begin{equation} P( g_n(\hat\beta_n) = 0)\to 1, \qquad \hat\beta_n\to_p\beta_{0}, \nonumber \end{equation} $

而且

$ \begin{equation} M_n^{-1/2} H_n(\hat\beta_n-\beta_{0})\to_d N(0, I_p), \nonumber \end{equation} $

其中

注2.1  对纵向数据, 文献[2]研究的设计阵$ X_{ij} $是固定的, 文献[3]的$ X_{ij} $也是非随机的, 只是误差是鞅差. 显然都是我们自适应设计的特殊情形. 而且文献[3]要求$ n^{1/2}\|X\|_n^2/\underline\lambda_n\to 0, $其中$ \underline\lambda_n: = \lambda_{\min}(F_n) $. 对非纵向数据($ m_i = 1, i\ge 1) $, 自适应情形, 当$ \sup\limits_{n\ge 1}\|X\|_n<\infty \; \; a.s. $时, 文献[17]也要求$ \underline\lambda_n\ge C n^{1/2}\; a.s. $. 而我们只需要$ \underline\lambda_n\to\infty\; a.s. $, 这应该是相合性和渐近正态性需要的最弱条件, 因为对线性模型的最小二乘估计, 此条件是相合的必要条件.

注2.2  条件(A1)(ⅰ)类似Lindeberg-Feller中心极限定理中的Feller条件. 对自适应设计阵情形, 假设(A5)是需要的, 可参看文献[11, 15, 17]. 文献[15]举了一个反例, 说明若没有稳定条件(A5), 则线性模型最小二乘估计的渐近正态性不成立.

注2.3  假设(A4)和(A6)(ⅱ) 要求随机变量(协)方差有界, 而且不趋于0. (A3)是中心极限定理的李雅普诺夫条件. (A6)(ⅰ)是联系函数(link) 的光滑性条件. 这些都是文献中常用条件. 对纵向数据固定设计阵特殊情形, 假设(A2), (A3), (A4)和(A6), 可参看文献[2, 3, 14]. 对非纵向数据这种特殊情形, 文献[9-13, 16, 17]都假设$ \sup\limits_{ij}|X_{ij}|<\infty $ a.s.等条件成立, 很容易推出满足我们的条件(A6). 线性模型和logit模型, 假设(A6)(ⅰ)显然成立; 对数线性Poisson模型, 假设(A6)(ⅰ) 简化为$ \dot \mu(X_{ij}^\tau\beta) $一致有界a.s., 因为$ \dot\mu = \mu^{(2)} = \mu^{(3)} $.

3 主要结果的证明

为了证明定理2.1, 我们需要如下一些引理.

引理3.1[18]  设$ C $$ {{\Bbb R}} ^n $中的有界开集, 记$ \bar C $$ \partial C $分别为$ C $的闭包和边界. 若对某个$ x_0\in C $和所有$ x\in \partial C $, 连续映射$ F: \bar C\to {{\Bbb R}} ^n $满足$ (x-x_0)^\tau F(x)\le 0 $.$ F(x) = 0 $$ \bar C $中有一个根.

引理3.2[19]  设$ \{S_{ni}, {\cal F}_{ni}, 1\le i\le k_n, n\ge 1\} $是零均值, 平方可积鞅, 其鞅差记为$ X_{ni} $, $ \eta^2 $是一个几乎处处有限的随机变量. 若对任意$ \epsilon>0 $, 有

其中随机变量$ Z $有特征函数$ E \exp(-\eta^2t^2/2) $, $ I(\cdot) $表示集合的示性函数, $ \sigma $ -代数: $ {\cal F}_{n, i-1}\subseteq{\cal F}_{n, i}, \;1\le i\le k_n, n\ge 1 $.

引理3.3[2]  记$ D_n(\beta): = -\frac{\partial}{\partial\beta^\tau} g_n(\beta) $, 则

其中

$ \ddot \mu $$ \mu $的二阶导数.

下面引理3.4至引理3.7的证明放在后面第5节.

引理3.4  若假设(A1)–(A6)成立, 则

引理3.5  若假设(A1)–(A6)成立, 则

引理3.6  若假设(A1)–(A6)成立, 则

引理3.7  若假设(A1)–(A6)成立, 则

定理2.1的证明  由引理3.3至3.6可得

$ \begin{eqnarray} \sup\limits_{\beta\in \tilde B_n(r)}\|H_{n}^{-1/2}D_{n}(\beta)H_{n}^{-1/2}-I\| = o_p(1). \end{eqnarray} $

由式(3.1) 和$ \|\int \cdot\|\le\int\|\cdot\| $

$ \begin{eqnarray} \sup\limits_{\beta\in \tilde B_n(r)}\|H_{n}^{-1/2}D^*_{n}(\beta)H_{n}^{-1/2}-I\| = o_p(1), \end{eqnarray} $

其中$ D^*_{n}(\beta) = \int_0^1 D_{n}(\beta_0+t\beta){\rm d}t $, 积分是对矩阵每个元素进行积分. 由式(3.2)知

$ \begin{eqnarray} \sup\limits_{\beta\in \tilde B_n(r)}\left\|\left[H_{n}^{-1/2}D^*_{n}(\beta)H_{n}^{-1/2}\right]^{-1}-I\right\| = o_p(1). \end{eqnarray} $

由假设条件(A4)至(A6), 可得对任意$ \epsilon>0 $, 存在$ C, C_1, C_2, C_3 $使

$ \begin{eqnarray} P(CI\le R_i\le C_1\bar R_i\le C_2A_i\le C_3I, i\ge 1)>1-\epsilon, \end{eqnarray} $

其中$ I $是单位阵, 且

$ \begin{eqnarray} P(F_n\le CH_n\le C_1M_n\le C_2\bar M_n\bar M_n^\tau\le C_3F_n)>1-\epsilon. \end{eqnarray} $

由引理3.7和式(3.5)知

$ \begin{eqnarray} \|H_{n}^{-1/2}g_{n}\| = \|H_{n}^{-1/2}M_{n}^{1/2}\times M_{n}^{-1/2}g_{n}\| = O_p(1). \end{eqnarray} $

$ \partial \tilde B_n(r) = \{\beta :\|\bar M_n^\tau(\beta-\beta_0)\| = r\} $. 由式(3.5)知, 对任意$ \epsilon>0 $, 存在$ C_5>0 $使得

$ \begin{eqnarray} P\Big(\inf\limits_{\beta\in \partial \tilde B_n(r)}(\beta-\beta_0)^\tau H_n(\beta-\beta_0)\ge C_5r^2\Big)>1-\epsilon, \end{eqnarray} $

由式(3.2), 对任意$ \epsilon>0 $, 当$ n $充分大时

$ \begin{eqnarray} P\Big(\inf\limits_{\|\lambda\| = 1, \beta\in \tilde B_n(r)}\lambda^\tau H^{-1/2}_{n}D^*_{n}(\beta)H^{-1/2}_{n}\lambda\ge \frac{1}{2}\Big)>1-\epsilon. \end{eqnarray} $

由向量值函数中值定理$ ^{[20]} $, 式(3.5), 引理3.7, 式(3.7)和(3.8) 可得, 以概率趋于1, 对一切$ \beta\in \partial \tilde B_n(r) $

$ \begin{eqnarray} &&(\beta-\beta_0)^\tau g_{n}(\beta) = (\beta-\beta_0)^\tau g_{n}-(\beta-\beta_0)^\tau[g_{n}-g_{n}(\beta)] \\ & = &(\beta-\beta_0)^\tau g_{n}-(\beta-\beta_0)^\tau D^*_{n}(\beta)(\beta-\beta_0)\\ & = &(\beta-\beta_0)^\tau\bar M_{n}\times\bar M^{-1}_{n} M^{1/2}_{n}\times M^{-1/2}_{n}g_{n}\\ &&-(\beta-\beta_0)^\tau H^{1/2}_{n}\left[ H^{-1/2}_{n}D^*_{n}(\beta)H^{-1/2}_{n}\right] H^{1/2}_{n}(\beta-\beta_0)\\ &\le&C r-\frac{C_5}{2}r^2. \end{eqnarray} $

因此, 取$ r $充分大使$ Cr-\frac{C_5}{2}r^2<0 $, 则有

$ \begin{eqnarray} \mbox{P} \Big\{ \sup\limits_{\beta\in \partial \tilde B_n(r)}(\beta-\beta_0)^\tau g_{n}(\beta)<0\Big\}\to 1. \end{eqnarray} $

由式(3.10)和引理3.1知

$ \mbox{P} \Big\{ \mbox{存在 }\ \hat\beta_{n}\in \tilde B_n(r)\ \mbox{ 使得 }\ g_{n}(\hat\beta_{n}) = 0\Big\}\to 1, $

所以, 由$ \hat\beta_{n}\in \tilde B_n(r) $, 式(3.5)和条件(A1)(ⅰ), 可得

$ \begin{eqnarray} \|\hat\beta_{n}-\beta_0\| = \|F^{-1/2}_{n}.F^{1/2}_{n}(\bar M^\tau_{n})^{-1}.\bar M^\tau_{n}(\hat\beta_{n}-\beta_0)\| = o_p(1). \end{eqnarray} $

由式(3.11)和向量值函数中值定理[20]

$ \begin{eqnarray} g_{n}(\beta_0) = D_{n}^*(\hat\beta_{n})(\hat\beta_{n}-\beta_0). \end{eqnarray} $

所以

$ \begin{eqnarray} &&M_{n}^{-1/2}H_{n}(\hat\beta_{n}-\beta_0) \\& = & M_{n}^{-1/2} H_{n}^{1/2}\left\{[H_{n}^{-1/2}D^*_{n}(\hat\beta_{n})H_{n}^{-1/2}]^{-1}-I\right\}[M_{n}^{-1/2} H_{n}^{1/2}]^{-1}M_{n}^{-1/2}g_{n}(\beta_0) \\ &&+M_{n}^{-1/2}g_{n}(\beta_0). \end{eqnarray} $

由式(3.14), (3.3), (3.5)和引理3.7, 可得

$ \begin{eqnarray} M_{n}^{-1/2}H_{n}(\hat\beta_{n}-\beta_0)\to_d N(0, I). \end{eqnarray} $

由式(3.11), (3.12) 和(3.15), 知定理2.1得证.

4 随机模拟

我们考虑相关的自适应设计logit模型:

$ \beta_0 = (\beta_{00}, \beta_{01})^\tau $, $ X_{ij} = (1, Y_{i-1, j})^\tau $, 其中$ Y_{0j} = 0 $. 首先我们取$ m = 3 $, $ \beta_0 = (-0.9, 0.4)^\tau $, $ Y_i = (Y_{i1}, Y_{i2}, Y_{i3})^\tau $有相关系数为0.3的交换相关结构(即$ \bar R_{i} = 0.3{\bf\bar 1_3}+0.7I_3 $, 其中$ \bf {\bar 1_3} $是元素都为1的$ 3\times 3 $矩阵, $ I_3 $$ 3 $阶单位阵). 表 1给出了样本容量分别为$ n = 50, 100, 200, 400 $, 工作相关阵分别取真实相关阵($ R_i = \bar R_{i} $), 独立相关阵($ R_i = I $), 一阶自回归相关阵(即$ R_i $的第$ j $行, $ j' $列的元素为$ 0.3^{|j-j'|} $) 的模拟结果.

表 1   $m_i = 3, i\ge 1$时估计的均值(标准差)

$\beta_{01}$ = 0.4$\beta_{00} = -0.9$
真实相关阵独立相关阵自回归相关阵真实相关阵独立相关阵自回归相关阵
$n = 50$0.36810.34740.3613-0.9067-0.9014-0.9053
(0.3861)(0.4132)(0.3975)(0.2713)(0.2741)(0.2748)
$n = 100$0.39900.37160.3747-0.9057-0.9040-0.9055
(0.2576)(0.2800)(0.2639)(0.1830)(0.1845)(0.1833)
$n = 200$0.38620.38370.3856-0.9051-0.9047-0.9056
(0.1830)(0.1971)(0.1868)(0.1249)(0.1249)(0.1244)
$n = 400$0.39260.39170.3920-0.8988-0.8987-0.8987
(0.1316)(0.1411)(0.1340)(0.0898)(0.0911)(0.0903)

新窗口打开| 下载CSV


然后我们取$ m = 8 $, $ \beta_0 = (0.9, 0.4) $, $ Y_i = (Y_{i1}, Y_{i2}, \cdots, Y_{i8})^\tau $有相关系数为0.3的交换相关结构. 表 2给出了样本容量分别为$ n = 50, 100, 200, 400 $, 三种工作相关阵分别为真实相关阵, 独立(工作)相关阵, 一阶自回归(工作)相关阵的模拟结果.

表 2   $m_i = 8, i\ge 1$时估计的均值(标准差)

$\beta_{01}$ = 0.4$\beta_{00} = 0.9$
真实相关阵独立相关阵自回归相关阵真实相关阵独立相关阵自回归相关阵
$n = 50 $0.37610.34800.36670.93580.95960.9437
(0.2814)(0.3785)(0.3124)(0.2873)(0.3485)(0.3098)
$n = 100$0.39280.37780.38680.91280.92540.9178
(0.1886)(0.2460)(0.2031)(0.1955)(0.2338)(0.2069)
$n = 200$0.40470.40180.40340.90300.90890.9045
(0.1288)(0.1756)(0.1427)(0.1371)(0.1648)(0.1472)
$n = 400$0.40310.39610.40150.89970.90210.9006
(0.0930)(0.1236)(0.1039)(0.0938)(0.1127)(0.1007)

新窗口打开| 下载CSV


表 1表 2可看出随着样本容量$ n $的增加, 回归参数估计的均值越来越接近真值, 偏差(标准差)越来越小. 而且当工作相关阵等于真实相关阵时, 估计的标准差最小.

5 引理3.4至引理3.7的证明

引理3.4的证明  由假设(A1)(ⅰ), (3.5)式和$ \tilde B_n(r) $的定义知

$ \begin{equation} \sup\limits_{i\le n, j, \beta\in \tilde B_n(r)}\| X_{ij}^\tau(\beta-\beta_0)\|\le \sup\limits_{i\le n, j, \beta\in \tilde B_n(r)} \| X_{ij}^\tau F_n^{-1/2}.(\bar M_n^{-1} F_n^{1/2})^\tau.\bar M_n^\tau(\beta-\beta_0)\| = o_p(1). \end{equation} $

由微分中值定理, 假设(A6)(ⅰ), 式(5.1)知

$ \begin{eqnarray} \sup\limits_{i\le n, j, \beta\in \tilde B_n(r)}|A_{ij}(\beta)-A_{ij}| = |\mu^{(2)}(X_{ij}^\tau\beta^*)|\| X_{ij}^\tau(\beta-\beta_0)\| = o_p(1), \end{eqnarray} $

其中$ \beta^* $$ \beta_0 $$ \beta $的连线上. 由(A6)(ⅱ), 式(5.2)知

$ \begin{eqnarray} \sup\limits_{i\le n, j, \beta\in \tilde B_n(r)}|A^{1/2}_{ij}(\beta)-A^{1/2}_{ij}| = \frac{|A_{ij}(\beta)-A_{ij}|}{A^{1/2}_{ij}(\beta)+A^{1/2}_{ij}} = o_p(1). \end{eqnarray} $

$ \lambda_k $$ \lambda_l $分别是第$ k $个和第$ l $个分量为1, 其余元素都为0的$ p $维单位向量, $ 1\le k, l\le p $. 由式(3.5)知

$ \begin{eqnarray} \sum\limits_{i = 1}^n\lambda_{l}^\tau H^{-1/2}_nX_i X^\tau_i H^{-1/2}_n\lambda_{ l} = O_p(1). \end{eqnarray} $

由柯西-施瓦兹不等式, 式(5.3), (5.4), 条件(A4)和(A6)可得

$ \begin{eqnarray} &&\sup\limits_{i\le n, \beta\in \tilde B_n(r)}\bigg(\sum\limits_{i = 1}^n\lambda_{k}^\tau H^{-1/2}_nX_i[ A^{ 1/2}_i(\beta)- A^{ 1/2}_i] R_i^{-1} A^{ 1/2}_i(\beta) X^\tau_i H^{-1/2}_n\lambda_{ l}\bigg)^2\\ &\le& \sup\limits_{i\le n, \beta\in \tilde B_n(r)}\sum\limits_{i = 1}^n\lambda_{ k}^\tau H^{-1/2}_nX_i[ A^{ 1/2}_i(\beta)- A^{ 1/2}_i]^2 X^\tau_i H^{-1/2}_n\lambda_{ k}\\ &&\times\sup\limits_{i\le n, \beta\in \tilde B_n(r)}\sum\limits_{i = 1}^n \lambda_{ l}^\tau H^{-1/2}_nX_i A^{ 1/2}_i(\beta)R_i^{-2}A^{ 1/2}_i(\beta) X^\tau_i H^{-1/2}_n\lambda_{ l}\\ &\le &\sup\limits_{i\le n, \beta\in \tilde B_n(r)} \lambda_{\max}\left\{[ A^{ 1/2}_i(\beta)- A^{ 1/2}_i ]^2 \right\}\sum\limits_{i = 1}^n\lambda_{k}^\tau H^{-1/2}_nX_i X^\tau_i H^{-1/2}_n\lambda_{ k}\\ &&\times \sup\limits_{i\ge 1, \beta\in \tilde B_n(r)}\lambda_{\max}(R_i^{-2} A_i (\beta))\sum\limits_{i = 1}^n\lambda_{l}^\tau H^{-1/2}_nX_i X^\tau_i H^{-1/2}_n\lambda_{ l}\\ & = &o_p(1). \end{eqnarray} $

同理

$ \begin{eqnarray} \bigg( \sum\limits_{i = 1}^n\lambda_{ k}^\tau H^{-1/2}_nX_i A^{ 1/2}_iR_i^{-1}[A^{ 1/2}_i(\beta) -A^{ 1/2}_i ] X^\tau_i H^{-1/2}_n\lambda_{ l}\bigg)^2 = o_p(1). \end{eqnarray} $

由式(5.5), (5.6)和三角不等式知

$ \begin{eqnarray} \sup\limits_{\beta\in \tilde B_n(r)}|\lambda_{ k}^\tau H^{-1/2}_n[H_n(\beta)-H_n] H^{-1/2}_n\lambda_{ l}| = o_p(1), \end{eqnarray} $

因而引理3.4成立.

引理3.5的证明  由微分中值定理, (A6)(ⅰ), 式(5.1)知

$ \begin{eqnarray} \sup\limits_{i\le n, j, \beta\in \tilde B_n(r)}|\mu_{ij}(\beta)-\mu_{ij}| = |\mu^{(1)}(X_{ij}^\tau\beta^*)|| X_{ij}^\tau(\beta-\beta_0)| = o_p(1), \end{eqnarray} $

其中$ \beta^* $$ \beta_0 $$ \beta $的连线上. 由柯西-施瓦兹不等式, (A1)(ⅱ), (A4), (A6), 式(5.8)知

$ \begin{eqnarray} &&\sup\limits_{i\le n, \beta\in \tilde B_n(r)}\lambda_{\max}\left\{\mbox{diag}[ R_i^{-1}A_i^{-1/2}(\beta)(\mu_i-\mu_i(\beta))] \right\}^2\\ &\le &\sup\limits_{i\ge 1, \beta\in \tilde B_n(r)}\lambda_{\max}\left\{ R_i^{-1}A_i^{-1}(\beta) R_i^{-1}]\right\}\times\sup\limits_{i\le n, \beta\in \tilde B_n(r)}\sum\limits_{j = 1}^{m_i}|\mu_{ij}-\mu_{ij}(\beta)|^2\\ & = & o_p(1), \end{eqnarray} $

$ \begin{equation} \sup\limits_{i\ge 1, \beta\in \tilde B_n(r)}\lambda_{\max}\left\{A_i^{-1/2}(\beta)\ddot\mu_i(\beta)\right\}^2<\infty\quad a.s.. \end{equation} $

与证明(5.5)式同理, 由柯西-施瓦兹不等式, 式(5.10), (5.4), (5.4)可证

$ \begin{eqnarray} \lambda_k^\tau B^{[1]}_n(\beta)\lambda_l = o_p(1). \end{eqnarray} $

由(A1)(ⅱ), (A4), (A6), 式(5.8)可得

$ \begin{equation} \sup\limits_{i\le n, \beta\in \tilde B_n(r)}\lambda_{\max}\left\{A_i^{1/2}(\beta) R_i^{-1}[\mbox{diag}(\mu_i-\mu_i(\beta))]^2R_i^{-1}A_i^{1/2}(\beta) \right\} = o_p(1), \end{equation} $

$ \begin{equation} \sup\limits_{i\ge 1\beta\in \tilde B_n(r)}\lambda_{\max}\left\{A_i^{-3/2}(\beta)\ddot\mu_i(\beta)\right\}^2<\infty \quad a.s. \end{equation} $

与证明(5.5)式同理, 由柯西-施瓦兹不等式, 式(5.13), (5.12), (5.4)可得

$ \begin{eqnarray} \lambda_k^\tau B^{[2]}_n(\beta)\lambda_l = o_p(1) . \end{eqnarray} $

由式(5.11)和(5.14)知, 引理3.5成立.

引理3.6的证明  记

$ \begin{equation} \bar{{\cal E}}^{[1]}_n(\beta) = \bar M_n^{-1}H_n^{1/2}{{\cal E}}^{[1]}_n(\beta)H_n^{1/2}(\bar M_n^{-1})^\tau, \end{equation} $

$ \begin{equation} \bar{{\cal E}}^{[2]}_n(\beta) = \bar M_n^{-1}H_n^{1/2}{{\cal E}}^{[2]}_n(\beta)H_n^{1/2}(\bar M_n^{-1})^\tau, \end{equation} $

则可验证

$ \begin{equation} \lambda_k^\tau\bar{{\cal E}}^{[1]}_n(\beta)\lambda_l = \sum\limits_{i = 1}^nS_{ni}^{[1]}+\sum\limits_{i = 1}^nS_{ni}^{[3]}+\sum\limits_{i = 1}^nS_{ni}^{[5]}, \end{equation} $

$ \begin{equation} \lambda_k^\tau\bar{{\cal E}}^{[2]}_n(\beta)\lambda_l = \sum\limits_{i = 1}^nS_{ni}^{[2]}+\sum\limits_{i = 1}^nS_{ni}^{[4]}+\sum\limits_{i = 1}^nS_{ni}^{[6]}, \end{equation} $

其中

由假设(A1)(ⅰ)和式(3.5), 可得

$ \begin{equation} \max\limits_{i\le n}\|\lambda^\tau_l \bar M_n^{-1} X_i\|^2\le C \max\limits_{i\le n}\|F_n^{-1/2} X_i \|^2 = o_p(1), \end{equation} $

$ \begin{equation} \sum\limits_{i = 1}^n\|\lambda^\tau_k \bar M_n^{-1} X_i\|^2\le\sum\limits_{i = 1}^n\| \bar M_n^{-1} X_i\|^2 = O_p(1). \end{equation} $

由假设(A4)和(A6), 知

$ \begin{eqnarray} \sup\limits_{i\ge 1} \lambda_{\max}(R_i^{-1}\bar R_i R_i^{-1})<\infty, a.s., \quad\sup\limits_{i\ge 1}\lambda_{\max}(A_i^{-1}\ddot\mu^2_i))<\infty, a.s. \end{eqnarray} $

由式(5.19), (5.20)和(5.21), 可得

$ \begin{eqnarray} \sum\limits_{i = 1}^nE[(S_{ni}^{[1]})^2|{\cal F}_{i-1}] & = &\frac{1}{4} \sum\limits_{i = 1}^n\lambda_k^\tau\bar M_n^{-1}X_iA_i^{-1/2} \ddot\mu_i\mbox{diag}(\lambda_l^\tau \bar M_n^{-1}X_i) R_i^{-1}\bar R_i R_i^{-1}{}\\ & &{\qquad}\ \times\mbox{diag}(\lambda_l^\tau\bar M_n^{-1}X_i)\ddot\mu_i A_i^{-1/2}X_i^\tau(\bar M_n^{-1})^\tau\lambda_k{}\\ &\le &\frac{1}{4}\max\limits_{1\le i\le n} \lambda_{\max}(R_i^{-1}\bar R_i R_i^{-1})\times o_p(1) \times\max\limits_{1\le i\le n}\lambda_{\max}(A_i^{-1}\ddot\mu^2_i) \times O_p(1){}\\ & = &o_p(1). \end{eqnarray} $

所以, 对任意$ \epsilon>0 $, 也有

$ \begin{eqnarray} \sum\limits_{i = 1}^nE[(S_{ni}^{[1]})^2(|S_{ni}^{[1]}|>\epsilon)|{\cal F}_{i-1}] = o_p(1). \end{eqnarray} $

由式(5.22), (5.23)和引理3.2, 取$ \eta = 0 $, 知

$ \begin{equation} \sum\limits_{i = 1}^nS_{ni}^{[1]} = o_p(1). \end{equation} $

同理

$ \begin{equation} \sum\limits_{i = 1}^nS_{ni}^{[2]} = o_p(1). \end{equation} $

$ \begin{eqnarray} \sup\limits_{\beta\in \tilde B_n(r)}|\sum\limits_{i = 1}^nS_{ni}^{[3]} | &\le& \sum\limits_{i = 1}^n\sup\limits_{\beta\in \tilde B_n(r)}\|\frac{-1}{2}\lambda_k^\tau\bar M_n^{-1}X_i[A_i^{-1/2}(\beta) \ddot\mu_i(\beta) -A_i^{-1/2} \ddot\mu_i ]\\ &&{\qquad}{\qquad}{\quad}\times\mbox{diag}(X_i^\tau (\bar M_n^{-1})^\tau\lambda_l) R_i^{-1}A_i^{-1/2}(\beta)\|\| Y_i-\mu_i \|\\ &\le&\delta_n\times \sum\limits_{i = 1}^n\|\frac{-1}{2}\lambda_k^\tau\bar M_n^{-1}X_i\|\times\|X_i^\tau (\bar M_n^{-1})^\tau\lambda_l\| \times\| Y_i-\mu_i \|\\ &\le&\delta_n\times\sum\limits_{i = 1}^n\|\bar M_n^{-1}X_i\|^2 \times\| Y_i-\mu_i \|, \end{eqnarray} $

其中$ \delta_n = \sup\limits_{i\le n, \beta\in \tilde B_n(r)} \|A_i^{-1/2}(\beta) \ddot\mu_i(\beta) -A_i^{-1/2} \ddot\mu_i\|\times\sup\limits_{\beta\in \tilde B_n(r)} \|R_i^{-1}A_i^{-1}(\beta)\| $.

由微分中值定理, 假设(A4), (A6)和式(5.1)可得

$ \begin{eqnarray} \delta_n = o_p(1). \end{eqnarray} $

由假设(A3), (A6)(ⅰ), 式(5.20)得

$ \begin{equation} \sum\limits_{i = 1}^n\|\bar M_n^{-1}X_i\|^2E[\|Y_i-\mu_i\||{\cal F}_{i-1}]\le \sup\limits_{i\ge 1}E[\|Y_i-\mu_i\||{\cal F}_{i-1}]\times\sum\limits_{i = 1}^n\|\bar M_n^{-1}X_i\|^2 = O_p(1). \end{equation} $

$ e_i = \|Y_i-\mu_i\|-E[\|Y_i-\mu_i\||{\cal F}_{i-1}] $. 由假设(A3), (A6)(ⅰ), Jesen不等式, 式(5.19), (5.20)可得

$ \begin{equation} \sum\limits_{i = 1}^nE[\|\bar M_n^{-1}X_i\|^4e_i^2|{\cal F}_{i-1}] \le E[e_i^2|{\cal F}_{i-1}]\times\max\limits_{i\le n} \|\bar M_n^{-1}X_i\|^{2}\times\sum\limits_{i = 1}^n\|\bar M_n^{-1}X_i\|^2 = o_p(1), \end{equation} $

所以也有

$ \begin{eqnarray} && \sum\limits_{i = 1}^nE[\|\bar M_n^{-1}X_i\|^4e_i^2I(\|\bar M_n^{-1}X_i\|^2|e_i|>\epsilon)|{\cal F}_{i-1}] = o_p(1). \end{eqnarray} $

由引理3.2, 式(5.29), (5.30), 取$ \eta = 0 $, 则有

$ \begin{eqnarray} \sum\limits_{i = 1}^n\|\bar M_n^{-1}X_i\|^2e_i = o_p(1). \end{eqnarray} $

由式(5.26), (5.27), (5.28)和(5.31)知

$ \begin{eqnarray} \sup\limits_{\beta\in \tilde B_n(r)}|\sum\limits_{i = 1}^nS_{ni}^{[3]} | = o_p(1). \end{eqnarray} $

同理可证

$ \begin{eqnarray} \sup\limits_{\beta\in \tilde B_n(r)}|\sum\limits_{i = 1}^nS_{ni}^{[4]} | = o_p(1), \quad \sup\limits_{\beta\in \tilde B_n(r)}|\sum\limits_{i = 1}^nS_{ni}^{[5]} | = o_p(1) , \quad \sup\limits_{\beta\in \tilde B_n(r)}|\sum\limits_{i = 1}^nS_{ni}^{[6]} | = o_p(1). \end{eqnarray} $

由式(5.33), (5.32), (5.25), (5.24), (5.18), (5.17), (5.16), (5.15)和(3.5), 知引理3.6成立.

引理3.7的证明  对任意单位向量$ \lambda $, 记$ a_{ni} = \lambda^\tau\bar M_n^{-1}X_iA_i^{1/2}R_i^{-1}, Z_{ni} = a_{ni}Y^*_i $,

由(A1), (A4), (A6)和(3.5)式, 知

$ \begin{equation} \max\limits_{i\le n}\|a_{ni}\|\le \|\lambda^\tau\bar M_n^{-1} F_n^{1/2}\| \|\max\limits_{i\le n}\|F_n^{-1/2} X_i \|\|A_i^{1/2}R_i^{-1}\| = o_p(1), \end{equation} $

$ \begin{equation} \sum\limits_{i = 1}^n\|a_{ni}\|^2\le [\inf\limits_i\lambda_{\min}(\bar R_i)]^{-1}\sum\limits_{i = 1}^n\lambda^\tau\bar M_n^{-1}M_n(\bar M_n^{-1})^\tau\lambda^\tau = O_p(1). \end{equation} $

对任意$ \epsilon>0 $, 由式(5.34), (5.35)和假设(A3), 知

$ \begin{equation} \sum\limits_{i = 1}^nE[Z_{ni}^2(I(|Z_{ni}|>\epsilon))|{{\cal F}}_{i-1}]\le\sup\limits_{i\ge 1} E(\|Y^*_i\|^{\alpha_0}|{{\cal F}}_{i-1}) \max\limits_{i\le n}\|a_{ni}\|^{\alpha_0-2}\sum\limits_{i = 1}^n\|a_{ni}\|^2\to_p0. \end{equation} $

由假设(A5), 知

$ \begin{equation} \sum\limits_{i = 1}^nE[Z_{ni}^2|{{\cal F}}_{i-1}] = \lambda^\tau\bar M_n^{-1}M_n(\bar M_n^{-1})^\tau\lambda\to_p 1. \end{equation} $

由假设(A5), 式(5.36), (5.37)和引理3.2, 知

$ \begin{eqnarray} M_n^{-1/2}g_n(\beta_0) = [\bar M^{-1}_n M_n^{1/2}]^{-1} \times\bar M_n^{-1}g_n(\beta_0) \to_d N(0, I), \end{eqnarray} $

引理3.7得证.

参考文献

Liang K , Zeger S L .

Longitudinal data analysis using generalized linear models

Biometrika, 1986, 73, 13- 22

DOI:10.1093/biomet/73.1.13      [本文引用: 2]

Xie M , Yang Y .

Asymptotic for generalized estimating equations with large cluster sizes

Ann Statist, 2003, 31, 310- 347

URL     [本文引用: 8]

Balan R M , Schiopu-Kratina I .

Asymptotic results with generalized estimating equations for longitudinal data

Ann Statist, 2005, 33, 522- 541

URL     [本文引用: 8]

Fahrmeir L, Tutz G. Multivariate Statistcal Modelling Based on Generalized Linear Lodels. New York: Springer-Verlag, 1994

[本文引用: 1]

Diggle P , Heagerty P , Liang K , Zeger S . Analysis of Longitudinal Data. Oxford: Oxford University Press, 2002

Finney D J. Statistical Method in Biological Assay. London: Griffin, 1978

[本文引用: 1]

Wu C F J .

Asymptotic inference from sequential design in a nonlinear situation

J Amer Statist Assoc, 1985, 80, 974- 984

DOI:10.1080/01621459.1985.10478213      [本文引用: 2]

Fahrmeir F , Kaufmann H .

Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models

Ann Statist, 1985, 13, 324- 368

URL     [本文引用: 1]

Chen X , Chen X R .

Adaptive quasi-likelihood estimate in generalized linear models

Science in China Mathematics, 2005, 48 (6): 829- 846

DOI:10.1360/03ys0369      [本文引用: 1]

Yin C M , Zhao L C .

Strong consistency of maximum quasi-likelihood estimates in generalized linear models

Science in China Mathematics, 2005, 48 (8): 1009- 1014

DOI:10.1360/04ys0060     

Yin C M , Zhao L C , Wei C D .

Asymptotic normality and strong consistency of maximum quasi-likelihood estimates in generalized linear models

Science in China Mathematics, 2006, 49 (2): 145- 157

DOI:10.1007/s11425-004-5169-x      [本文引用: 1]

丁洁丽, 陈希孺.

广义线性回归极大拟似然估计的强相合性

数学物理学报, 2006, 26A (2): 168- 173

DOI:10.3321/j.issn:1003-3998.2006.02.002     

Ding J L , Chen X R .

Strong consistency of the maximum likelihood estimator in generalized linear models

Acta Math Sci, 2006, 26A (2): 168- 173

DOI:10.3321/j.issn:1003-3998.2006.02.002     

尹长明, 李永明, 王朋炎.

广义线性模型中极大拟似然估计的强收敛速度

数学物理学报, 2009, 29A (4): 1058- 1064

URL     [本文引用: 2]

Yin C M , Li Y M , Wang P Y .

Strong convergence rates of the maximum quasi-likelihood estimator in generalized linear models

Acta Math Sci, 2009, 29A (4): 1058- 1064

URL     [本文引用: 2]

Wang L .

GEE analysis of clustered binary data with diverging number of covariates

Ann Statist, 2011, 39, 389- 417

URL     [本文引用: 4]

Lai T L , Wei C Z .

Least squares estimates in stochastic regression models with application to identification and control of dynamics systems

Ann Statist, 1982, 10, 154- 166

URL     [本文引用: 3]

Chen K , Hu I , Ying Z .

Strong consistency of maximum quasi-likelihood estimators in generalized linear models with fixed and adaptive designs

Ann Statist, 1999, 27, 1155- 1163

[本文引用: 2]

Chang Y I .

Sequential confidence regions of generalized linear models with adaptive designs

J Stat Plan Infer, 2001, 93, 277- 293

DOI:10.1016/S0378-3758(00)00200-7      [本文引用: 3]

Ortega J A , Rheinboldt W C . Iterative Solution of Nonlinear Equations in Several Variable. San Diego: Academic Press, 1970

[本文引用: 1]

Hall P , Heyde C C . Martingale Limit Theory and Its Application. New York: Academic Press, 1980

[本文引用: 1]

Heuser H. Lehrbuch der Analysis, Teil 2. Stuttgart: Teubner, 1981

[本文引用: 1]

/