数学物理学报, 2021, 41(6): 1830-1837 doi:

论文

一类非线性动力系统的孤立子波解

欧阳成1, 莫嘉琪,2

1 湖州师范学院理学院 浙江湖州 313000

2 安徽师范大学数学与统计学院 安徽芜湖 241003

The Solitary Wave Solution to a Class of Nonlinear Dynamic System

Ouyang Cheng1, Mo Jiaqi,2

1 Faculty of Science, Huzhou University, Zhejiang Huzhou 313000

2 School of Mathematics and Statistic, Anhui Normal University, Anhui Wuhu 241003

通讯作者: 莫嘉琪, E-mail: mojiaqi@mail.ahnu.edu.cn

收稿日期: 2020-07-22  

基金资助: 国家自然科学基金.  11771005
浙江省自然科学基金.  LY13A010005
浙江省自然科学基金.  KJ2018A0964
浙江省自然科学基金.  KJ2017A901

Received: 2020-07-22  

Fund supported: the NSFC.  11771005
the NSF of Zhejiang Province.  LY13A010005
the NSF of Zhejiang Province.  KJ2018A0964
the NSF of Zhejiang Province.  KJ2017A901

Abstract

Using the functional generalized variational iteration method, a class of nonlinear disturbed dynamic system was considered. First introduce solitary solution to a corresponding typical system. And then a set of functional generalized variation constructed, and Lagrange multiplier functions were solved. Finally, the generalized variational iteration was received. Thus, the asymptotic travelling wave solution to the original nonlinear disturbed generalized dynamic system was obtained

Keywords: Dynamic system ; Nonlinear ; Solitary wave

PDF (362KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

欧阳成, 莫嘉琪. 一类非线性动力系统的孤立子波解. 数学物理学报[J], 2021, 41(6): 1830-1837 doi:

Ouyang Cheng, Mo Jiaqi. The Solitary Wave Solution to a Class of Nonlinear Dynamic System. Acta Mathematica Scientia[J], 2021, 41(6): 1830-1837 doi:

1 引言

孤立子波在光波散射、流体力学、激波、场论、神经网络、量子力学中都有很广泛的应用[1-8].近来,相关学者已经研究了许多求解孤立子波的方法.例如:齐次平衡法、辅助方程法、双曲函数法、椭圆函数法、(G'/G)展开法、Riccati函数法、符号计算法等[9-13].当前, 求解非线性问题的方法已不断深化.很多科学研究者, 例如Abid等[14], Hovhannisyan等[15], Recke等[16]和Graef等[17]讨论了有关非线性问题.研究者也对一类非线性问题的激波、孤波、激光脉冲和大气物理等方面的模型作了讨论[18-29].本文是涉及近代物理中的一个被广泛重视的非线性NNV (Nizhnik-Novikov-Veselov)动力系统微分模型, 利用了有效而简捷的泛函分析广义变分迭代方法得到了系统模型的孤立子波渐近行波解.这种方法具有广泛的应用前景.

考虑如下类广义非线性NNV动力扰动系统模型[10, 11]:

$ \begin{align} p_{t}+p_{xxx}-a_{1}pq_{x}-a_{2}qp_{y} = \varepsilon F_{1}(p, q), \end{align} $

$ \begin{align} p_{x}-a_{3}q_{y} = \varepsilon F_{2}(p, q). \end{align} $

上式中$ \varepsilon>0 $为摄动参数, $ t, x, y $分别为时间和空间变量, $ a_{i} (i = 1, 2, 3) $为常数, $ F_{i} (i = 1, 2) $为扰动函数, 它为其变量在对应区域内是充分光滑有界函数.事实上, 在流体力学、凝聚态物理、光学和理论物理等学科中的很多应用问题都涉及到上述两个变量函数$ p, q $的三阶偏微分系统模型.一般来说, 对于这类偏微分系统模型, 难以得到其精确解的解析表示式.本文用一个简捷而有效的泛函分析变分原理的方法来求得模型(1.1)–(1.2)的解析的行波渐近解.

先对模型(1.1)–(1.2)作如下行波变换

$ \begin{align} z = b_{1}x+b_{2}y+b_{1}t, \end{align} $

上式中$ b_{i}\ (i = 1, 2, 3) $为常数.由(1.1)–(1.2)式便得到关于$ z $的广义非线性动力系统:

$ \begin{align} b^{3}_{1}p_{zzz}-b_{3}p_{z}-a_{1}b_{1}pq_{z}-a_{2}b_{1}qp_{z} = \varepsilon F_{1}(p, q), \end{align} $

$ \begin{align} b_{1}p_{z}-a_{3}b_{1}q_{z} = \varepsilon F_{2}(p, q). \end{align} $

2 典型非线性动力系统模型

现先考虑系统(1.4)–(1.5)中的扰动项$ F_{1}(p, q) = 0, F_{2}(p, q) = 0 $的典型非线性NNV动力系统模型的情形:

$ \begin{align} b^{3}_{1}p_{zz}-b_{3}p_{z}-a_{1}b_{1}pq_{z}-a_{2}b_{2}qp_{z} = 0, \end{align} $

$ \begin{align} b_{1}p_{z}-a_{3}b_{2}q_{z} = 0. \end{align} $

由(2.1)–(2.2)式得到

上式中$ D_1, D_2 $为任意常数, 不妨设其为零, 于是

$ \begin{align} b^{3}_{1}p_{zz}-b_{3}p-\frac{b_{1}(a_{1}b_{1}+a_{2}b_{2})}{2a_{3}b_{2}}p^{2} = 0, \end{align} $

$ \begin{align} q = \frac{b_{1}}{a_{3}b_{2}}p. \end{align} $

再用双曲函数待定系数法来求得方程(2.3)的孤立子波解.设

$ \begin{align} p(z) = A_{1}{\rm sech}\ z+A_{2}{\rm sech}^{2}z+B_{0}\tanh z, \end{align} $

上式中$ A_{1}, A_{2}, B_{0} $为待定常数.由(2.5)式, 有

$ \begin{align} p_{z} = -A_{1}{\rm sech}\ z\tanh z-2A_{2}{\rm sech}^{2}z\tanh z+B_{0}\tanh\ z, \end{align} $

$ \begin{align} p_{zz} = A_{1}{\rm sech}\ z+4A_{2}{\rm sech}^{2}z-2A_{1}{\rm sech}^{3}z-6A_{2}{\rm sech}^{4}z -2B_{0}{\rm sech}^{2}z\tanh z. \end{align} $

将(2.5)–(2.7)式代入(2.3)式, 合并同类项并令对应项系数为零得

因此得到

由此便得到行波变换(1.3)为

$ \begin{align} z = b_{1}x+b_{2}y-4b^{3}_{1}t. \end{align} $

于是由(2.5)式, 得到系统(2.3)–(2.4)的一组孤立子波解$ p = U(z), q = V(z) $:

$ \begin{align} U(z) = -\frac{12a_{3}b^{2}_{1}b_{2}}{a_{1}b_{1}+a_{2}b_{2}}{\rm sech}^{2}z, \end{align} $

$ \begin{align} V(z) = -\frac{12b^{3}_{1}}{a_{1}b_{1}+a_{2}b_{2}}{\rm sech}^{2}z. \end{align} $

$ a_{1} = -1, a_{2} = 1, a_{3} = 3, b_{1} = 1, b_{2} = 2 $, 由(2.9)和(2.10)式可分别决定$ p = U(z), $$ q = V(z) $的孤立子波曲线如图 1, 图 2所示.

图 1

图 1   孤立子波$ U(z) $的曲线($ a_{1} = -1, a_{2} = 1, a_{3} = 3, b_{1} = 1, b_{2} = 2 $)


图 2

图 2   孤立子波$ V(z) $的曲线($ a_{1} = -1, a_{2} = 1, a_{3} = 3, b_{1} = 1, b_{2} = 2 $)


3 广义扰动动力系统(1.4)–(1.5)渐近解

在上一节中, 我们是对典型非线性NNV系统模型求出了其行波解.现在用泛函分析广义变分法来构造非线性扰动动力系统(1.4)–(1.5)的渐近解.

先引入一组泛函$ M_{i}[p, q] (i = 1, 2) $ (参见文献[30, 31]):

$ \begin{align} M_{1}[p, q] = p-\int^{\tau}_{-\infty}\lambda_{1}(r)[b^{3}_{1}p_{rrr}-b_{3}p_{r} -a_{1}b_{1}\overline{p}\overline{q}_{r}-a_{2}b_{2}\overline{q}\overline{p}_{r} -\varepsilon F_{1}(\overline{p}, \overline{q})]{\rm d}r, \end{align} $

$ \begin{align} M_{2}[p, q] = q-\int^{\tau}_{-\infty}\lambda_{2}(r)[b_{1}p_{r}-a_{3}b_{2}q_{r} -\varepsilon F_{2}(\overline{p}\overline{q})]{\rm d}r, \end{align} $

上式$ \overline{p}, \overline{q} $分别为$ p, q $的限制变量[30, 31], $ \lambda_{i}\ (i = 1, 2) $是Lagrange乘子.

计算泛函(3.1)–(3.2)的广义变分$ \delta M_{i}\ (i = 1, 2) $:

按照泛函分析变分原理[30, 31], 令$ M_{i}\ (i = 1, 2) $的广义变分为零$ \delta M_{i} = 0\ (i = 1, 2) $, 可得

$ \begin{align} b^{3}_{1}\lambda_{1rrr}-b_{3}\lambda_{1} = 0, \ \ \lambda_{1}|_{r = z} = \lambda_{1r}|_{r = z} = 0, \ \ \lambda_{1rr}|_{r = z} = \frac{1}{b^{3}_{1}}, \end{align} $

$ \begin{align} \lambda_{2r} = 0, \ \ \lambda_{2}|_{r = z} = -\frac{1}{a_{3}b_{2}}. \end{align} $

显然由(3.3)–(3.4)式有

$ \begin{align} \lambda_{1}(r) = \sum^{3}\limits_{i = 1}C_{i}\exp(\delta_{i}r), \ \ \lambda_{2}(r) = -\frac{1}{a_{3}b_{2}}, \end{align} $

其中

$ \begin{align} \delta_{1} = \sqrt[3]{4}, \ \ \delta_{2} = \frac{\sqrt[3]{4}(-1+\sqrt{3}{\rm i})}{2}, \ \ \delta_{3} = \frac{\sqrt[3]{4}(-1-\sqrt{3}{\rm i})}{2}, \end{align} $

$ \begin{align} C_{1} = \frac{1}{3\sqrt[3]{4}a^{2}_{1}}, \ \ C_{2} = \frac{\sqrt{3}-{\rm i}}{6\sqrt[3]{4}a^{2}_{1}}, \ \ C_{3} = \frac{\sqrt{3}+{\rm i}}{6\sqrt[3]{4}a^{2}_{1}}. \end{align} $

由(3.1)–(3.5)式, 构造系统(1.4)–(1.5)孤立子波渐近解的迭代关系式($ n = 0, 1, \cdots $):

$ \begin{align} \begin{array}[b]{rl} p_{n+1}(z) = &{ } p_{n}(z) -\int^{z}_{-\infty}\bigg[\sum^{3}\limits_{i = 1}C_{i}\exp(\delta_{i}r)\bigg][b^{3}_{1}(p_{nrrr}-4p_{nr})\\ &{ } -a_{1}b_{1}p_{n}q_{nr}-a_{2}b_{2}p_{nr}-\varepsilon F_{1}(p_{n}, q_{n})]{\rm d}r, \end{array} \end{align} $

$ \begin{align} q_{n+1}(z) = q_{n}(z) -\frac{1}{a_{3}b_{2}}\int^{z}_{-\infty}[b_{1}p_{nr}-a_{3}b_{2}q_{br} -\varepsilon F_{2}(p_{n}, q_{n})]{\rm d}r, \end{align} $

上式中$ \delta_{i}, C_{i} $由(3.6)和(3.7)式表示, $ (p_{0}(z), q_{0}(z)) $为系统(1.4)–(1.5)的孤立子波渐近解的初始迭代.

现取孤立子波渐近解的初始迭代为系统(1.4)–(1.5)的一组孤立子波解(2.9)–(2.10).即

$ \begin{align} p_{0}(z) = -\frac{12a_{3}b^{2}_{1}b_{2}}{a_{1}b_{1}+a_{2}b_{2}}{\rm sech}^{2}z, \end{align} $

$ \begin{align} q_{0}(z) = -\frac{12b^{3}_{1}}{a_{1}b_{1}+a_{2}b_{2}}{\rm sech}^{2}z, \end{align} $

由迭代式(3.8), (3.9), 依次可得到序列$ (p_{n}(z), q_{n}(z)) $.再由泛函分析不动点理论不难证明$ \lim\limits_{n\rightarrow \infty}p_{n} $$ \lim\limits_{n\rightarrow \infty}q_{n} $$ z\in[-M, M] $上一致地成立[32, 33], 上式中$ M $为任意大的正常数.

由迭代式(3.8), (3.9), 取$ p(z) = \lim\limits_{n\rightarrow \infty}p_{n}(z), q(z) = \lim\limits_{n\rightarrow \infty}q_{n}(z) $.显然它就是微分系统(1.4)–(1.5)的一组孤立子波精确解[30, 31].因此行波变换式(2.8), $ (p(b_{1}x+b_{2}y-4b^{3}t), $$ q(b_{1}x+b_{2}y-4b^{3}t)) $就是非线性广义扰动动力系统模型(1.1)–(1.2)的一组孤立子波行波解.而且$ (p_{n}(b_{1}x+b_{2}y-4b^{3}t), q_{n}(b_{1}x+b_{2}y-4b^{3}t)) $就是非线性广义扰动动力系统模型(1.1)–(1.2)的一组第$ n $次孤立子波行波渐近解, 再由泛函分析变分原理的Eular定理[32-33]知, 本方法得到的渐近解具有较高的近似度.

4 例子

考虑如下的一个特殊的动力系统模型

$ \begin{equation} p_z(t)+p_{zzz}+pq_{z}-qp_{z} = \varepsilon\sin p, \end{equation} $

$ \begin{equation} -p_{z}-3q_{z} = \varepsilon\cos q, \end{equation} $

由(3.10)–(3.11)式, 动力系统(4.1)–(4.2)的一个孤立子波渐近解的初始近似$ (p_{0}(z), q_{0}(z)) $

$ \begin{equation} p_{0}(z) = -36{\rm sech}^{2}z, \end{equation} $

$ \begin{equation} q_{0}(z) = -12{\rm sech}^{2}z. \end{equation} $

用泛函分析广义变分迭代法,由(3.8)–(3.9)式可得动力系统模型(4.1)–(4.2)孤立子波渐近解的一次渐近解$ (p_{1}(z), q_{1}(z)) $

$ \begin{equation} p_{1}(z) = -36{\rm sech}^{2}z +\varepsilon\int^{z}_{-\infty}\bigg[\sum^{3}\limits_{i = 1} C_{i}\exp(\delta_{i}r)\bigg]\sin(-36{\rm sech}^{2}r){\rm d}r-\varepsilon\sin p_{0}, \end{equation} $

$ \begin{equation} q_{1}(z) = -12{\rm sech}^{2}z+\varepsilon\int^{z}_{-\infty}\int^{z}_{-\infty} [\cos(12{\rm sech}^{2}r)]{\rm d}r-\varepsilon\cos q_{0}, \end{equation} $

上式中$ \delta_{1} = \sqrt[3]{4}, $$ \delta_{2} = \frac{\sqrt[3]{4}(-1+\sqrt{3}{\rm i})}{2}, $$ \delta_{3} = \frac{\sqrt[3]{4}(-1+-\sqrt{3}{\rm i})}{2}, $$ C_{1} = \frac{1}{3\sqrt[3]{4}}, $$ C_{2} = \frac{\sqrt{3}-{\rm i}}{6\sqrt[3]{4}}, $$ C_{3} = -\frac{\sqrt{3}+{\rm i}}{6\sqrt[3]{4}}. $

再由迭代式(3.8)–(3.9)和(4.5)–(4.6), 可得到系统模型(4.1)–(4.2)的一组孤立子波的二阶渐近解$ (p_{2}(z), q_{2}(z)) $:

$ \begin{eqnarray} p_{2}(z)& = &{ } -36{\rm sech}^{2}z +\varepsilon\int^{z}_{-\infty}\bigg[\sum^{3}\limits_{i = 1} C_{i}\exp(\delta_{i}r)\bigg]\sin(-36{\rm sech}^{2}r){\rm d}r{}\\ &&{ } -\int^{z}_{-\infty}\bigg[\sum^{3}\limits_{i = 1}C_{1}\exp(\delta_{i}r)\bigg] [a^{3}_{i = 1} (p_{1rrr}-4p_{1r})+p_{1}q_{1r}-2q_{1}-\varepsilon \sin p_{1}]{\rm d}r, \end{eqnarray} $

$ \begin{eqnarray} q_{2}(z)& = &-12{\rm sech}^{2}z+\varepsilon\int^{z}_{-\infty} [\cos(12{\rm sech}^{2}r)]{\rm d}r -\int^{z}_{-\infty}[b_{1}p_{1r}-a_{3} b_{2}q_{1r}-\varepsilon\cos q_{1}]{\rm d}r. \end{eqnarray} $

上式中$ p_{1}, q_{1} $由(4.5), (4.6)式表示.

由(2.8)式利用行波变换式$ s = x+2y-4t $代入(4.5)–(4.8)式, 便得到非线性广义扰动动力系统模型(4.1)–(4.2)的孤立子波一阶、二阶渐近行波解$ (p_{1asy}(x, y, t), q_{1asy}(x, y, t)) $$ (p_{2asy}(x, y, t), $$ q_{2asy}(x, y, t)) $:

上式中$ p_1, q_1 $分别由(4.5), (4.6)式表示.

继续用本泛函分析变分迭代法, 可以得到非线性广义扰动动力系统模型(4.1)–(4.2)的一组任意$ n $次孤立子波$ p_{nasy}(x, y, t), q_{nasy}(x, y, t) $渐近行波解.由摄动理论和变分原理[32, 33]知, 得到的渐近解在自变量任意的有限的区域内的$ n $次孤立子波渐近行波解$ p_{nasy}(x, y, t) $, $ q_{nasy}(x, y, t) $与系统模型的精确解$ p(x, y, t), q(x, y, t) $有如下的渐近估计式:

5 结论

广义泛函分析变分迭代法求扰动动力系统模型的孤立子波的渐近解是一个简捷有效的方法.由它得到的渐近解不同于简单的离散数值解.因为它还可以进行解析运算,它还可继续对模型解作定性, 定量的分析.例如通过广义扰动动力系统模型的孤立子波的渐近解, 进行某些微分,积分等解析运算,可以得到其它相关的物理量,从而扩大了对相应物理量的研究范围.另外,本文选取初始近似是用非扰动情形下的典型系统的孤立子波解.它决定了广义扰动动力系统模型比较快地得对应的孤立子波在所要求的精度范围内的渐近解析解.

参考文献

McPhaden M J , Zhang D .

Slowdown of the meridional overturning circulation in the upper Pacific ocean

Nature, 2002, 415, 603- 608

DOI:10.1038/415603a      [本文引用: 1]

Gu D , Philander S G H .

Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics

Science, 1997, 275 (7): 805- 807

URL    

马松华, 强继业, 方建平.

(2+1)维Boiti-Leon-Pempinelli系统的混沌行为及孤立子波间的相互作用

物理学报, 2007, 56, 620- 626

Ma S H , Qiang J Y , Fang J P .

The interaction between solitons and chaotic behaviours of (2+1)-dimensional Boiti-Leon-Pempinelli system

Acta Phys Sin, 2007, 56, 620- 626

Loutsenko I .

The variable coefficient Hele-Shaw problem, integrability and quadrature identities

Comm Math Phys, 2006, 268 (2): 465- 479

DOI:10.1007/s00220-006-0099-9     

Gedalin M .

Low-frequency nonlinear stationary waves and fast shocks: hydrodynamical description

Phys Plasmas, 1998, 5 (1): 127- 132

DOI:10.1063/1.872681     

Parkes E J .

Some periodic and solitary travelling-wave solutions of the short-pulse equation

Chaos Solitons Fractals, 2008, 38 (1): 154- 159

DOI:10.1016/j.chaos.2006.10.055     

潘留仙, 左伟明, 颜家壬.

Landau-Ginzburg-Higgs方程的微扰理论

物理学报, 2005, 54 (1): 1- 5

URL    

Pan L X , Zuo W M , Yan J R .

The theory of the perturbation for Landau-Ginzburg-Higgs equation

Acta Phys Sin, 2005, 54 (1): 1- 5

URL    

吴国将, 韩家骅, 史良马, 张苗.

一般变换下双Jacobi椭圆函数展开法及应用

物理学报, 2006, 55 (8): 3858- 3863

DOI:10.3321/j.issn:1000-3290.2006.08.012      [本文引用: 1]

Wu G J , Han J H , Shi L M , Zhang M .

Double Jacobian elliptic function expansion method under a general function transform and its applications

Acta Phys Sin, 2006, 55 (8): 3858- 3863

DOI:10.3321/j.issn:1000-3290.2006.08.012      [本文引用: 1]

马松华, 吴小红, 方建平, 郑春龙.

(3+1)维Burgers系统的新精确解及其特殊孤立子波结构

物理学报, 2008, 57 (1): 11- 17

[本文引用: 1]

Ma S H , Wu X H , Fang J P , Zheng C L .

New exact solutions and special soliton structures for the (3+1)-dimensional Burgers system

Acta Phys Sin, 2008, 57 (1): 11- 17

[本文引用: 1]

李帮庆, 马玉兰.

(G'/G)展开法和(2+1)维非对称Nizhnik-Novikov-Veselov系统的新精确解

物理学报, 2009, 58 (7): 4373- 4378

DOI:10.3321/j.issn:1000-3290.2009.07.001      [本文引用: 1]

Li B Q , Ma Y L .

(G'/G)-expansion method and new exact solutions for (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov system

Acta Phys Sin, 2009, 58 (7): 4373- 4378

DOI:10.3321/j.issn:1000-3290.2009.07.001      [本文引用: 1]

周振春, 马松华, 方建平, 任清褒.

(2+1)维孤立子波系统的多孤立子波解和分形结构

物理学报, 2010, 59 (11): 7540- 7545

DOI:10.7498/aps.59.7540      [本文引用: 1]

Zhou Z C , Ma S H , Fang J P , Ren Q B .

Multi-soliton solutions and fractal structures in a (2+1)-dimensional soliton system

Acta Phys Sin, 2010, 59 (11): 7540- 7545

DOI:10.7498/aps.59.7540      [本文引用: 1]

高亮, 徐伟, 唐亚宁, 申建伟.

一类广义Boussinesq方程和Boussinesq-Burgers方程新的显式精确解

物理学报, 2007, 56 (4): 1860- 1869

DOI:10.3321/j.issn:1000-3290.2007.04.005     

Gao L , Xu W , Tang Y Y , Shen J W .

New explicit exact solutions of one type of generalized Boussinesq equations and the Boussinesq-Burgers equation

Acta Phys Sin, 2007, 56 (4): 1860- 1869

DOI:10.3321/j.issn:1000-3290.2007.04.005     

李向正, 李修勇, 赵丽英, 张金良.

Gerdjikov-Ivanov方程的精确解

物理学报, 2008, 57 (4): 2031- 2034

DOI:10.3321/j.issn:1000-3290.2008.04.008      [本文引用: 1]

Ling X Z , Li X Y , Zhao L Y , Zhang J L .

Exact solutions of Gerdjikov-Ivanov equation

Acta Phys Sin, 2008, 57 (4): 2031- 2034

DOI:10.3321/j.issn:1000-3290.2008.04.008      [本文引用: 1]

Abid I , Jleli M , Trabelsi N .

Weak solutions of quasilinear biharmonic problems with positive, increasing and convex nonlinearities

Anal Appl Singap, 2008, 6 (3): 213- 227

DOI:10.1142/S0219530508001134      [本文引用: 1]

Hovhannisyan G , Vulanovi R .

Stability inequalities for one-dimensional singular perturbation problems

Nonlinear Stud, 2008, 15 (4): 297- 322

URL     [本文引用: 1]

Recke L , Omel'chenko O E .

Boundary layer solutions to problems with infinite-dimensional singular perturbations

J Differential Equations, 2008, 245 (12): 3802- 2822

URL     [本文引用: 1]

Graef J R , Kong L .

Solutions of second order multi-point boundary value problems

Math Proc Camb Philo Soc, 2008, 145 (2): 489- 510

DOI:10.1017/S0305004108001424      [本文引用: 1]

Mo J Q .

Singular perturbation for a class of nonlinear reaction diffusion systems

Science in China Ser A, 1989, 32 (11): 1306- 1315

[本文引用: 1]

Mo J Q , Lin W T .

Asymptotic solution for a class of sea-air oscillator model for El-Nino-southern oscillation

Chin Phys, 2008, 17 (1): 370- 372

URL    

Mo J Q , Lin W T .

Asymptotic solution of activator inhibitor systems for nonlinear reaction diffusion equations

J Sys Sci & Complexity, 2008, 20 (1): 119- 128

URL    

Mo J Q , Lin Y H , Lin W T , Chen L H .

Perturbed solving method for interdecadal sea-air oscillator model

Chin Geographical Sci, 2012, 22 (1): 42- 47

DOI:10.1007/s11769-011-0464-2     

Mo J Q .

Variational iteration solvi ng method for a class of generalized Boussinesq equation

Chin Phys Lett, 2009, 26 (6): 060202

DOI:10.1088/0256-307X/26/6/060202     

Mo J Q .

Homotopiv mapping solving method for gain fluency of a laser pulse amplifier

Science in China Ser G, 2009, 52 (7): 1007- 1010

DOI:10.1007/s11433-009-0146-6     

Mo J Q , Lin W T , Wang H .

Variational iteration solution of a sea-air oscillator model for the ENSO

Progress in Natural Science, 2007, 17 (2): 230- 232

DOI:10.1080/10020070612331343252     

欧阳成, 姚静荪, 石兰芳, 莫嘉琪.

一类尘埃等离子体孤子解

物理学报, 2014, 63 (11): 110203

DOI:10.7498/aps.63.110203     

Ouyang C , Yao J S , Shi L F , Mo J Q .

Solitary wave solution for a class of dusty plasma

Acta Phys Sin, 2014, 63 (11): 110203

DOI:10.7498/aps.63.110203     

欧阳成, 陈贤峰, 莫嘉琪.

广义扰动Nizhnik-Novikov-Veselov系统的孤波解的孤波解

系统科学与数学, 2017, 37 (3): 908- 917

URL    

Ouyang C , Chen X F , Mo J Q .

The solutions to solitary wave for generalized disturbed Nizhnik-Novikov-Veselov system

J Syst Sci Math Sci, 2017, 37 (3): 908- 917

URL    

欧阳成, 姚静荪, 石兰芳, 莫嘉琪.

一类广义鸭轨迹系统轨线的构造

物理学报, 2012, 61 (3): 030202

URL    

Ouyang C , Yao J S , Shi L F , Mo J Q .

Constructing path curve for a class of generalized phase tracks of canard system

Acta Phys Sin, 2012, 61 (3): 030202

URL    

欧阳成, 林万涛, 程荣军, 莫嘉琪.

一类厄尔尼诺海-气时滞振子的渐近解

物理学报, 2013, 62 (6): 060201

URL    

Ouyang C , Lin W T , Cheng R J , Mo J Q .

A class of asymptotic solution of sea-air time delay oscillator for the El Nino-southern oscillation mechanism

Acta Phys Sin, 2013, 62 (6): 060201

URL    

Ouyang C , Cheng L H , Mo J Q .

Solving a class of burning disturbed problem with shock layer

Chin Phy B, 2012, 21 (5): 050203

DOI:10.1088/1674-1056/21/5/050203      [本文引用: 1]

de Jager E M , Jiang F R . The Theory of Singular Perturbation. Amsterdam: North-Holland Publishing Co, 1996

[本文引用: 4]

Barbu L , Morosanu G . Singularly Perturbed Boundary-Value Problems. Basel: Birkhauser, 2007

[本文引用: 4]

He J H .

Variational iteration method–a kind of nonlinear analytical technique: Some examples

International J Non-linear Mechanics, 1999, 34 (4): 699- 708

DOI:10.1016/S0020-7462(98)00048-1      [本文引用: 3]

He J H , Wu X H .

Construction of solitary solution and compacton-like solution by variational iteration method

Chaos Solitions & Fractals, 2006, 29 (1): 108- 113

URL     [本文引用: 3]

/