Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

数学物理学报, 2021, 41(6): 1768-1778 doi:

论文

Chern-Simons-Higgs薛定谔方程组解的存在性

邓金,

江西师范大学数学与统计学院 南昌 330022

The Existence of Solutions for the Schrödinger-Chern-Simons-Higgs System

Deng Jin,

College of Mathematics and Statistics, Jiangxi Normal University, Nanchang 330022

收稿日期: 2020-12-25  

基金资助: 江西省教育厅研究生创新基金.  YJS2020053

Received: 2020-12-25  

Fund supported: Postgraduate Innovation Fund of Educational Department in Jiangxi Province.  YJS2020053

作者简介 About authors

邓金,E-mail:jindeng_2016@126.com , E-mail:jindeng_2016@126.com

Abstract

In this paper, we study the existence standing wave solutions for a nonlinear Schrödinger equation coupled with a neutral scalar field and a gauge field. We establish the existence result for the case that the exponent p of nonlinear term is greater than 2.

Keywords: Schrödinger equations ; Neutral scalar field ; Chern-Simons

PDF (324KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

邓金. Chern-Simons-Higgs薛定谔方程组解的存在性. 数学物理学报[J], 2021, 41(6): 1768-1778 doi:

Deng Jin. The Existence of Solutions for the Schrödinger-Chern-Simons-Higgs System. Acta Mathematica Scientia[J], 2021, 41(6): 1768-1778 doi:

1 引言

本文研究了以下含有中性标量场及规范位势的非线性薛定谔方程组

{12mΔu+ωu+e42mκ2h2u(|x|)|x|2u+e4mκ2u|x|u2(s)shu(s)ds+(1+κq2m)Nu+qpm2|u|p2u=0,xR2,ΔN+κ2q2N+q(1+κq2m)u2=0,xR2,
(1.1)

其中N : R2R是中性标量场, p>2

hu(|x|)=|x|0su2(s)ds,

u:R2R是径向对称的. 问题(1.1) 源于对(2+1) -维Abelian Higgs模型的研究, 在该模型中, 带电的非相对论性物质场与仅包含Chern-Simons项的质量规范场在规范能量中相互作用, 详见文献[5]. 在物理上, 参数m, κq>0分别表示粒子的质量, Chern-Simons耦合常数和麦克斯韦耦合常数. 根据文献[5] 中的研究, (2+1)维相对论拉格朗日密度

LR(ϕ,N,A0,A1,A2)=¯DμϕDμϕ+12qμNμN1c2|ϕ|2(N+1κcv2)2q2c2(|ϕ|2+κcN)214qFμνFμν+κ4εμναFμνAα

可以简化为拉格朗日密度

L(ψ,N,A0,A1,A2)=iˉψDtψ12m|Dψ|2+12qαNαN12κ2qN2qp2m2c2|ψ|p(1+κq2mc)|ψ|2N+κ4εμαβAμFαβ,
(1.2)

其中ψ:R×R2C是带电标量场, Dt=t+ieA0,D=ieA,(A0,A)=(A0,A1,A2)是规范场, e>0是耦合常数. 此外Fμν:=μAvνAμ,εμνα是Levi-Civita张量.

对于静态驻波解ψ(t,x)=eiωtu(x), 即Aμ=Aμ(x),N=N(x), 假设A是库仑规范的, 则1A1+2A2=0,因此欧拉- 拉格朗日方程L可以写成:

12mΔu+[e22m|A|2+(ω+eA0)+(1+κq2m)N]u+qpm2|u|p2u=0,
(1.3)

A(u2)=0,
(1.4)

ΔN+κ2q2N+q(1+κq2m)u2=0,
(1.5)

κ(1A22A1)=eu2,
(1.6)

κm2A0=e2A1u2,
(1.7)

κm1A0=e2A2u2.
(1.8)

p>2时, 本文考虑问题(1.3)–(1.8) 径向解的存在性. 假设A0(x)=A0(|x|),

A1(x)=eκx2|x|2h(|x|),A2(x)=eκx1|x|2h(|x|).
(1.9)

如文献[1] 有

h(x)=hu(x)=|x|0su2(s)ds.
(1.10)

因此可以得到

A0(x)=e3mk2|x|u2(s)shu(s)ds,
(1.11)

A21(x)+A22(x)=e2κ21|x|2h2u(x)=e2κ21|x|2(|x|0su2(s)ds)2.

从而, 问题(1.3)–(1.8) 可以简化为问题(1.1).

如果N=0, 问题(1.3)–(1.8) 是Chern-Simons薛定谔方程, 此类方程得到了广泛的研究. 已有各种存在性和不存在性结果. 特别地, p的取值范围不同, 所得的结果不一样. 文献[3] 中, 对于p>4的情况, 通过研究Nehari-Pohozaev流形上的极小化问题, 证明了解的存在性, 当2<p<4时, 极小化问题是限制在L2球上考虑的. 而对于p=4的情况, 通过研究刘维尔方程得到了自对偶的解, 详见文献[8] 和[9]. 进一步的结果可以参考文献[2-4, 6, 14-18] 及其中的参考文献.

N0的情况下, 文献[7] 中考虑了e=0时问题(1.3)–(1.8) 的非平凡解的存在性, 以及当q时的Chern-Simons极限. 当p=4时, 文献[1] 中得到了进一步的存在性结果. 该文使用截断泛函的方法证明Palaiss-Smale序列的有界性, 且当p=4时, 通过找相关泛函的临界点, 证明了问题(1.3)–(1.8) 解的存在性.

受这些工作的启发, 我们研究p>2时问题(1.1) 解的存在性. 我们以不同的方式处理p>42<p4的情况. 对于p>4, 我们得到以下结果.

定理1.1  假设p>4, 且存在e,q>0, 使得0<e<e, 0<q<q, 则问题(1.1) 有两个非平凡解.

我们将用变分法证明定理1.1. 首先, 对于任意给定的uH1(R2), 由(1.1) 式中的第二个方程可以得到

ΔN+κ2q2N+q(1+κq2m)u2=0,xR2.
(1.12)

问题(1.12) 有唯一解如下

Nu(x)=q(1+κq2m)R2Gκq(xy)u2(y)dy,
(1.13)

其中积分核Gμ(x)是Yukawa势, 即

Gμ(x)=014πte(|x|24t+μ2t)dy.
(1.14)

因此, 可以把N看作是u的函数. 那么可以通过找相应泛函的全局极小值点和山路定理刻画的临界点来证明定理1.1.

对于2<p4的情况, 我们得到以下结果.

定理1.2   假设2<p4, 当耦合常数e充分小时, 则问题(1.1) 有一个非平凡的解.

虽然问题(1.1) 对应泛函Je(u)具有山路几何结构, 但很难验证(PS)c序列的有界性. 为了克服这一困难, 我们将泛函Je(u)截断, 并应用山路定理.

薛定谔泊松方程和Chern-Simon薛定谔方程有类似的结果, 详见文献[11, 12]和[13].

在本文第2节中, 证明了相关泛函满足(PS)c条件. 在第3节和第4节中, 将分别证明在p>42<p4的情况下, 问题(1.1) 解的存在性.

2 (PS)c条件

本节中, 我们将在H1r(R2)×H1r(R2)空间, 证明问题(1.1) 对应的泛函

Ee(u,N)=R2(14m|u|2+w2|u|2+qp2m2|u|p)dx+e44mκ2R2u2(|x|)h2u(|x|)|x|2dx+12(1+κq2m)R2Nu2dx+14qR2|N|2dx+κ2q4R2|N|2dx.
(2.1)

满足(PS)c条件, 即对于任意使得Je(un)有界, 且Je(un)趋于0的序列{un}H1r(R2)包含收敛的子列, 其中H1r(R2)H1(R2)包含径向对称函数的子空间, 且由文献[19], 可知H1r(R2)紧嵌入Lp(R2). 由(1.12) 式可得

(2.2)

因此, 将(2.2) 式代入(2.1) 式, 我们可以得到简化的泛函

\begin{eqnarray} J_e(u) = {{\cal E}_e}(u, N)& = &\int_{{{\Bbb R}} ^{2}} \Big(\frac{1}{4 m}|\nabla u|^{2}+\frac{w}{2}|u|^{2}\Big)\, {\rm d}x+\frac{e^{4}}{4 m \kappa^{2}} \int_{{{\Bbb R}} ^{2}} \frac{u^{2}(|x|) h_{u}^{2}(|x|)}{|x|^{2}}\, {\rm d}x{} \\ &&+\frac{1}{4}\left(1+\frac{\kappa q}{2 m}\right) \int_{{{\Bbb R}} ^{2}} N u^{2}\, {\rm d}x+\frac{q}{p^2 m^{2}}\int_{{{\Bbb R}} ^{2}}|u|^{p}\, {\rm d}x. \end{eqnarray}
(2.3)

根据Strauss不等式[19]

\begin{equation} |u(x)| \leq \frac{C}{\sqrt{|x|}}\|u\|_{H^{1}\left({{\Bbb R}} ^{2}\right)}, \quad u \in H_{r}^{1}\left({{\Bbb R}} ^{2}\right). \end{equation}
(2.4)

对于任意 u \in H_{r}^{1}\left({{\Bbb R}} ^{2}\right),

\begin{equation} \int_{{{\Bbb R}} ^{2}} \frac{u^{2}(x) h_{u}^{2}(x)}{|x|^{2}}\, {\rm d}x \leq C\|u\|^{6} \end{equation}
(2.5)

成立, 由文献[1] 和[7], 我们得到以下结果.

引理2.1  如果 u \in H_{r}^{1}\left({{\Bbb R}} ^{2}\right) 是泛函 J_{e} 的临界点, 那么 \left(u, N_{u}\right) {\cal E}_{e} 的临界点, 因此 u 是方程(1.1) 的解.

可以验证 J_{e} \in C^{1} , 而且

J_{e}^{\prime}(u) = \partial_u {\cal E}_{e}\left(u, N_{u}\right)+\partial_{N} {\cal E}_{e}\left(u, N_{u}\right) N_{u}^{\prime} = \partial_{u} {\cal E}_{e}(u, N).

H(u) = \int_{{{\Bbb R}} ^{2}} \frac{u_{n}^{2}}{|x|^{2}}\left(\int_0^{{|x|}}\tau|u_{n}|^{2} {\rm d}\tau\right)^{2}\, {\rm d}x.

在文献[3] 中, 证明了以下结论.

命题2.1   假设在空间 H_{r}^{1}\left({{\Bbb R}} ^{2}\right) 中, 当 n \rightarrow \infty 时, 序列 \left\{u_{n}\right\} 弱收敛到函数 u , 则对于任意 \varphi\in H_{r}^{1}\left({{\Bbb R}} ^{2}\right) , 当 n\to\infty 时, 有 H(u_n), \, \langle H'(u_n), \varphi\rangle \langle H'(u_n), u_n \rangle 收敛到 H(u), \, \langle H'(u), \varphi \rangle \langle H'(u), u \rangle . 此外

\lim\limits _{n \rightarrow \infty} \int_{{{\Bbb R}} ^{2}}\left(\int_{|x|}^{\infty} \frac{u_{n}^{2}(\tau) \int_0^{{\tau}}\left|u_{n}\right|^{2}}{\tau} {\rm d}\tau\right) u_{n}^{2}\, {\rm d}x = \int_{{{\Bbb R}} ^{2}}\left(\int_{|x|}^{\infty} \frac{u^{2}(\tau) \int_0^{{\tau}}|u|^{2}}{\tau} {\rm d}\tau\right) u^{2}\, {\rm d}x .

在文献[1] 中证明了如下结果.

引理2.2   对于任意 u \in H^{1}\left({{\Bbb R}} ^{2}\right), 存在唯一的 N_{u} \in H^{1}\left({{\Bbb R}} ^{2}\right) 是方程(1.1) 第二个方程的解. 此外

\rm (i) N_{u} \leq 0 a.e. in {{\Bbb R}} ^{2} ;

\rm (ii) 映射 u \mapsto N_{u} C^{1} 的;

\rm (iii) \left|\int_{{{\Bbb R}} ^{2}} N_{u} u^{2}\, {\rm d}x \right| = -\int_{{{\Bbb R}} ^{2}} N_{u} u^{2}\, {\rm d}x \leq \frac{1}{\kappa^{2} q}\left(1+\frac{\kappa q}{2 m}\right)\|u\|_{L^4}^{4} ;

\rm (iv) N_{t u} = t^{2} N_{u}, 对于任意 t \in {{\Bbb R}} ;

\rm (v) u \in H_{r}^{1}\left({{\Bbb R}} ^{2}\right) , 则 N_{u} \in H_{r}^{1}\left({{\Bbb R}} ^{2}\right) .

定义

I(u) = \int_{{{\Bbb R}} ^{2}}N_u(x)u^2(x)\, {\rm d}x.

命题2.2   假设在空间 H_{r}^{1}\left({{\Bbb R}} ^{2}\right) 中, 当 n\to\infty 时, \left\{u_{n}\right\} 弱收敛到函数 u , 则对于任意 \varphi\in H_{r}^{1}\left({{\Bbb R}} ^{2}\right) , 当 n\to\infty 时, 有 I(u_n), \, \langle I'(u_n), \varphi \rangle , \langle I'(u_n), u_n \rangle 收敛到 I(u), \, \langle I'(u), \varphi\rangle , \langle I'(u), u \rangle .

  我们仅证明当 n\to\infty I(u_n)\to I(u) , 其它项可以同样地证明. 因为

I(u_n)-I(u) = \int_{{{\Bbb R}} ^{2}}(N_{u_{n}}u_{n}^{2}-N_{u_n}u^2)\, {\rm d}x + \int_{{{\Bbb R}} ^{2}}(N_{u_{n}}u^{2}-N_uu^2)\, {\rm d}x.

由(1.13) 式, 富比尼定理和引理2.2, 有

\begin{eqnarray*} &&\bigg|\int_{{{\Bbb R}} ^{2}}(N_{u_{n}}(x)-N_u(x))u^{2}(x)\, {\rm d}x \bigg| \\ &\leq& q(1+\frac{\kappa q}{2m} )\int_{{{\Bbb R}} ^{2}} \int_{{{\Bbb R}} ^{2}} G^{\kappa q}(x-y)| u_n^{2}(y)-u^{2}(y)| u^{2}(x)\, {\rm d}y {\rm d}x \\ &\leqslant& C \int_{{{\Bbb R}} ^{2}}\left|u_n^{2}(y)-u^{2}(y)\right| \int_{{{\Bbb R}} ^{2}}\left|G^{\kappa q}(x-y) u^{2}(x)\right|\, {\rm d}{x}{\rm d}y\\ &\leqslant &C \int_{{{\Bbb R}} ^{2}}\left|u_n^{2}(y)-u^{2}(y)\right|\left(\int_{{{\Bbb R}} ^{2}}\left|G^{\kappa q}(x-y)\right|^{s}\, {\rm d}x\right)^{\frac{1}{s}}\left(\int_{{{\Bbb R}} ^{2}}|u|^{r} \, {\rm d}x\right)^{\frac{2}{r}}\, {\rm d}y, \end{eqnarray*}

其中 r>2, s = \frac r{r-2} . 由文献[7] 中的引理4.1, 对于 p\geq 1

\|G^\mu\|_{L^p}\leq C\mu^{-\frac{2}{p}},

又因为 H_r^1( {{\Bbb R}} ^2 ) 紧嵌入 L^p( {{\Bbb R}} ^2 ) , p \geq 2 , 故有 u_{n} L^{p}( {{\Bbb R}} ^2 ) 强收敛到 u , 因此, 当 n\to\infty

\bigg|\int_{{{\Bbb R}} ^{2}}(N_{u_{n}}(x)-N_u(x))u^{2}(x)\, {\rm d}x \bigg| \leq C(\kappa q)^{-\frac{2}{s}}\int_{{{\Bbb R}} ^{2}}|u_n(y)-u(y)|^2\, {\rm d}y\rightarrow 0,

类似地, 当 n\to\infty 时, 有

\begin{eqnarray*} &&\bigg|\int_{{{\Bbb R}} ^{2}}(N_{u_{n}}(x)u_n^{2}(x)-N_{u_{n}}(x)u^{2}(x))\, {\rm d}x \bigg| \\ & = &\int_{{{\Bbb R}} ^{2}}|N_{u_{n}}(x)||u_n^2(x)-u^2(x)| \, {\rm d}x\\ &\leq& q(1+\frac{\kappa q}{2m} )\int_{{{\Bbb R}} ^{2}} \int_{{{\Bbb R}} ^{2}} |G^{\kappa q}(x-y)u_n^2(y)|dy|u_n^2(x)-u^2(x)|{\rm d}x\\ &\leq &C \int_{{{\Bbb R}} ^{2}}\bigg(\int_{{{\Bbb R}} ^{2}}|G^{\kappa q}(x-y)|^s{\rm d}y\bigg)^\frac{1}{s} \bigg(\int_{{{\Bbb R}} ^{2}}|u_n(y)|^r{\rm d}y\bigg)^\frac{2}{r}|u_n^2(x)-u^2(x)|\, {\rm d}x\\ &\leq &C (\kappa q)^{-\frac{2}{s}}\left(\int_{{{\Bbb R}} ^{2}}|u_n|^{r} \, {\rm d}x\right)^{\frac{2}{r}}\int_{{{\Bbb R}} ^{2}}|u_n(x)-u(x)|^2\, {\rm d}y\rightarrow 0. \end{eqnarray*}

其中 r>2, s = \frac r{r-2} . 命题2.2证毕.

命题2.3   假设 p>2 , \left\{u_{n}\right\} \subset H_r^1({{\Bbb R}} ^2) 是泛函 J_{e} 有界的 (P S)_{c} 序列, 即当 n \rightarrow \infty 时, 泛函 J_{e} 满足

J_{e}\left(u_{n}\right) \rightarrow c, \quad J_{e}^{\prime}\left(u_{n}\right) \rightarrow 0,

\left\{u_{n}\right\} 包含一个收敛子列.

  因为 \{u_{n}\} H_r^1({{\Bbb R}} ^2) 中有界, 且 H_r^1( {{\Bbb R}} ^2 ) 紧嵌入 L^p( {{\Bbb R}} ^2 ) , 我们可以假设

\begin{equation} u_{n} \rightharpoonup u \quad \mbox{ in} \quad H_r^1({{\Bbb R}} ^2); \quad u_{n} \rightarrow u \quad \mbox{in} \quad L^{p}\left({{\Bbb R}} ^{2}\right), \, \, p \geq 2; \quad u_{n} \rightarrow u \quad \mbox{ a.e. } \quad {{\Bbb R}} ^{2}. \end{equation}
(2.6)

由命题2.1和命题2.2, 可以得到 u 是泛函 J_e 的临界点, 即 J'_e(u) = 0 . 因此, 由(2.6) 式可以得到

\begin{eqnarray} &&\int_{{{\Bbb R}} ^{2}}\Big(\frac{1}{2m}|\nabla (u_n-u)|^2+\omega|u_n-u|^2\Big)\, {\rm d}x{}\\ & = &\langle J_e'(u_n)-J'_e(u), u_n-u\rangle +o(1){}\\ & = &\frac{3e^4}{2m\kappa^2}\langle H'(u_n)-H'(u), u_n-u\rangle +(1+\frac{\kappa q}{2m})\langle I'(u_n)-I'(u), u_n-u\rangle+o(1). \end{eqnarray}
(2.7)

然后再由命题2.1和2.2得到结果. 命题2.3证毕.

3 当 p>4 时解的存在性

在本节中, 我们考虑了 p>4 情况下问题(1.1) 解的存在性.

引理3.1   如果 \left\{u_{n}\right\} \subset H_r^1({{\Bbb R}} ^{2}) 使得 J_{e}\left(u_{n}\right) \leq c , 则 \left\{u_{n}\right\} H_r^1({{\Bbb R}} ^{2}) 是一致有界的.

  因为 p>4 , 当 t\geq 0 时, 我们有 t^4\leq C_\varepsilon t^2 + \varepsilon t^p , 其中 \varepsilon>0 待定. 由引理2.2, 有

\begin{eqnarray*} c&\geq &J_{e}(u_n)\geq \min\Big\{\frac{1}{4m}, \frac{\omega}{2}\Big\}\|u_n\|^2-\frac{1}{4\kappa^2q}\left (1+\frac{\kappa q}{2 m}\right)^2\|u_n\|^4_{L^4}+\frac{q}{p^2 m^{2}}\|u_n\|^p_{L^p}\\ & &+\frac{e^{4}}{4 m \kappa^{2}} \int_{{{\Bbb R}} ^{2}} \frac{u^{2}(|x|) h_{u}^{2}(|x|)}{|x|^{2}}\, {\rm d}x\\ &\geq & C\|u_n\|^2-C_\varepsilon\int_{{{\Bbb R}} ^{2}} |u_n|^2{\rm d}x-\varepsilon\int_{{{\Bbb R}} ^{2}} |u_n|^p{\rm d}x +\frac{q}{p^2 m^{2}}\int_{{{\Bbb R}} ^{2}} |u_n|^p\, {\rm d}x\\ &&+\frac{e^{4}}{4 m \kappa^{2}} \int_{{{\Bbb R}} ^{2}} \frac{u^{2}(|x|) h_{u}^{2}(|x|)}{|x|^{2}}\, {\rm d}x. \end{eqnarray*}

选取 \varepsilon = \frac{q}{2p^2m^2} , 可得

\begin{eqnarray*} C\left\|u_{n}\right\|^{2}+\frac{q}{ 2p^2 m^{2}} \int_{{{\Bbb R}} ^{2}}\left|u_{n}\right|^{p} {\rm d}x+\frac{e^{4}} {4 m \kappa^{2}} \int_{{{\Bbb R}} ^{2}} \frac{u_{n}^{2}(|x|) h_{u_n}^2(|x|)}{|x|^{2}}\, {\rm d}{x} \leq c+C \int_{{{\Bbb R}} ^{2}}\left|u_{n}\right|^{2}\, {\rm d}{x}. \end{eqnarray*}

我们证明 \|u_n\|^2_{L^2({{\Bbb R}} ^{2})} 一致有界, 即证 \|u_n\|^2_{L^2({{\Bbb R}} ^{2})}\leq C , C与 n 无关. 用反证法, 假设当 n \rightarrow \infty 时有

\|u_n\|^2_{L^2({{\Bbb R}} ^2)}\rightarrow \infty.

v_{n}(x) = \frac{u_{n}(x)}{\left\|u_{n}\right\|_{L^{2}\left({{\Bbb R}} ^{2}\right)}} , 则 v_{n}(x) 满足

\begin{eqnarray*} &&C \left\|u_{n}\right\|^{2}_{L^2}\|v_n\|^2+\frac{q}{2 p^2 m^{2}}\|u_{n}\|^p_{L^2} \int_{{{\Bbb R}} ^{2}}\left|v_{n}\right|^{p}\, {\rm d}x + \|u_n\|^6_{L^2}\int_{{{\Bbb R}} ^{2}} \frac{v_{n}^{2}(|x|) h_{v_n}^2(|x|)}{|x|^{2}}\, {\rm d}x\\ & \leq& c+C \|u_n\|^2_{L^2}\int_{{{\Bbb R}} ^{2}}\left|v_{n}\right|^{2}\, {\rm d}x. \end{eqnarray*}

\begin{eqnarray} &&C \|v_n\|^2+\frac{q}{2 p^2 m^{2}}\|u_{n}\|^{p-2}_{L^2} \int_{{{\Bbb R}} ^{2}}\left|v_{n}\right|^{p}\, {\rm d}x +\frac{e^{4}}{4 m \kappa^{2}} \|u_n\|^4_{L^2}\int_{{{\Bbb R}} ^{2}} \frac{v_{n}^{2}(x) h_{v_n}^2(|x|)}{|x|^{2}}\, {\rm d}x{}\\ &\leq &\frac{c}{\|u_n\|^2_{L^2}}+C \int_{{{\Bbb R}} ^{2}}\left|v_{n}\right|^{2}\, {\rm d}x, \end{eqnarray}
(3.1)

从而 \|v_n\|\leq C , 又因为 H_r^1( {{\Bbb R}} ^2 ) 紧嵌入 L^p( {{\Bbb R}} ^2 ) , 因此我们可以假设

v_{n} \rightharpoonup v \quad \mbox{ in } \quad H_r^1({{\Bbb R}} ^2), \quad v_{n} \rightarrow v \quad \mbox{ in } \quad L^{p}\left({{\Bbb R}} ^{2}\right), \, \, \ p \geq 2, \quad v_{n} \rightarrow v \quad \mbox{ a.e. } \quad {{\Bbb R}} ^{2}

\int_{{{\Bbb R}} ^{2}} v^{2}\, {\rm d}x = 1 . 由命题2.1可得

\begin{eqnarray} &&\lim\limits_{n\to\infty}\int_{{{\Bbb R}} ^{2}}\left(A_{1}^{2}\left(v_{n}\right) v_{n}^{2}+A_{2}^{2}\left(v_{n}\right) v_{n}^{2}\right) \, {\rm d}x {}\\ & = & \lim\limits_{n\to\infty}\int_{{{\Bbb R}} ^{2}} \frac{e^{2}}{4 m \kappa^{2}} \frac{h_{v_n}^{2}(|x|) v_{n}^{2}(x)}{|x|^{2}} {\rm d}x = \int_{{{\Bbb R}} ^{2}} \frac{e^{2}}{4 m \kappa^{2}} \frac{h_{v}^{2}(|x|) v^{2}(x)}{|x|^{2}}\, {\rm d}x. \end{eqnarray}
(3.2)

则当 n\to\infty 时, 由(3.1) 式有

\int_{{{\Bbb R}} ^{2}} \frac{e^{2}}{4 m \kappa^{2}} \frac{h_{v_n}^{2}(|x|) v_{n}^{2}(x)}{|x|^{2}}\, {\rm d}x \rightarrow 0.

于是可以得到

\begin{equation} \lim\limits_{n\to\infty}\int_{{{\Bbb R}} ^{2}}\left(A_{1}^{2}\left(v_{n}\right) v_{n}^{2}+A_{2}^{2}\left(v_{n}\right) v_{n}^{2}\right) \, {\rm d}x = 0. \end{equation}
(3.3)

故有

\begin{equation} \int_{{{\Bbb R}} ^{2}}\left(A_{1}^{2}\left(v\right) v^{2}+A_{2}^{2}\left(v\right) v^{2}\right) \, {\rm d}x = 0. \end{equation}
(3.4)

从而得到

A_{j}(v) v = 0, \quad \mbox{ a.e. } \quad {{\Bbb R}} ^{2}, \quad \partial_{2}\left(A_{1}(v) v^{2}\right) = 0, \quad \partial_{1}\left(A_{2}(v) v^{2}\right) = 0 \quad \mbox{ a.e. } \quad {{\Bbb R}} ^{2}.

这说明

\begin{equation} 0 = \int_{{{\Bbb R}} ^{2}} \partial_{2}\left(A_{1}(v) v^{2}\right)\, {\rm d}x = \int_{{{\Bbb R}} ^{2}} \partial_{2} A_{1}(v) v^{2}+A_{1} \partial_{2} v^{2}\, {\rm d}x, \end{equation}
(3.5)

\begin{equation} 0 = \int_{{{\Bbb R}} ^{2}} \partial_{1}\left(A_{2}(v) v^{2}\right)\, {\rm d}x = \int_{{{\Bbb R}} ^{2}} \partial_{1} A_{2}(v) v^{2}+A_{2} \partial_{1} v^{2}\, {\rm d}x. \end{equation}
(3.6)

结合(3.5), (3.6) 式可以得到

\begin{eqnarray*} \int_{{{\Bbb R}} ^{2}}\left(\partial_{2} A_{1}(v)-\partial_{1} A_{2}(v)\right) v^{2}\, {\rm d}x+2 \int_{{{\Bbb R}} ^{2}}\left(v A_{2}(v) \partial_{1} v-v A_{1} \partial_{2} v\right)\, {\rm d}x = 0. \end{eqnarray*}

由(1.6) 式有

\begin{eqnarray} \int_{{{\Bbb R}} ^{2}}|v|^{4}\, {\rm d}x& = &\frac{\kappa}{e} \int_{{{\Bbb R}} ^{2}}\left(\partial_{1} A_{2}(v)-\partial_{2} A_{1}(v)\right) v^{2}\, {\rm d}x {}\\ & = &\frac{2\kappa}{e} \int_{{{\Bbb R}} ^{2}}\left(v A_{2}(v) \partial_{1} v-v A_{1} \partial_{2} v\right)\, {\rm d}x = 0. \end{eqnarray}
(3.7)

因此 v = 0 a.e. {{\Bbb R}} ^{2}, 这与

1 = \lim\limits_{n\to\infty}\int_{{{\Bbb R}} ^{2}}\left|v_{n}\right|^{2}\, {\rm d}x = \int_{{{\Bbb R}} ^{2}}|v|^{2}\, {\rm d}x.

矛盾. 引理3.1证毕.

定理1.1的证明   考虑泛函

I_{0}(u) = \left.J_{e}\right|_{e, q = 0}(u) = \int_{{{\Bbb R}} ^{2}} \Big(\frac{1}{4{m}}|\nabla u|^{2}+\frac{w}{2}|u|^{2}\Big)\, {\rm d}x+\frac{1}{4} \int_{{{\Bbb R}} ^{2}} N_u u^{2}\, {\rm d}x.

因为 N_u \leq 0 , 当 t_0 充分大且 u_0\in H_r^1({{\Bbb R}} ^{2}) 固定时, 可以证明 I_0(t_0u_0)< 0 . 如果 \|u\|< r 充分小, 则 I_0(u)\geq \alpha > 0 . J_{e} 对于 e, q 的连续性, 存在 e^{*}, q^{*}>0 , 当 0<e<e^{*} , 0<q<q^{*} 时, 若 \|u\| = r J_{e}(u) \geq \alpha , J_{e}(t_0u_0)<0 . 因为 J_{e} 满足 (P S)_c 条件, 由山路定理, 泛函 J_{e}(u) 有临界点 u_{c} , 且 J_{e}\left(u_{c}\right)>0 .

下面, 我们考虑当 0<e<e^{*} , 0< q <q^* 时的极小化问题

m_e = \inf\limits_{u\in H_r^1({{\Bbb R}} ^{2})}J_e(u).

因为 J_{e}(t_0u_0)<0 , 由引理3.1可得 -\infty<m_{e}<0 . 另一方面, 由Ekland变分原理可知存在一个数列 \left\{u_{n}\right\} \subset H_r^1({{\Bbb R}} ^{2}) , 当 n \rightarrow \infty

J_{e}\left(u_{n}\right) \rightarrow m_{e}, \quad J_{e}^{\prime}\left(u_{n}\right) \rightarrow 0.

再由引理3.1及命题, 可得 \left\{u_{n}\right\} H_r^1({{\Bbb R}} ^{2}) 中有界, 且有收敛的子列. 因此存在 u_e 使得 m_{e} = J_{e}\left(u_{e}\right) , J_{e}^{\prime}\left(u_{e}\right) = 0 . 定理1.1证毕.

4 当 2<p<4 时解的存在性

在泛函 J_{e} 中, 两个非局部项之间互相影响, 使得很难验证泛函 J_{e} 的几何结构及其Palais-Smale序列的有界性. 为了克服这些困难, 如文献[1, 10], 我们引入了截断函数 \chi \in C^{\infty}({{\Bbb R}} +, {{\Bbb R}} ) ,

\left\{\begin{array}{ll} \chi(s) = 1, & s \in[0, 1], \\ 0 \leq \chi \leq 1 , & s \in[1, 2], \\ \chi(s) = 0, & s \in[2, +\infty[, \\ \left\|\chi^{\prime}\right\|_{\infty} \leq 2. \end{array}\right.

对于任意 T>0 , 定义以下截断泛函 J_{e, T} :

\begin{eqnarray*} J_{e, T}(u):& = & \frac{1}{4 m}\|\nabla u\|_{L^2}^{2}+\frac{\omega}{2}\|u\|_{L^2}^{2}+\frac{e^{4}}{4 m \kappa^{2}} K_{T}(u) \int_{{{\Bbb R}} ^2} \frac{u^{2}(|x|) h_{u}^{2}(|x|)}{|x|^{2}}\, {\rm d}x \\ &&+\frac{1}{4}\left(1+\frac{\kappa q}{2 m}\right) \int_{{{\Bbb R}} ^2} N_{u} u^{2}{\rm d}x+\frac{q}{p^2 m^{2}}\|u\|^{p}_{L^p}, \, \end{eqnarray*}

其中

K_{T}(u): = \chi\left(\frac{\|u\|^{2}}{T^{2}}\right).

可以验证 J_{e, T} C^{1} 的, 对于确定的 T, e>0 , 若 \bar{u} \in H_{r}^{1}\left({{\Bbb R}} ^{2}\right) 是泛函 J_{e, T} 的临界点, 且满足 \|\bar{u}\|<T , 则 \bar{u} 是泛函 J_{e} 的临界点, 再由引理 2.2, 可知 \left(\bar{u}, N_{\bar{u}}\right) 是(1.1) 的解.

对于任意 e, T>0 , 截断的泛函 J_{e, T} 都满足山路定理的几何假设, 更准确地说, 我们有

引理4.1   泛函 J_{e, T} 满足以下性质:

{\rm (i)} 存在 \rho>0 , \alpha>0 , 当 \|u\| = \rho 时, 使得 J_{e, T}(u) \geq \alpha ;

{\rm (ii)} 存在 \bar{u} \in H_{r}^{1}\left({{\Bbb R}} ^{2}\right), \|\bar{u}\|>\rho 时, 使得 J_{e, T}(\bar{u})<0, 其中 \alpha , \rho e, T 无关.

   (i) 若 \|u\| 充分小, 我们有

\begin{eqnarray*} J_{e, T}(u) &\geqslant & \frac{1}{4 m}\|\nabla u\|_{L^2}^{2}+\frac{\omega}{2}\|u\|_{L^2}^{2}-\frac{1}{4 \kappa^2q}\left(1+\frac{\kappa q}{2 m}\right)^2\|u\|_{L^4}^{4} +\frac{q}{p^2 m^{2}}\|u\|_{L^p}^{p}\geq\alpha>0, \end{eqnarray*}

(ii) 对于任意 u \in H_{r}^{1}\left({{\Bbb R}} ^{2}\right) , 当 t>0 充分大时, K_T(tu) = 0 . 则由引理2.2可以推导出

\begin{eqnarray*} J_{e, T}(t u) & = &t^{2} \Big(\frac{1}{4 m}\|\nabla u\|_{L^2}^{2}+\frac{\omega}{2}\|u\|_{L^2}^{2}\Big)+\frac{e^{4} t^{6}}{4 m{\kappa}^{2}}K_{T}(t u) \int_{{{\Bbb R}} ^{2}} \frac{u^{2}(|x|) h_{u}^{2}(|x|)}{|x|^{2}}\, {\rm d}x \\ &&-\frac{1}{4}\left(1+\frac{\kappa q}{2 m}\right) t^{4} \int_{{{\Bbb R}} ^{2}}|N u| u^{2}\, {\rm d}x+\frac{q t^{p}}{p^2 m^{2}} \int_{{{\Bbb R}} ^{2}}|u|^{p}\, {\rm d}x, \end{eqnarray*}

这说明当 t\to\infty 时, 则 J_{e, T}\rightarrow -\infty .

对于任意 e, T>0, 定义泛函 J_{e, T} 对应的山路值 c_{e, T} , 即

{c_{e,T}}: = \mathop {\inf }\limits_{t \in [0,1]} \mathop {\sup }\limits_{\gamma (t) \in {\Gamma _{e,T}}} {J_{e,T}}(\gamma (t)),

其中

\Gamma_{e, T}: = \left\{\gamma \in C\left([0, 1], H_{r}^{1}\left({{\Bbb R}} ^{2}\right)\right): \gamma(0) = 0, \|\gamma(1)\|>\rho, J_{e, T}(\gamma(1))<0\right\},

c_{e, T}\geq\alpha . 由山路定理, 泛函 J_{e, T} H_{r}^{1}\left({{\Bbb R}} ^{2}\right) 中存在Palais-Smale序列 \left\{\left(u_{e, T}\right)_{n}\right\} , 即当 n \rightarrow +\infty 时有

J_{e, T}\left(\left(u_{e, T}\right)_{n}\right) \rightarrow c_{e, T}, \quad J_{e, T}^{\prime}\left(\left(u_{e, T}\right)_{n}\right) \rightarrow 0.

下面证明, 若 e 充分小则Palais-Smale序列 \left\{u_{n}\right\}: = \left\{\left(u_{e, T}\right)_{n}\right\} 一致有界.

引理4.2   存在与 e 无关的 \bar{T}>0 , e^{*}: = e(\bar{T})>0 , 使得当 0<e<e^{*} 时有

\mathop {\lim \sup }\limits_n \left\|u_{n}\right\|<\bar T.

  我们用反证法: 假设对于任意 T>0 , 存在 e>0 使得

\begin{equation} \begin{array}{ll} \limsup _{n}\left\|u_{n}\right\| \geq T. \end{array} \end{equation}
(4.1)

因为

\begin{eqnarray*} \langle J_{e, T}^{\prime}(u_{n}), u_n \rangle& = &\int_{{{\Bbb R}} ^{2}} \left(\frac{1}{2 m}|\nabla u_{n}|^{2}+\omega|u|^{2}\right)\, {\rm d}x+\frac{3 e^{4}}{2 m \kappa^{2}} K_{T}\left(u_{n}\right) \int_{{{\Bbb R}} ^{2}} \frac{u_{n}^{2}(|x|) h_{u_n}^{2}(|x|)}{|x|^{2}}\, {\rm d}x\\ &&+\frac{e^4}{2m\kappa^2T^2}K_T^{\prime}(u_n)\|u_n\|^2\int_{{{\Bbb R}} ^{2}}\frac{u_n^2(|x|)h^2_{u_n}(|x|)}{|x|^2}\, {\rm d}x\\ &&+\Big(1+\frac{\kappa q}{2m}\Big)\int_{{{\Bbb R}} ^{2}}N_{u_n}u_n^2\, {\rm d}x+\frac{q}{p m^2}\int_{{{\Bbb R}} ^{2}}|u_n|^p\, {\rm d}x, \end{eqnarray*}

我们有

\begin{eqnarray*} &&c_{e, T}+o(1)\|u_n\|\\ & = &J_{e, T}(u_n)-\frac{1}{p}\langle J_{e, T}^{\prime}(u_n), u_n\rangle\\ & = &\int_{{{\Bbb R}} ^{2}}\Big(\frac{1}{2}-\frac{1}{p}\Big) \Big(\frac{1}{2m}|\nabla u_n|^2+\omega|u|^2\Big)\, {\rm d}x +\frac{e^4}{2m\kappa^2}\Big(\frac{1}{2}-\frac{3}{p}\Big)K_T\int_{{{\Bbb R}} ^{2}}\frac{u^2(|x|)h_u(|x|)^2}{|x|^2}\, {\rm d}x\\ &&-\frac{e^4}{2pm\kappa^2}K^{\prime}_T\|u_n\|^2\int_{{{\Bbb R}} ^{2}}\frac{u^2(|x|)h^2_u(|x|)}{|x|}\, {\rm d}x + \Big(\frac{1}{4}-\frac{1}{p}\Big)\Big(1+\frac{\kappa q}{2m}\Big)\int_{{{\Bbb R}} ^{2}}N_uu^2\, {\rm d}x\\ &\geq& C \|u_n\|^2-\frac{e^4}{2m\kappa^2}\Big(\frac{3}{p}-\frac{1}{2}\Big)K_T\int_{{{\Bbb R}} ^{2}}\frac{u^2(|x|)h^2_u(|x|)}{|x|}\, {\rm d}x\\ &&-\frac{e^4}{2pm\kappa^2}K_T^{\prime}\|u_n\|^2\int_{{{\Bbb R}} ^{2}}\frac{u^2(|x|)h_u(|x|)^2}{|x|^2}\, {\rm d}x. \end{eqnarray*}

因此

\begin{eqnarray} C\|u_n\|^2+o(1)\|u_n\|&\leq &c_{e, T}+\frac{e^4}{2m\kappa^2}\Big(\frac{3}{p}-\frac{1}{2}\Big) K_T\int_{{{\Bbb R}} ^{2}}\frac{u^2(|x|)h^2_u(|x|)}{|x|}\, {\rm d}x{}\\ &&+\frac{e^4}{2pm\kappa^2}K_T^{\prime}\|u_n\|^2\int_{{{\Bbb R}} ^{2}}\frac{u^2(|x|)h^2_u(|x|)}{|x|^2}\, {\rm d}x. \end{eqnarray}
(4.2)

现在, 估计 c_{e, T} . 由引理2.2可得

\begin{eqnarray*} c_{e, T} &\leq & \max _{t \geq 0} J_{e, T}(t \bar{u}) \\ &\leq & \max _{t \geq 0}\left[t^{2} \int_{{{\Bbb R}} ^{2}} \Big(\frac{1}{4 m}|\nabla \bar{u}|^{2}+\frac{\omega}{2}|u|^{2}\Big)\, {\rm d}x-\frac{1}{4}\left(1+\frac{\kappa q}{2 m}\right) t^{4} \int_{{{\Bbb R}} ^{2}}\left|N_{\bar{u}}\right| \bar{u}^{2}\, {\rm d}x + \frac{q t^{p}}{p m^{2}} \int_{{{\Bbb R}} ^{2}}|\bar{u}|^{p}\, {\rm d}x \right]\\ &&+\frac{e^4}{4m\kappa^2}\max _{t \geq 0} \bigg[t^6\chi\Big(\frac{t^2\|\bar u\|^2}{T^2}\Big)\int_{{{\Bbb R}} ^{2}}\frac{{\bar u}^2(|x|)h^2_{\bar u}(|x|)}{|x|^2}\, {\rm d}x \bigg]\\ &\leq& A_{1}+A_{2}(T). \end{eqnarray*}

t\leq\frac{\sqrt{2}T}{\|\bar u\|} , 则有

A_2(T)\leq\frac{e^4}{4m\kappa^2}\frac{8T^6}{\|\bar u\|^6}\int_{{{\Bbb R}} ^{2}}\frac{{\bar u}^2(|x|)h^2_{\bar u}(|x|)}{|x|^2}\, {\rm d}x \leq Ce^4T^6.

t\geq\frac{\sqrt{2}T}{\|\bar u\|} , A_2(T) = 0 . 因此

\begin{equation} c_{e, T} \leq A_{1}+C e^{4} T^{6}. \end{equation}
(4.3)

此外, 由(2.5) 式, 我们有

\begin{equation} \frac{e^{4}}{2 m \kappa^{2}}\left(\frac{3}{p}-\frac{1}{2}\right) K_{T}\left(u_{n}\right) \int_{{{\Bbb R}} ^{2}} \frac{u_{n}^{2}(|x|) h^2_{u_n}(|x|)}{|x|^{2}}\, {\rm d}x \leqslant Ce^{4} K_{T}\left(u_{n}\right)\left\|u_{n}\right\|^{6} \leqslant e^{4} T^{6}. \end{equation}
(4.4)

因为 \|\chi^{\prime} \|_\infty\leq 2 , K_T(u) = \chi (\frac{\|u\|}{T^2}) , 可以推出

\begin{equation} \frac{e^{4}}{2 p m \kappa^{2} T^{2}} K_{T}^{\prime}\left(u_{n}\right)\left\|u_{n}\right\|^{2} \int_{{{\Bbb R}} ^{2}} \frac{u_{n}^{2}\left(|x|\right) h^{2}_{u_{n}}(|x| )}{|x|^{2}}\, {\rm d}x \leqslant C e^{4} T^{6}. \end{equation}
(4.5)

结合(4.2) 式, (4.3) 式及(4.5) 式可以得到

C\|u_n\|^2 + o(1)\|u_n\|\leq A_1+ Ce^4T^6.

另一方面, (4.1) 式说明

C\|u_n\|^2+o(1)\|u_n\|\geq CT^2-T.

于是

CT^2-T\leq A_1+Ce^4T^6,

如果 e = e(T) 足够小, 而 T>0 足够大, 就会产生矛盾.

定理1.2的证明   由引理4.1, 4.2, 可以得到泛函 J_{e, \bar T} 有有界的Palais-Smale序列 \{u_n\} , 则 J_{e, \bar{T}}\left(u_{n}\right) = J_{e}\left(u_{n}\right) . 再由命题, 可得 u_{n} H_r^{1}\left({{\Bbb R}} ^{2}\right) 中强收敛到 u_{0} , 故 u_{0} 是泛函 J_{e} 对应值 c_{e, \bar{T}} 的临界点, 且 u_{0} 非平凡. 因此 \left(u_{0}, N_{u_{0}}\right) 是方程组(1.1) 的解. 证毕.

参考文献

d'Avenia P , Pomponio A .

Standing waves for a Schrödinger-Chern-Simons-Higgs system

J Differ Equa, 2020, 268, 2151- 2162

DOI:10.1016/j.jde.2019.09.017      [本文引用: 5]

Byeon J , Huh H .

On standing waves with a vortex point of order N for the nonlinear Chern-Simons-Schrödinger equations

J Differ Equa, 2016, 261, 1285- 1316

DOI:10.1016/j.jde.2016.04.004      [本文引用: 1]

Byeon J , Huh H , Seok J .

Standing waves of nonlinear Schrödinger equations with the gauge field

J Funct Anal, 2012, 263, 1575- 1608

DOI:10.1016/j.jfa.2012.05.024      [本文引用: 2]

Cunha P L , d'Avenia P , Pomponio A , Siciliano G .

A multiplicity result for Chern-Simons-Schrödinger equation with a general nonlinearity

Nonlinear Differ Equa Appl, 2015, 22, 1831- 1850

DOI:10.1007/s00030-015-0346-x      [本文引用: 1]

Dunne G V , Trugenberger C A .

Self-duality and nonrelativistic Maxwell-Chern-Simons solitons

Phys Rev D, 1991, 43 (3): 1323- 1331

URL     [本文引用: 2]

Huh H .

Standing waves of the Schrödinger equation coupled with the Chern-Simons gauged field

J Math Phys, 2012, 53, 063702

DOI:10.1063/1.4726192      [本文引用: 1]

Han J , Huh H , Seok J .

Chern-Simons limit of the standing wave solutions for the Schrödinger equations coupled with a neutral scalar field

J Funct Anal, 2014, 266, 318- 342

DOI:10.1016/j.jfa.2013.09.019      [本文引用: 3]

Han J , Song K .

On the Chern-Simons limit for a Maxwell-Chern-Simons model on bounded domains

J Math Anal Appl, 2009, 350, 1- 8

DOI:10.1016/j.jmaa.2008.07.063      [本文引用: 1]

Jackiw R , Pi S Y .

Self-dual Chern-Simons solitons

Progr Theoret Phys Suppl, 1992, 107, 1- 40

DOI:10.1143/PTPS.107.1      [本文引用: 1]

Jeanjean L , Coz S Le .

An existence and stability result for standing waves of nonlinear Schrödinger equations

Adv Differ Equa, 2006, 11, 813- 840

URL     [本文引用: 1]

Jiang Y , Zhou H .

Schrödinger-Poisson system with steep potential well

J Differ Equa, 2011, 251, 582- 608

DOI:10.1016/j.jde.2011.05.006      [本文引用: 1]

Jiang Y , Zhou H .

Multiple solutions for a Schrödinger-Poisson-Slater equation with external Coulomb potential

Sci China Math, 2014, 57, 1163- 1174

DOI:10.1007/s11425-014-4790-6      [本文引用: 1]

Li L Y , Yang J F , Yang J G .

Solutions to Chern-Simons-Schrödinger systems with external potential

Dis Conti Dyn Sys S, 2021, 14 (6): 1967- 1981

URL     [本文引用: 1]

Liu B , Li R , Li Z .

Non local ward identity in configuration space

Acta Math Sci, 2004, 24A (1): 58- 62

URL     [本文引用: 1]

Pomponio A , Ruiz D .

A variational analysis of a gauged nonlinear Schrödinger equation

J Eur Math Soc, 2015, 17, 1463- 1486

DOI:10.4171/JEMS/535     

Pomponio A , Ruiz D .

Boundary concentration of a gauged nonlinear Schrödinger equation on large balls

Calc Var Partial Differ Equ, 2015, 53, 289- 316

DOI:10.1007/s00526-014-0749-2     

Wan Y Y , Tan J G .

Standing waves for the Chern-Simons-Schrödinger systems without (AR) condition

J Math Anal Appl, 2014, 415, 422- 434

DOI:10.1016/j.jmaa.2014.01.084     

Wan Y Y , Tan J G .

The existence of nontrivial solutions to Chern-Simons-Schrödinger systems

Dis Conti Dyn Syst, 2017, 37, 2765- 2786

DOI:10.3934/dcds.2017119      [本文引用: 1]

Willem M . Minimax Thorems. Boston: Birkhäuser, 1996

[本文引用: 2]

/