数学物理学报, 2021, 41(5): 1504-1515 doi:

论文

具有初边值条件的集值脉冲微分方程的平均法

王培光,, 杨凯愉,

河北大学数学与信息科学学院 河北保定 071002

The Averaging Method of Set Impulsive Differential Equations with Initial and Boundary Value Conditions

Wang Peiguang,, Yang Kaiyu,

College of Mathematics and Information Science, Hebei University, Hebei Baoding 071002

通讯作者: 王培光, E-mail: pgwang@hbu.edu.cn

收稿日期: 2020-04-24  

基金资助: 国家自然科学基金.  11771115
国家自然科学基金.  12171135

Received: 2020-04-24  

Fund supported: the NSFC.  11771115
the NSFC.  12171135

作者简介 About authors

杨凯愉,E-mail:15932002803@163.com , E-mail:15932002803@163.com

Abstract

This paper uses the scheme of full, and partially additive averaging method to study the set impulsive differential equations with the initial and multipoint boundary value problems in Euclidean space $ \mathbb{R}^{n} $, and proves the approximate relationship of the solutions between the original equations and the average equations.

Keywords: Set differential equations ; Multipoint boundary value ; Impulse ; Averaging method

PDF (324KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王培光, 杨凯愉. 具有初边值条件的集值脉冲微分方程的平均法. 数学物理学报[J], 2021, 41(5): 1504-1515 doi:

Wang Peiguang, Yang Kaiyu. The Averaging Method of Set Impulsive Differential Equations with Initial and Boundary Value Conditions. Acta Mathematica Scientia[J], 2021, 41(5): 1504-1515 doi:

1 引言

脉冲微分方程广泛应用于物理学、生物学和经济学模型, 其最突出的特点是, 可以准确地描述瞬时突变对系统状态的影响. 自1960年起, Mil'man和Myshsi[15]开始研究脉冲微分方程以来, 得到了许多有趣的关于脉冲微分方程的定性理论的结果, 并形成了非线性分析的一个重要研究分支, 相关工作可参阅文献[3-4, 6, 11-12, 14, 20, 23]. 众所周知, 即使对于足够简单的脉冲方程, 也很难得到脉冲影响下的精确解. 一些学者致力于应用各种渐近方法来解决这一难题. 平均法作为渐近方法之一, 已广泛应用于各类脉冲微分系统中, 例如, 脉冲微分方程[1-2, 8-9, 25], 脉冲微分包含[5, 10, 16-17, 19, 24, 26-28]等. 结果表明, 平均系统可以去掉脉冲系统中的脉冲项的影响, 从而克服脉冲项带来的困难, 并且使得平均系统的解在一定条件下接近原系统的解.

近年来, 半线性度量空间中的集值微分方程引起了研究人员的广泛关注. 平均法在集值微分系统中的应用结果, 可参见著作[13], 文献[7, 18, 21]及其参考文献. 然而, 由脉冲微分方程与集值分析理论相结合得到的集值脉冲微分系统的研究结果相对较少, 参见文献[4, 22]. 本文的主要目的是将平均法推广到具有初值和多点边值问题的集值脉冲微分系统, 应用全局平均法和局部加法平均法, 得到原方程与平均方程之间解的近似关系.

2 预备知识

首先给出本文需要用到的欧氏空间$ {{\Bbb R}} ^{n} $中关于集值微分方程的一些概念和符号, 参见文献[13].

$ K_{c}({{\Bbb R}} ^{n}) $表示$ {{\Bbb R}} ^{n} $中所有非空紧致凸子集构成的集合, $ A $, $ B $$ K_{c}({{\Bbb R}} ^{n}) $的两个非空闭子集. 定义$ A $, $ B $的Hausdorff度量如下:

其中$ \parallel\cdot\parallel $是Euclidean范数, $ (K_{c}({{\Bbb R}} ^{n}), D) $是完备度量空间.

定义2.1   对任意给定的集合$ A, B\in K_c{({{\Bbb R}} ^{n})} $, 若存在集合$ C\in K_c({{\Bbb R}} ^{n}) $, 使得$ A = B+C $成立, 则称$ C $$ A $$ B $$ \rm Hukuhara $差集.

考虑下列集值微分方程

$ \begin{equation} D_{H}U = F(t, U), \; \; U(t_{0}) = U_{0}\in K_c({{\Bbb R}} ^{n}), \; \; t_{0}\in I, \end{equation} $

其中$ U\in C^{1}[I, K_c({{\Bbb R}} ^{n})] $, $ F\in C[I\times K_c({{\Bbb R}} ^{n}), K_c({{\Bbb R}} ^{n})] $, $ D_HU $$ U(t) $$ I $上的Hukuhara导数, $ I = [t_{0}, t_{0}+a] $, $ t_0\ge 0 $, $ a>0 $为常数.

定义2.2   若集值映射$ U:I\to K_{c}({{\Bbb R}} ^{n}) $连续可微, 并且满足下列积分

$ \begin{equation} U(t) = U_{0}+\int_{t_{0}}^{t} F(s, U(s)){\rm d}s, \; \; \; t\in I, \end{equation} $

其中积分形式定义如下

则称映射$ U:I\to K_{c}({{\Bbb R}} ^{n}) $是方程(2.1) 的一个解.

命题2.1   若$ F:I\to K_{c}({{\Bbb R}} ^{n}) $可积, 则

命题2.2   若$ F, G:I\to K_{c}({{\Bbb R}} ^{n}) $可积, 则$ D[F(\cdot), G(\cdot)]:I\to {{\Bbb R}} $也可积, 并且

接下来, 我们给出用于证明原始系统与平均系统之间解的近似关系的引理.

引理2.1[13]   对于空间$ {{\Bbb R}} ^{n} $中任意的非空子集$ A, B, C, A', B' $及常数$ \lambda>0 $, 下列结论成立

引理2.2[13]   对于任意的$ U(t), V(t)\in C[I, K_{c}({{\Bbb R}} ^{n})] $, 令

则不等式

成立, 即

其中$ M, \; K $是非负常数.

3 全局平均法

考虑具有小参数的脉冲微分系统

$ \begin{equation} \left\{ \begin{array}{ll} D_{H}X(t) = \varepsilon F(t, X(t)), \; \; \; &t\neq\tau_{k}, \\ X(\tau_{k}^{+})-X(\tau_{k}^{-}) = I_{k}(X(\tau_{k})), \; \; \; &t = \tau_{k}, \\ \end{array} \right. \end{equation} $

及在固定点$ 0\leq t_{0}<\cdot\cdot\cdot<t_{n}<\infty $处具有初值和Cancy-Nicoletti类型的多点边值问题

$ \begin{equation} X(0) = \Psi(0), \; \; A_{0}X(t_{0})+\sum\limits_{i = 1}^{n}A_{i}(\varepsilon)X_{i}(t_{i}) = \Phi(X_{0}(t_{0}), \cdots , X_{n}(t_{n}), \varepsilon), \end{equation} $

其中$ X\in{{{\Bbb R}} ^{n}} $, $ F:{{\Bbb R}} ^{+}\times K_{c}({{\Bbb R}} ^{n})\to K_{c}({{\Bbb R}} ^{n}) $, $ \varepsilon\in(0, \varepsilon_{0}] $是小参数, $ \varepsilon_{0}>0 $为常数, 且$ I_{k}:K_{c}({{\Bbb R}} ^{n})\to K_{c}({{\Bbb R}} ^{n}) $是连续的, $ 0<\tau_{1}<\cdot\cdot\cdot<\tau_{m}<+\infty $, $ k = 1, \cdots , m $, $ \Phi:K_{c}({{\Bbb R}} ^{n})\times K_{c}({{\Bbb R}} ^{n})\times\cdots \times K_{c}({{\Bbb R}} ^{n})\times(0, \varepsilon_{0}]\to K_{c}({{\Bbb R}} ^{m}) $为连续函数, $ A_{0}, \; A_{i}(\varepsilon) $$ m\times n $维矩阵, $ i = 1, \cdots , n $.

假设下列极限存在

$ \begin{equation} \overline{F}(X(t)) = \lim\limits_{T\to\infty}\Big[\frac{1}{T}\int^{t+T}_{t}F(s, X(s)){\rm d}s+\frac{1}{T}\sum\limits_{t\leq\tau_{k}<t+T}I_{k}(X(\tau_{k}))\Big], \end{equation} $

其中$ \overline{F}(X(t)) $$ F(t, X(t)) $$ [0, T] $上的平均.

则系统(3.1)–(3.2) 对应的平均系统如下

$ \begin{equation} D_{H}Y(t) = \varepsilon \overline{F}(Y(t)), \end{equation} $

其初值和多点边值条件为

$ \begin{equation} Y(0) = \Psi(0), \ \ A_{0}Y(t_{0})+\sum\limits_{i = 1}^{n}A_{i}(\varepsilon)Y_{i}(t_{i}) = \Phi(Y_{0}(t_{0}), \cdots , Y_{n}(t_{n}), \varepsilon), \end{equation} $

其中$ \overline{F}: K_{c}({{\Bbb R}} ^{n})\to K_{c}({{\Bbb R}} ^{n}) $为连续函数.

$ \Omega = \{(t, X(t))|\; t\geq0, \; X\in Q\subset K_{c}({{\Bbb R}} ^{n})\} $. 可以得到下列结论.

定理3.1   假设在区域$ \Omega $上下列条件成立:

($ A_{3.1} $)   集值映射$ F:G\to K_{c}({{\Bbb R}} ^{n}) $, $ I_{k}:Q\to K_{c}({{\Bbb R}} ^{n}) $连续, 且存在正数$ M_{1} $, $ M_{2} $, $ \lambda_{1} $$ \lambda_{2} $, 使得下列不等式

成立;

($ A_{3.2} $)   $ \Phi:\underbrace{Q\times Q\times \cdots \cdots Q}_{n+1}\times(0, \varepsilon_{0}]\to K_{c}({{\Bbb R}} ^{m}) $连续, 并且关于$ X $满足Lipschitz条件, 即

其中$ \mu_{i}(\varepsilon)>0, \; i = 0, 1, \cdots , n $, $ l(\varepsilon) = \max\limits_{1\leq i\leq n}\mu_{i}(\varepsilon) $为连续函数, 并且对任意的$ \varepsilon\in(0, \varepsilon_{0}] $, $ \lim\limits_{\varepsilon \to 0}l(\varepsilon) = 0 $;

($ A_{3.3} $)

其中$ A_0 $为常数矩阵, 且$ \det A_0\neq 0 $; 对任意的矩阵$ A = (a_{jk})_{m, n} $, $ \parallel A \parallel = \Big[\sum\limits_{k = 1}^{n}\sum\limits_{j = 1}^{m}a^2_{jk}\Big]^{\frac{1}{2}} $, $ \mu_{i}(\varepsilon)>0, \; i = 0, 1, \cdots , n $, $ h(\varepsilon) = \max\limits_{1\leq i\leq n}\parallel A_{i}(\varepsilon)\parallel $为连续函数, 且$ \lim \limits_{\varepsilon \to 0}h(\varepsilon) = 0 $;

($ A_{3.4} $)   对于任意的$ X\in Q $, 极限$ \rm(3.3) $一致成立, 且有下式成立

其中$ k(t, t+T) $是在区间$ (t, t+T] $上序列$ \tau_{k} $的点数;

($ A_{3.5} $)   对任意的$ 0<\varepsilon\leq\varepsilon_{0} $, $ 0\leq t\leq L\varepsilon^{-1} $, $ X(0) $, $ Y(0)\in Q\subset K_{c}({{\Bbb R}} ^{n}) $, 系统(3.4)–(3.5) 存在解$ Y(t) $, 且$ O(Y(t), \rho)\subset Q $, 其中$ O(Y(t), \rho) $$ Y(t) $$ \rho $邻域, $ \rho>0 $为常数.

则存在$ \varepsilon_{0}(\eta, L)>0 $, 使得对任意的$ \varepsilon\in(0, \varepsilon_{0}] $$ t\in[0, L\varepsilon^{-1}] $, 下列不等式

成立, 其中$ \eta>0 $, $ L>0 $是常数, $ X(t) $为系统$ \rm(3.1) $$ \rm(3.2) $的解.

  容易得到, 具有初值和多点边值条件的系统(3.1)–(3.2) 的解满足下列积分方程

$ \begin{equation} \left\{ \begin{array}{ll} { } X(t) = X_{0}+\varepsilon \int^{t}_{t_{0}}F(s, X(s)){\rm d}s+\varepsilon\sum\limits_{t_{0}\leq\tau_{k}<t}I_{k}(X(\tau_{k})), \\ X(0) = \Psi(0), \end{array} \right. \end{equation} $

$ \begin{equation} A_{0}(X_{0}+\varepsilon \zeta_{0})+\sum\limits_{i = 1}^{n}A_{i}(\varepsilon)(X_{0} +\varepsilon \zeta_{i}) = \Phi(X_{0}+\varepsilon \zeta_{0}, \cdots , X_{0}+\varepsilon \zeta_{n}, \varepsilon), \end{equation} $

其中$ X_{0} = X(t_{0}), \; \zeta_{i} = \int^{t_{i}}_{t_{0}}F(s, X(s)){\rm d}s+\sum\limits_{t_{0}\leq\tau_{k}<t_{i}}I_{k}(X(\tau_{k})) $, $ i = 1, 2, \cdots , n $.

同理, 具有初值和多点边值条件的系统(3.4)–(3.5) 的解满足下列积分方程

$ \begin{equation} \left\{ \begin{array}{ll} { } Y(t) = Y_{0}+\varepsilon \int^{t}_{t_{0}}\overline{F}(Y(s)){\rm d}s, \\ Y(0) = \Psi(0), \end{array} \right. \end{equation} $

$ \begin{equation} A_{0}(Y_{0}+\varepsilon \overline{\zeta}_{0})+\sum\limits_{i = 1}^{n}A_{i}(\varepsilon)(Y_{0}+\varepsilon \overline{\zeta}_{i}) = \Phi(Y_{0}+\varepsilon \overline{\zeta}_{0}, \cdots , Y_{0}+\varepsilon \overline{\zeta}_{n}, \varepsilon), \end{equation} $

其中$ Y_{0} = Y(t_{0}), \; \overline{\zeta}_{i} = \int^{t_{i}}_{t_{0}}\overline{F}(Y(s)){\rm d}s $, $ i = 1, 2, \cdots , n $.

由条件$ (A_{3.1}) $$ (A_{3.4}) $, 可得

$ \begin{eqnarray} D[\overline{F}(X(t)), \{0\}]&\leq& D\Big[\overline{F}(X(t)), \frac{1}{T}\int^{t+T}_{t}F(s, X(s)){\rm d}s +\frac{1}{T}\sum\limits_{t\leq\tau_{k}<t+T}I_{k}(X(\tau_{k}))\Big]{}\\ &&+D\Big[\frac{1}{T}\int^{t+T}_{t}F(s, X(s)){\rm d}s+\frac{1}{T}\sum\limits_{t\leq\tau_{k}<t+T}I_{k}(X(\tau_{k})), \{0\}\Big]{}\\ &<&\delta+\frac{1}{T}D\Big[\int^{t+T}_{t}F(s, X(s)){\rm d}s, \{0\}\Big] +\frac{1}{T}D\Big[\sum\limits_{t\leq\tau_{k}<t+T}I_{k}(X(\tau_{k})), \{0\}\Big]{}\\ &\leq&\delta+M_{1}+d_1M_{2}, \end{eqnarray} $

$ \begin{eqnarray} D[\overline{F}(X_{1}(t)), \overline{F}(X_{2}(t))] &\leq &D\Big[\overline{F}(X_{1}(t)), \frac{1}{T}\int^{t+T}_{t}F(s, X_{1}(s)){\rm d}s +\frac{1}{T}\sum\limits_{t\leq\tau_{k}<t+T}I_{k}(X_{1}(\tau_{k}))\Big]{} \\ &&+D\Big[\frac{1}{T}\int^{t+T}_{t}F(s, X_{1}(s)){\rm d}s+\frac{1}{T}\sum\limits_{t\leq\tau_{k}<t+T}I_{k}(X_{1}(\tau_{k})), {} \\ &&\frac{1}{T}\int^{t+T}_{t}F(s, X_{2}(s)){\rm d}s+\frac{1}{T}\sum\limits_{t\leq\tau_{k}<t+T}I_{k}(X_{2}(\tau_{k}))\Big]{} \\ &&+D\Big[\frac{1}{T}\int^{t+T}_{t}F(s, X_{2}(s)){\rm d}s +\frac{1}{T}\sum\limits_{t\leq\tau_{k}<t+T}I_{k}(X_{2}(\tau_{k})), \overline{F}(X_{2}(t))\Big]{} \\ &\leq&2\delta+\frac{1}{T}\int^{t+T}_{t}D[F(s, X_{1}(s)), F(s, X_{2}(s))]{\rm d}s{} \\ &&+\frac{1}{T}\sum\limits_{t\leq\tau_{k}<t+T}D[I_{k}(X_{1}(\tau_{k})), I_{k}(X_{2}(\tau_{k}))]{} \\ &\leq& 2\delta+(\lambda_{1}+d_1\lambda_{2})D[X_{1}(t), X_{2}(t)], \end{eqnarray} $

其中通过选择合适的$ T $, 可使$ \delta $充分小. 因此, 可得下列不等式

$ \begin{equation} D[\overline{F}(X(t)), \{0\}]\leq M_{1}+d_1M_{2}, \end{equation} $

$ \begin{equation} D[\overline{F}(X_{1}(t)), \overline{F}(X_{2}(t))]\leq(\lambda_{1}+d_1\lambda_{2})D[X_{1}(t), X_{2}(t)]. \end{equation} $

进一步, 可得

$ \begin{eqnarray} D[X(t), Y(t)]& = &D\Big[X_{0}+\varepsilon \int^{t}_{t_{0}}F(s, X(s)){\rm d}s+\varepsilon\sum\limits_{t_{0}\leq\tau_{k}<t}I_{k}(X(\tau_{k})), Y_{0} +\varepsilon \int^{t}_{t_{0}}\overline{F}(Y(s)){\rm d}s\Big] {}\\ &\leq &D[X_{0}, Y_{0}]+\varepsilon D\Big[\int^{t}_{t_{0}}F(s, X(s)){\rm d}s {}\\ &&+ \sum\limits_{t_{0}\leq\tau_{k}<t}I_{k}(X(\tau_{k})), \int^{t}_{t_{0}}F(s, Y(s)){\rm d}s+\sum\limits_{t_{0}\leq\tau_{k}<t}I_{k}(Y(\tau_{k}))\Big]{}\\ &&+\varepsilon D\Big[\int^{t}_{t_{0}}F(s, Y(s)){\rm d}s +\sum\limits_{t_{0}\leq\tau_{k}<t}I_{k}(Y(\tau_{k})), \int^{t}_{t_{0}}\overline{F}(Y(s)){\rm d}s\Big] {}\\ &\leq& D[X_{0}, Y_{0}]+\varepsilon(\lambda_{1}+d_1\lambda_{2}) \int^{t}_{t_{0}} D[X(s), Y(s)]{\rm d}s{}\\ &&+\varepsilon D\Big[\int^{t}_{t_{0}}F(s, Y(s)){\rm d}s +\sum\limits_{t_{0}\leq\tau_{k}<t}I_{k}(Y(\tau_{k})), \int^{t}_{t_{0}}\overline{F}(Y(s)){\rm d}s\Big]. \end{eqnarray} $

分析上述不等式, 将区间$ [0, L\varepsilon^{-1}] $进行$ m $等分, 具体表示如下

则对于式(3.14) 的最后一项, 由引理2.1, 我们可得

其中

根据条件($ A_{3.1} $), 我们有

因此对于所有的$ s \in[t_{i}, t_{i+1}] $, $ i = 0, \cdots , m-1 $, 以下估计

成立. 进一步计算可得

$ \begin{eqnarray} L_{1}&\leq&\varepsilon\lambda_{1}\sum^{m-1}_{i = 0}\int^{t_{i+1}}_{t_{i}}D[Y(s), Y(t_{i})]{\rm d}s {}\\ &\leq& \varepsilon^{2} (M_{1}+d_1M_{2})\lambda_{1}\sum^{ m-1}_{i = 0}\int^{t_{i+1}}_{t_{i}}(s-t_{i}){\rm d}s{}\\ &\leq&\frac{\lambda_{1} (M_{1}+d_1M_{2}) L^{2}}{2m}. \end{eqnarray} $

由(3.13) 式, 类似可得

因此

$ \begin{equation} L_{1}+L_{2}\leq\frac{\lambda_{1} (M_{1}+d_1M_{2}) L^{2}}{2m} +\frac{(\lambda_{1}+d_1\lambda_{2})(M_{1}+d_1M_{2})L^{2}}{2m} = \gamma(m), \end{equation} $

$ \lim \limits_{m\to\infty}\gamma(m) = 0 $.

根据条件($ A_{3.4} $), 存在单调递减的函数$ \delta(t) $, 使得

$ \begin{equation} D\Big[\int^{t}_{t_{0}}F(s, X(t)){\rm d}s+\sum\limits_{t_{0}\leq\tau_{k}<t}I_{k}(X(\tau_{k})), \int^{t}_{t_{0}}\overline{F}(X(t)){\rm d}s\Big]\leq t\delta(t) \end{equation} $

成立. 其中$ \lim\limits_{t \to\infty}\delta(t) = 0 $. 因此

$ \begin{eqnarray} L_{3}&\leq&\varepsilon\sum^{m-1}_{i = 0}D\Big[\int^{t_{i+1}}_{t_{0}}F(s, Y(t)){\rm d}s +\sum\limits_{t_{i}\leq\tau_{k}<t_{i+1}}I_{k}(Y(\tau_{k})), \int^{t_{i+1}}_{t_{0}}\overline{F}(Y(t_{i})){\rm d}s\Big]{}\\ &&+\varepsilon\sum^{m-1}_{i = 0}D\Big[\int^{t_{i}}_{t_{0}}F(s, Y(t)){\rm d}s +\sum\limits_{t_{}\leq\tau_{k}<t_{i+1}}I_{k}(Y(\tau_{k})), \int^{t_{i}}_{t_{0}}\overline{F}(Y(t_{i})){\rm d}s\Big]{}\\ &\leq&2m\theta(\varepsilon), \end{eqnarray} $

其中$ \theta(\varepsilon) = \sup\limits_{s\in[0, L]}s\delta\Big(\frac{s}{\varepsilon}\Big), s = \varepsilon t $, 且$ \lim\limits_{\varepsilon \to 0}\theta(\varepsilon) = 0. $

由式(3.7)和(3.9) 可得

$ \begin{eqnarray} D[X_{0}, Y_{0}]&\leq &\Big[A_{0}+\sum\limits_{i = 1}^{n}A_{i}(\varepsilon)\Big]^{-1}\Big[\mu_{0} +\sum\limits_{i = 1}^{n}\mu_{i}(\varepsilon)\Big]D[X_{0}, Y_{0}]{}\\ &&+\varepsilon\Big[A_{0}+\sum\limits_{i = 1}^{n}A_{i}(\varepsilon)\Big]^{-1}\Big[\mu_{0}D[\zeta_{0}, \overline{\zeta}_{0}] +\sum\limits_{i = 1}^{n}\mu_{i}(\varepsilon)D[\zeta_{i}, \overline{\zeta}_{i}]\Big]{}\\ &&-\varepsilon\Big[A_{0}+\sum\limits_{i = 1}^{n}A_{i}(\varepsilon)\Big]^{-1} \Big[A_{0}D[\zeta_{0}, \overline{\zeta}_{0}]+\sum\limits_{i = 1}^{n}A_{i}(\varepsilon)D[\zeta_{i}, \overline{\zeta}_{i}]\Big], \end{eqnarray} $

$ \begin{equation} D[X_{0}, Y_{0}]\leq\varepsilon B(\varepsilon)\sum\limits_{i = 1}^{n}D[\zeta_{i}, \overline{\zeta}_{i}], \end{equation} $

其中

$ \begin{equation} B(\varepsilon) = \Big[l(\varepsilon)+h(\varepsilon)\Big]\bigg\|\Big[A_{0} +\sum\limits_{i = 1}^{n}A_{i}(\varepsilon)\Big]^{-1}\bigg\|\times\bigg[1-\bigg\|\Big[A_{0} +\sum\limits_{i = 1}^{n}A_{i}(\varepsilon)\Big]^{-1}\bigg\|\Big[\mu_{0}+\sum\limits_{i = 1}^{n}\mu_{i}(\varepsilon)\Big]\bigg]^{-1}. \end{equation} $

类似于不等式(3.17) 和(3.18) 的估计, 可得

$ \begin{equation} \varepsilon D[\zeta_{i}, \overline{\zeta}_{i}] = \varepsilon D\Big[\int^{t_{i}}_{t_{0}}F(s, X(t)){\rm d}s +\sum\limits_{t_{0}\leq\tau_{k}<t}I_{k}(X(\tau_{k})), \int^{t_{i}}_{t_{0}}\overline{F}(Y(t)){\rm d}s\Big] \leq\theta(\varepsilon), \end{equation} $

由式(3.14), (3.16), (3.20) 及(3.22) 可得

其中$ \rho(\varepsilon) = \gamma(m)+2m\theta(\varepsilon)+2n B(\varepsilon)\theta(\varepsilon) $.

根据引理2.2可知, 下列不等式

$ \begin{equation} D(X(t), Y(t))\leq\rho(\varepsilon)\exp\{L(\lambda_{1}+d_1\lambda_{2})\} \end{equation} $

成立. 因此, 对于不等式(3.23), 给定$ m $及任意的$ \eta>0 $, 使得对任意$ \varepsilon\in(0, \varepsilon_{0}] $, 有不等式

成立, 因此$ D(X(t), Y(t))< \eta $. 定理3.1证毕.

4 局部加法平均法

在本节中, 我们应用局部加法平均法, 研究具有初值和Cancy-Nicoletti类型的多点边值的集值脉冲微分方程问题.

考虑以下带有小参数的集值脉冲微分方程

$ \begin{equation} \left\{ \begin{array}{ll} D_{H}X(t) = \varepsilon [G_{1}(t, X(t))+G_{2}(t, X(t))], \; \; \; &t\neq\tau_{k}, \\ X(\tau_{k}^{+})-X(\tau_{k}^{-}) = I_{k}(X(\tau_{k})), \; \; \; &t = \tau_{k}, \end{array} \right. \end{equation} $

及在固定点$ 0\leq t_{0}<\cdot\cdot\cdot<t_{n}<+\infty $处具有初值和Cancy-Nicoletti类型的多点边值问题

$ \begin{equation} X(0) = \Psi(0), \; \; A_{0}X(t_{0})+\sum\limits_{i = 1}^{n}A_{i}(\varepsilon)X_{i}(t_{i}) = \Phi(X_{0}(t_{0}), \cdots , X_{n}(t_{n}), \varepsilon), \end{equation} $

其中$ G_{1}, \; G_{2}:{{\Bbb R}} ^{+}\times K_{c}({{\Bbb R}} ^{n})\to K_{c}({{\Bbb R}} ^{n}) $, 其他假设与第3节中相同.

以下考虑对于$ G_{1}(t, X(t)) $的部分平均问题(对于$ G_{2}(t, X(t)) $可以同理考虑).

假设下列极限存在

$ \begin{equation} \overline{G}_{10}(X(t)) = \lim\limits_{T\to\infty}\Big[\frac{1}{T}\int^{t+T}_{t}G_{1}(s, X(s)){\rm d}s +\frac{1}{T}\sum\limits_{t\leq\tau_{k}<t+T}I_{k}(X(\tau_{k}))\Big], \end{equation} $

其中$ \overline{G}_{10}(X(t)) $为区间$ [0, T] $$ G_{1}(t, X(t)) $的平均, 且是连续函数.

则与系统(4.1) 和(4.2) 对应的局部平均系统如下

$ \begin{equation} D_{H}Y(t) = \varepsilon [\overline{G}_{10}(Y(t))+G_{2}(t, Y(t))], \end{equation} $

且初值和多点边值条件为

$ \begin{equation} Y(0) = \Psi(0), \ \ A_{0}Y(t_{0})+\sum\limits_{i = 1}^{n}A_{i}(\varepsilon)Y_{i}(t_{i}) = \Phi(Y_{0}(t_{0}), \cdots , Y_{n}(t_{n}), \varepsilon). \end{equation} $

定理4.1   假设条件($ A_{3.2} $)–($ A_{3.3} $) 成立, 且在$ \Omega $上满足下列条件.

($ A_{4.1} $)    $ F: \Omega\to K_{c}({{\Bbb R}} ^{n}) $, $ I_{k}:Q\to K_{c}({{\Bbb R}} ^{n}) $连续, 且存在正数$ N_{1} $, $ N_{2} $, $ \nu_{1} $, $ \nu_{2} $, $ \nu_{3} $, 使得

成立;

($ A_{4.2} $)   对任意的$ X\in Q $, 极限$ \rm(4.3) $一致存在, 并且$ \frac{1}{T}k(t, t+T)\leq d_2<\infty, $其中$ k(t, t+T) $是在区间$ (t, t+T] $上序列$ \tau_{k} $的点数;

($ A_{4.3} $)   对任意的$ 0<\varepsilon\leq\varepsilon_{0} $, $ 0\leq t\leq L\varepsilon^{-1} $, $ X(0) $, $ Y(0)\in Q\subset K_{c}({{\Bbb R}} ^{n}) $, 系统(4.4)–(4.5) 存在解$ Y(t) $, $ O(Y(t), \rho)\subset P $, 其中$ O(Y(t), \rho) $$ Y(t) $$ \rho $邻域, $ \rho>0 $是常数.

则存在$ \varepsilon_{0}(\eta, L)>0 $, 使得对任意的$ \varepsilon\in(0, \varepsilon_{0}] $, 不等式

成立, 其中$ \eta>0 $, $ L>0 $为常数. $ X(t) $是系统$ \rm(4.1) $$ \rm(4.2) $的解.

  带有初值和多点边值条件的系统(4.1)–(4.2) 的解满足如下积分方程

$ \begin{equation} \left\{ \begin{array}{ll} { } X(t) = X_{0}+\varepsilon \Big[\int^{t}_{t_{0}}G_{1}(s, X(s)){\rm d}s+\int^{t}_{t_{0}}G_{2}(s, X(s)){\rm d}s\Big] +\varepsilon\sum\limits_{t_{0}\leq\tau_{k}<t}I_{k}(X(\tau_{k})), \\ X(0) = \Psi(0), \end{array} \right. \end{equation} $

$ \begin{equation} A_{0}(X_{0}+\varepsilon \zeta_{0})+\sum\limits_{i = 1}^{n}A_{i}(\varepsilon)(X_{0} +\varepsilon \zeta_{i}) = \Phi(X_{0}+\varepsilon \zeta_{0}, \cdots , X_{0}+\varepsilon \zeta_{n}, \varepsilon), \end{equation} $

其中$ X_{0} = X(t_{0}), \; \zeta_{i} = \int^{t_{i}}_{t_{0}}G(s, X(s)){\rm d}s + \sum\limits_{t_{0}\leq\tau_{k}<t_{i}}I_{k}(X(\tau_{k})) $, $ i = 1, 2, \cdots , n $.

带有初值和多点边值条件的系统(4.4)–(4.5) 的解满足如下积分方程

$ \begin{equation} \left\{ \begin{array}{ll} { } Y(t) = Y_{0}+\varepsilon \Big[\int^{t}_{t_{0}}\overline{G}_{10}(Y(s)){\rm d}s+\int^{t}_{t_{0}}G_{2}(s, Y(s)){\rm d}s\Big], \\ Y(0) = \Psi(0), \end{array} \right. \end{equation} $

$ \begin{equation} A_{0}(Y_{0}+\varepsilon \overline{\zeta}_{0})+\sum\limits_{i = 1}^{n}A_{i}(\varepsilon) (Y_{0}+\varepsilon \overline{\zeta}_{i}) = \Phi(Y_{0}+\varepsilon \overline{\zeta}_{0}, \cdots , Y_{0} +\varepsilon \overline{\zeta}_{n}, \varepsilon), \end{equation} $

其中$ Y_{0} = Y(t_{0}), \; \overline{\zeta}_{i} = \int^{t_{i}}_{t_{0}}\overline{G}(t, Y(s)){\rm d}s $, $ i = 1, 2, \cdots , n $.

由条件$ (A_{4.1}) $$ (A_{4.2}) $, 下列不等式

$ \begin{eqnarray} D[\overline{G}_{10}(X(t)), \{0\}]&\leq &D\Big[\overline{G}_{10}(X(t)), \frac{1}{T}\int^{t+T}_{t}G_{1}(s, X(s)){\rm d}s +\frac{1}{T}\sum\limits_{t\leq\tau_{k}<t+T}I_{k}(X(\tau_{k}))\Big]{}\\ &&+D\Big[\frac{1}{T}\int^{t+T}_{t}G_{1}(s, X(s)){\rm d}s+\frac{1}{T}\sum\limits_{t\leq\tau_{k}<t+T}I_{k}(X(\tau_{k})), \{0\}\Big]{}\\ &<&\delta+\frac{1}{T}D\Big[\int^{t+T}_{t}G_{1}(s, X(s)){\rm d}s, \{0\}\Big] +\frac{1}{T}D\Big[\sum\limits_{t\leq\tau_{k}<t+T}I_{k}(X(\tau_{k})), \{0\}\Big]{}\\ &\leq&\delta+N_{1}+d_2N_{2}, \end{eqnarray} $

$ \begin{eqnarray} D[\overline{G}_{10}(X_{1}(t)), \overline{G}_{10}(X_{2}(t))] &\leq&2\delta+\frac{1}{T}\int^{t+T}_{t}D[G_{1}(s, X_{1}(s)), G_{1}(s, X_{2}(s))]{\rm d}s{}\\ &&+\frac{1}{T}\sum\limits_{t\leq\tau_{k}<t+T}D[I_{k}(X_{1}(\tau_{k})), I_{k}(X_{2}(\tau_{k}))]{}\\ &\leq&2\delta+(\nu_{1}+d_2\nu_{2})D[X_{1}(t), X_{2}(t)] \end{eqnarray} $

成立. 其中通过选择合适的$ T $, 可使得$ \delta $充分小. 因此, 可得不等式

$ \begin{equation} D[\overline{G}_{10}(X(t)), \{0\}]\leq N_{1}+d_2N_{2}, \end{equation} $

$ \begin{equation} D[\overline{G}_{10}(X_{1}(t)), \overline{G}_{10}(X_{2}(t))]\leq(\nu_{1}+d_2\nu_{2})D[X_{1}(t), X_{2}(t)]. \end{equation} $

进一步, 可得

后续证明类似于定理3.1的证明过程, 在此省略. 定理4.1证毕.

参考文献

Bainov D , Domshlak Y , Milusheva S .

Partial averaging for impulsive differential equations with supremum

Georgian Mathematical Journal, 1996, 3 (1): 11- 26

DOI:10.1515/GMJ.1996.11      [本文引用: 1]

Bainov D , Milusheva S .

Application of the averaging method for functional-differential equations with impulses

J Math Anal Appl, 1983, 95, 85- 105

DOI:10.1016/0022-247X(83)90137-3      [本文引用: 1]

Bainov D , Simeonov P . Impulsive Differential Equations. Singapore: World Scientific, 1995

[本文引用: 1]

Bainov D , Simeonov P . Systems with Impulsive Effect: Stability, Theory and Applications. New York: Halsted Press, 1998

[本文引用: 2]

Benchohra M , Boucherif A .

An existence result for first order initial value problems for impulsive differential inclusions in Banach spaces

Archivum Mathematicum (Brno), 2000, 36, 159- 169

URL     [本文引用: 1]

Devi J V .

Basic results in impulsive set differential equations

Nonlinear Studies, 2003, 10 (3): 259- 271

URL     [本文引用: 1]

Devi J V , Vatsala A S .

A study of set differential equations with delay

Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 2004, 11, 287- 300

[本文引用: 1]

Federson M , Mesquita J G .

Non-periodic averaging principles for measure functional differential equations and functional dynamic equations on time scales involving impulses

J Differential Equations, 2013, 255, 3098- 3126

DOI:10.1016/j.jde.2013.07.026      [本文引用: 1]

Kitanov N .

Method of averaging for optimal control problems with impulsive effects

Inter J Pure Appl Math, 2011, 72 (4): 573- 589

URL     [本文引用: 1]

Klymchuk S , Plotnikov A , Skripnik N .

Overview of V.A. Plotnikov's research on averaging of differential inclusions

Physica D, 2012, 241 (22): 1932- 1947

DOI:10.1016/j.physd.2011.05.004      [本文引用: 1]

刘健, 张志信, 蒋威.

分数阶非线性时滞脉冲微分系统的全局Mittag-Leffler稳定性

数学物理学报, 2020, 40A (4): 1053- 1060

DOI:10.3969/j.issn.1003-3998.2020.04.020      [本文引用: 1]

Liu J , Zhang Z X , Jiang W .

Global mittag-leffler stability of fractional order nonlinear impulsive differential systems with time delay

Acta Math Sci, 2020, 40A (4): 1053- 1063

DOI:10.3969/j.issn.1003-3998.2020.04.020      [本文引用: 1]

Lakshmikantham V , Bainov D , Simeonov P . Theory of Impulsive Differential Equations. Singapore: World Scientific, 1989

[本文引用: 1]

Lakshmikantham V , Bhaskar T G , Devi J V . Theory of Set Differential Equations in Metric Spaces. Cambridge: Cambridge Scientific Publisher, 2005

[本文引用: 4]

罗艳, 谢文哲.

上下解反向的脉冲微分包含解的存在性

数学物理学报, 2019, 39A (5): 1055- 1063

DOI:10.3969/j.issn.1003-3998.2019.05.008      [本文引用: 1]

Luo Y , Xie W Z .

Existence of solution for impulsive differential inclusions with upper and lower solutions in the reverse order

Acta Math Sci, 2019, 39A (5): 1055- 1063

DOI:10.3969/j.issn.1003-3998.2019.05.008      [本文引用: 1]

Mil'man V D , Myshkis A D .

On the stability of motion in the presence of impulses

Siberian Math J, 1960, 1, 233- 237

URL     [本文引用: 1]

Plotnikova N .

Averaging of impulsive differential inclusions

Mat Stud, 2005, 23 (1): 52- 56

URL     [本文引用: 1]

Plotnikov V A , Ivanov R P , Kitanov N M .

Method of averaging for impulsive differential inclusions

Pliska Stud Math Bulg, 1998, 12, 191- 200

URL     [本文引用: 1]

Plotnikov V A , Komleva T .

Averaging of set integro-differential equations

Applied Mathematics, 2011, 1 (2): 99- 105

URL     [本文引用: 1]

Plotnikov V A , Plotnikova L I .

Averaging of differential inclusions with many-valued pulses

Ukrainian Mathematical Journal, 1995, 47 (11): 1741- 1749

DOI:10.1007/BF01057922      [本文引用: 1]

Perestyuk N A , Plotnikov V A , Samoilenko A M , Skripnik N V . Differential Equations with Impulse Effects: Multivalued Right-Hand Sides with Discontinuities. Berlin: De Gruyter, 2011

[本文引用: 1]

Plotnikov V A , Rashkov P I .

Averaging in differential equations with Hukuhara derivative and delay

Functional Differential Equations, 2001, 3 (4): 371- 381

URL     [本文引用: 1]

Perestyuk N A , Skripnik N V .

Averaging of set-valued impulsive systems

Ukrainian Mathematical Journal, 2013, 65 (1): 140- 157

DOI:10.1007/s11253-013-0770-1      [本文引用: 1]

Samoilenko A M , Perestyuk N A . Impulsive Differential Equations. Singapore: World Scientific, 1995

[本文引用: 1]

Skripnik N V .

Averaging of impulsive differential inclusions with Hukuhara derivative

Nonlinear Oscil, 2007, 10 (3): 422- 438

DOI:10.1007/s11072-007-0033-x      [本文引用: 1]

Skrypnyk N V .

On the averaging method for differential equations with Hukuhara's derivative

Visn Cherniv Nats Univ, 2008, 374, 109- 115

URL     [本文引用: 1]

Skripnik N V .

The full averaging of fuzzy impulsive differential inclusions

Surv Math Appl, 2010, 5, 247- 263

URL     [本文引用: 1]

Skripnik N V .

The partial averaging of fuzzy impulsive differential inclusions

Different Integr Equat, 2011, 24 (7/8): 743- 758

URL    

Skripnik N V .

Averaging of impulsive differential inclusions with fuzzy right-hand side when the average is absent

Asian-European Journal of Mathematics, 2015, 8 (4): 1550086

DOI:10.1142/S1793557115500862      [本文引用: 1]

/