数学物理学报, 2021, 41(5): 1465-1491 doi:

论文

二维Mindlin-Timoshenko板系统的稳定性与最优性

章春国,, 付煜之, 刘宇标

杭州电子科技大学数学系 杭州 310018

Stability and Optimality of 2-D Mindlin-Timoshenko Plate System

Zhang Chunguo,, Fu Yuzhi, Liu Yubiao

Department of Mathematics, College of Science, Hangzhou Dianzi University, Hangzhou 310018

通讯作者: 章春国, E-mail: cgzhang@hdu.edu.cn

收稿日期: 2020-02-21  

基金资助: 国家自然科学基金.  61374096

Received: 2020-02-21  

Fund supported: the NSFC.  61374096

Abstract

In this paper, 2-D Mindlin Timoshenko plate system with local boundary control is studied. By using the receding horizon control method, the infinite time domain optimality problem is transformed into the finite time domain optimality problem. With the help of the multiplier technique, a priori estimation is made for any finite time domain system, and the observability inequality is obtained, which proves that the energy of the system is uniformly exponentially decay. Furthermore, with the aid of dual system, by means of the variational principle and Bellman optimality principle, the suboptimal conditions of the system in infinite time domain are obtained, and it is proved that the optimal trajectory is also exponential decay.

Keywords: 2-D Mindlin Timoshenko plate ; Receding horizon control method ; Optimality ; Exponential decay

PDF (462KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

章春国, 付煜之, 刘宇标. 二维Mindlin-Timoshenko板系统的稳定性与最优性. 数学物理学报[J], 2021, 41(5): 1465-1491 doi:

Zhang Chunguo, Fu Yuzhi, Liu Yubiao. Stability and Optimality of 2-D Mindlin-Timoshenko Plate System. Acta Mathematica Scientia[J], 2021, 41(5): 1465-1491 doi:

1 引言

近三十年来, 对于有限维系统在滚动时域控制下的稳定性与最优性, 已受到许多学者的广泛研究, 并得到了许多深刻的结果. 然而对于无穷维控制系统, 近十年才引起学者们的关注. 从目前的研究结果来看, 对于连续时间的无穷维动态系统的最优性, 还没有统一的理论结果. 但是, 对于Timoshenko梁系统的稳定性的研究已有许多很好的结果. 就我们的知识而言, 关于Timoshenko梁系统的最优性结果仍较少, 参见文献[1-4]; 与此同时, 关于板(或Mindlin-Timoshenko板)系统的稳定性研究的结果已有丰富的结果, 参见文献[5-17]. 然而, 具有滚动时域控制的系统的稳定性与最优性结果就比较少, Azmi和Kunisch在文献[18-19]中研究了具有滚动时域控制的Burgers方程和波方程的稳定性与最优性. 基于此, 本文研究的是Mindlin-Timoshenko板系统的最优性与稳定性.

$ \Omega $$ {{\Bbb R}} ^{2} $中的有界开集, $ \partial\Omega = \Gamma = \Gamma_{0}\cup\Gamma_{1}(\Gamma_{0}\cap\Gamma_{1} = \emptyset) $满足Lipschitz边界条件, 且$ \Gamma_{1} $是具有非空内部的闭集, $ \Gamma_{0}\neq\emptyset $是相对开的.

我们考虑下面具有边界控制的无限时域的二维Mindlin-Timosahenko系统

$ \begin{eqnarray} \left\{\begin{array}{lll} { } \rho_{1}\psi_{tt}-D(\psi_{xx}+\frac{1-\mu}{2}\psi_{yy} +\frac{1+\mu}{2}\phi_{xy}) +K(\psi+\omega_{x}) = 0, & (x, y, t)\in\Omega\times {{\Bbb R}} ^{+}, \\ { } \rho_{1}\phi_{tt}-D(\phi_{yy}+\frac{1-\mu}{2}\phi_{xx} +\frac{1+\mu}{2}\psi_{xy}) +K(\phi+\omega_{y}) = 0, &(x, y, t)\in\Omega\times {{\Bbb R}} ^{+}, \\ { } \rho_{2}\omega_{tt}-K[(\psi+\omega_{x})_{x}+(\phi+\omega_{y})_{y}] = 0, & (x, y, t)\in\Omega\times {{\Bbb R}} ^{+}, \end{array}\right. \end{eqnarray} $

其中, $ \rho_{1} = \frac{\rho h^{3}}{2}, \rho_{2} = \rho h $, $ \rho $是密度, $ h $是板的厚度, $ \mu\in(0, \frac{1}{2}) $是Poisson比, $ D = \frac{Eh^{3}}{12(1-\mu^{2})} $ ($ E $杨氏模量)表示弹性模量, $ K = \frac{kEh}{2(1+\mu)} $ ($ k $剪切校正, $ E $杨氏模量)表示剪切模量, 函数$ \psi, \phi $$ \omega $依赖于$ (x, y, t)\in\Omega\times {{\Bbb R}} ^{+} $表示板的全转角和板的横向位移.

边界条件和初始条件

$ \begin{eqnarray} \left\{\begin{array}{lll} { } \psi = \phi = \omega = 0, & (x, y, t)\in\Gamma_{0}\times {{\Bbb R}} ^{+}, \\ { } D[\nu_{1}\psi_{x}+\mu\nu_{1}\phi_{y}+\frac{1-\mu}{2}(\psi_{y}+\phi_{x})\nu_{2}] = u_{1}, &(x, y, t)\in\Gamma_{1}\times {{\Bbb R}} ^{+}, \\ { } D[\nu_{2}\phi_{y}+\mu\nu_{2}\psi_{x}+\frac{1-\mu}{2}(\psi_{y}+\phi_{x})\nu_{1}] = u_{2}, & (x, y, t)\in\Gamma_{1}\times {{\Bbb R}} ^{+}, \\ { } K(\frac{\partial\omega}{\partial{\bf \nu}}+\nu_{1}\psi+\nu_{2}\phi) = u_{3}, & (x, y, t)\in\Gamma_{1}\times {{\Bbb R}} ^{+}, \\ { } (\psi(x, y, 0), \phi(x, y, 0), \omega(x, y, 0)) = (\psi_{01}, \phi_{01}, \omega_{01}), & (x, y)\in\Omega, \\ { } (\psi_{t}(x, y, 0), \phi_{t}(x, y, 0), \omega_{t}(x, y, 0)) = (\psi_{02}, \phi_{02}, \omega_{02}), & (x, y)\in\Omega, \end{array}\right. \end{eqnarray} $

其中, $ {\bf \nu} = (\nu_{1}, \nu_{2}) $$ \Gamma_{1} $的单位外法向量, $ U(t) = (u_{1}, u_{2}, u_{3}) $是控制变量. 与系统(1.1)–(1.2)相关的具体技术细节请参阅文献[8].

定义系统(1.1)在$ t $时刻的能量为

为了叙述方便起见, 对足够光滑的$ \Phi = (\psi, \phi, \omega), \widehat{\Phi} = (\widehat{\psi}, \widehat{\phi}, \widehat{\omega}) $, 定义如下线性算子及双线性泛函

引入函数空间$ W = \{(\psi, \phi, \omega)\in[H^{1}(\Omega)]^{3}|\psi = \phi = \omega = 0, (x, y)\in\Gamma_{0}\} $, 赋予范数$ \left\|(\psi, \phi, \omega)\right\|_{W}^{2} = a(\psi, \phi, \omega; \psi, \phi, \omega) $, 其中$ H^{1}(\Omega) $是一阶Sobolev空间[20].

空间$ H = (L_{\rho_{1}}^{2}(\Omega))^{2}\times L_{\rho_{2}}^{2}(\Omega) $, 赋予范数$ \|(p, q, r)\|_{H}^{2} = \int_{\Omega}[\rho_{1}(|p|^{2}+|q|^{2})+\rho_{2}|r|^{2}]{\rm d}x{\rm d}y $, 那么$ W, H $都是(复)Hilbert空间.

定义空间$ {\cal H} = W\times H $, 赋予范数$ \|(\psi, \phi, \omega; p, q, r)\|_{{\cal H}}^{2} = \|(\psi, \phi, \omega)\|_{W}^{2}+\|(p, q, r)\|_{H}^{2} $, 因此$ {\cal H} $也是一个Hilbert空间.

定义$ {\cal U} = (L^{2}(\Gamma_{1}))^{3} $, 赋予范数$ \|U\|_{{\cal U}}^{2} = \int_{\Gamma_{1}}(|u_{1}|^{2}+|u_{2}|^{2}+|u_{3}|^{2}){\rm d}\Gamma_{1} $, 那么$ {\cal U} $也是一个Hilbert空间.

在状态空间$ {\cal H} $, 控制空间$ {\cal U} $中, 记$ \Phi = (\psi, \phi, \omega), {\cal Y} = (\Phi, \Phi_{t}), {\cal Y}_{0} = (\Phi_{01}, \Phi_{02}), {\cal Y}, {\cal Y}_{0}\in {\cal H} $$ U(t) = (u_{1}, u_{2}, u_{3})\in L^{2}((0, \infty);{\cal U}) $. 考虑具有下面的性能指标(代价函数)

$ \begin{equation} J_{\infty}({\cal Y}_{0}, U) = \int_{0}^{\infty}\ell({\cal Y}(t), U(t)){\rm d}t, \end{equation} $

$ \begin{equation} \ell({\cal Y}(t), U(t)) = \frac{1}{2}\|{\cal Y}(t)\|_{{\cal H}}^{2} +\frac{\beta}{2}\|U(t)\|_{{\cal U}}^{2}, \end{equation} $

这里, $ \beta $是一个正常数.

本文采用文献[17]的滚动时域控制方法, 即对任意给定采样时间$ \delta>0 $和一个合适的预测时间$ T>\delta $, 定义采样时间序列$ t_{k} = k\delta, k = 0, 1, \cdots $, 对于每一个时刻$ t_{k} $, 在有限预测区间$ [t_{k}, t_{k}+T] $内, 求解开环最优控制问题. 由此我们将无限时域的最优控制问题转化为有限时间$ [t_{k}, t_{k}+T] $内最优控制问题. $ {\cal Y}(t), U(t) $分别表示滚动时域的状态和控制变量, $ {\cal Y}_{T}^{\ast}(\cdot, {\cal Y}_{0}, t_{0}), U_{T}^{\ast}(\cdot, {\cal Y}_{0}, t_{0}) $分别表示在有限时域$ [0, T] $内的最优控制问题的最优状态和最优控制. 不难看出, 通过不断改变预测区间, 我们将获得新的最优控制以及最优状态轨线. 具体做法如下:

给定采样时间$ \delta>0 $以及预测时间$ T>\delta $, 当$ k = 0 $时, $ t_{0} = 0 $, $ {\cal Y}(t_{0}) = {\cal Y}_{0} $, 在时间$ [t_{k}, t_{k}, +T] $内求解以下开环最优问题

$ \begin{eqnarray} \min\limits_{U\in L^{2}((t_{k}, t_{k}+T);{\cal U})} J_{T}({\cal Y}(t_{k}), U) = \min\limits_{U\in L^{2}((t_{k}, t_{k}+T);{\cal U})} \int_{t_{k}}^{t_{k}+T}\ell({\cal Y}(t), U(t)){\rm d}t, \end{eqnarray} $

满足

$ \begin{eqnarray} \left\{\begin{array}{lll} { } \rho_{1}\psi_{tt}-D(\psi_{xx}+\frac{1-\mu}{2}\psi_{yy} +\frac{1+\mu}{2}\phi_{xy}) +K(\psi+\omega_{x}) = 0, (x, y, t)\in\Omega\times (t_{k}, t_{k}+T), \\ { } \rho_{1}\phi_{tt}-D(\phi_{yy}+\frac{1-\mu}{2}\phi_{xx} +\frac{1+\mu}{2}\psi_{xy}) +K(\phi+\omega_{y}) = 0, (x, y, t)\in\Omega\times (t_{k}, t_{k}+T), \\ { } \rho_{2}\omega_{tt}-K[(\psi+\omega_{x})_{x}+(\phi+\omega_{y})_{y}] = 0, {\quad} (x, y, t)\in\Omega\times (t_{k}, t_{k}+T), \\ { } \psi = \phi = \omega = 0, {\quad} (x, y, t)\in\Gamma_{0}\times (t_{k}, t_{k}+T), \\ { } D[\nu_{1}\psi_{x}+\mu\nu_{1}\phi_{y}+\frac{1-\mu}{2}(\psi_{y}+\phi_{x})\nu_{2}] = u_{1}, {\quad} (x, y, t)\in\Gamma_{1}\times (t_{k}, t_{k}+T), \\ { } D[\nu_{2}\phi_{y}+\mu\nu_{2}\psi_{x}+\frac{1-\mu}{2}(\psi_{y}+\phi_{x})\nu_{1}] = u_{2}, {\quad} (x, y, t)\in\Gamma_{1}\times (t_{k}, t_{k}+T), \\ { } K(\frac{\partial\omega}{\partial{\bf \nu}}+\nu_{1}\psi+\nu_{2}\phi) = u_{3}, {\quad} (x, y, t)\in\Gamma_{1}\times (t_{k}, t_{k}+T), \\ { } (\psi(x, y, t_{k}), \phi(x, y, t_{k}), \omega(x, y, t_{k})) = (\psi_{t_{k}1}, \phi_{t_{k}1}, \omega_{t_{k}1}), {\quad}(x, y)\in\Omega, \\ { } (\psi_{t}(x, y, t_{k}), \phi_{t}(x, y, t_{k}), \omega_{t}(x, y, t_{k})) = (\psi_{t_{k}2}, \phi_{t_{k}2}, \omega_{t_{k}2}), {\quad}(x, y)\in\Omega. \end{array}\right. \end{eqnarray} $

本文将无限时域最优性问题转化为有限时域的最优性问题.借助乘子技巧, 对每一有限时域系统的解做先验估计, 证明了系统能量是一致指数衰减的.进一步, 借助对偶方法、变分原理和Bellman最优性原理, 得到系统的次优性条件, 由此证明了最优轨线是指数衰减的.

2 弱解的先验估计

首先, 我们考虑任意初始值$ {\cal Y}_{0}\in {\cal H} $在有限时域内的最优控制问题(OCP)

$ \begin{eqnarray} \min\limits_{U\in L^{2}((0, T);{\cal U})} J_{T}({\cal Y}_{0}, U) = \min\limits_{U\in L^{2}((0, T);{\cal U})}\int_{0}^{T}\ell({\cal Y}(t), U(t)){\rm d}t, \end{eqnarray} $

满足

$ \begin{eqnarray} \left\{\begin{array}{lll} { } \rho_{1}\psi_{tt}-D(\psi_{xx}+\frac{1-\mu}{2}\psi_{yy} +\frac{1+\mu}{2}\phi_{xy}) +K(\psi+\omega_{x}) = 0, (x, y, t)\in\Omega\times (0, T), \\ { } \rho_{1}\phi_{tt}-D(\phi_{yy}+\frac{1-\mu}{2}\phi_{xx} +\frac{1+\mu}{2}\psi_{xy}) +K(\phi+\omega_{y}) = 0, (x, y, t)\in\Omega\times (0, T), \\ { } \rho_{2}\omega_{tt}-K[(\psi+\omega_{x})_{x}+(\phi+\omega_{y})_{y}] = 0, {\quad} (x, y, t)\in\Omega\times (0, T), \\ { } \psi = \phi = \omega = 0, {\quad} (x, y, t)\in\Gamma_{0}\times (0, T), \\ { } D[\nu_{1}\psi_{x}+\mu\nu_{1}\phi_{y}+\frac{1-\mu}{2}(\psi_{y}+\phi_{x})\nu_{2}] = u_{1}, {\quad} (x, y, t)\in\Gamma_{1}\times (0, T), \\ { } D[\nu_{2}\phi_{y}+\mu\nu_{2}\psi_{x}+\frac{1-\mu}{2}(\psi_{y}+\phi_{x})\nu_{1}] = u_{2}, {\quad}(x, y, t)\in\Gamma_{1}\times (0, T), \\ { } K(\frac{\partial\omega}{\partial{\bf \nu}}+\nu_{1}\psi+\nu_{2}\phi) = u_{3}, {\quad}(x, y, t)\in\Gamma_{1}\times (0, T), \\ { } (\psi(x, y, 0), \phi(x, y, 0), \omega(x, y, 0)) = (\psi_{01}, \phi_{01}, \omega_{01}), {\quad}(x, y)\in\Omega, \\ { } (\psi_{t}(x, y, 0), \phi_{t}(x, y, 0), \omega_{t}(x, y, 0)) = (\psi_{02}, \phi_{02}, \omega_{02}), {\quad} (x, y)\in\Omega. \end{array}\right. \end{eqnarray} $

定义2.1 (值函数)   对每一初始状态$ {\cal Y}_{0}\in {\cal H} $, 定义无限时域值函数: $ V_{\infty}: {\cal H}\rightarrow {{\Bbb R}} ^{+} $,

其中$ ({\cal Y}, U) $满足系统(1.1)和(1.2);类似地, 定义有限时域的值函数: $ V_{T}: {\cal H}\rightarrow {{\Bbb R}} ^{+} $,

$ ({\cal Y}, U) $满足系统(2.2).

定义2.2 (弱解)   给定$ T>0, {\cal Y}_{0}\in {\cal H}, \quad U\in {\cal U} $, 那么我们称$ \Phi = (\psi, \phi, \omega) $为系统(2.2)的弱解, 如果对于任意$ \widehat{\Phi} = (\widehat{\psi}, \widehat{\phi}, \widehat{\omega})\in C^{1}([0, T]\times\Omega) $, 在$ \Gamma_{0} $上, $ \widehat{\Phi} = 0 $, 以及对于$ \forall t\in[0, T], \tau\in[0, t] $使得

$ \begin{eqnarray} & &\int_{\Omega}\{\rho_{1}[\psi_{t}(t, x, y)\widehat{\psi}(t, x, y)+\phi_{t}(t, x, y)\widehat{\phi}(t, x, y)] +\rho_{2}\omega_{t}(t, x, y)\widehat{\omega}(t, x, y)\}{\rm d}x{\rm d}y\\ &&-\int_{\Omega}\{\rho_{1}[\psi_{02}\widehat{\psi}(0, x, y)+\phi_{02}\widehat{\phi}(0, x, y)] +\rho_{2}\omega_{02}\widehat{\omega}(0, x, y)\}{\rm d}x{\rm d}y\\ &&-\int_{0}^{t}\int_{\Omega}\{\rho_{1}[\psi_{t}(\tau, x, y)\widehat{\psi}_{t}(\tau, x, y)+\phi_{t}(\tau, x, y)\widehat{\phi}_{t}(\tau, x, y)] +\rho_{2}\omega_{t}(\tau, x, y)\widehat{\omega}_{t}(\tau, x, y)\}{\rm d}x{\rm d}y{\rm d}\tau\\ &&+\int_{0}^{t}a(\psi, \phi, \omega; \widehat{\psi}, \widehat{\phi}, \widehat{\omega}){\rm d}\tau -\int_{0}^{t}\int_{\Gamma_{1}}(\widehat{\psi}u_{1}+\widehat{\phi}u_{2}+\widehat{\omega}u_{3}){\rm d}\Gamma {\rm d}\tau = 0. \end{eqnarray} $

命题2.1   给定$ T>0, {\cal Y}_{0}\in {\cal H}, \quad U\in L^{2}([0, T];{\cal U}) $, 则系统(2.2)存在唯一的弱解$ \Phi = (\psi, \phi, \omega)\in C^{0}([0, T];W)\cap C^{1}([0, T], H) $满足

$ \begin{eqnarray} &&\|\Phi\|_{C^{0}([0, T];W)} +\|\Phi_{t}\|_{C^{0}([0, T];H)}+\|\Phi_{tt}\|_{L^{2}([0, T];W^{\ast})}\\ &\leq &C(\|\Phi_{01}\|_{W} +\|\Phi_{02}\|_{H}+\|U\|_{L^{2}([0, T];{\cal U})}), \end{eqnarray} $

其中$ C $(常数$ C $在不同地方表示不一样的常数)是与$ \Phi_{01}, \Phi_{02}, U $无关的正常数.

  记$ I(t) = a(\psi, \phi, \omega; \psi, \phi, \omega)+\int_{\Omega}[\rho_{1}(|\psi_{t}|^{2}+|\phi_{t}|^{2}) +\rho_{2}|\omega_{t}|^{2}]{\rm d}x{\rm d}y $, 则有

$ \begin{eqnarray} \frac{{\rm d}I(t)}{{\rm d}t} & = &\frac{\partial a(\psi, \phi, \omega; \psi, \phi, \omega)}{\partial t} + 2\int_{\Omega}[\rho_{1}(\psi_{t}\psi_{tt}+\phi_{t}\phi_{tt}) +\rho_{2}\omega_{t}\omega_{tt}]{\rm d}x{\rm d}y\\ & = &2a(\psi, \phi, \omega; \psi_{t}, \phi_{t}, \omega_{t})+2\int_{\Omega}[\psi_{t}L_{1}\{\psi, \phi, \omega\} +\phi_{t}L_{2}\{\psi, \phi, \omega\}+\omega_{t}L_{3}\{\psi, \phi, \omega\}]{\rm d}x{\rm d}y\\ & = &2\int_{\Gamma_{1}}[\psi_{t}F_{1}\{\psi, \phi\} +\phi_{t}F_{2}\{\psi, \phi\}+\omega_{t}F_{3}\{\psi, \phi, \omega\}]{\rm d}\Gamma_{1}\\ &\leq& 2\varepsilon\int_{\Gamma_{1}}[|\psi_{t}|^{2}+|\phi_{t}|^{2}+|\omega_{t}|^{2}]{\rm d}\Gamma_{1} +\frac{1}{2\varepsilon}\int_{\Gamma_{1}}[|u_{1}|^{2}+|u_{2}|^{2}+|u_{3}|^{2}]{\rm d}\Gamma_{1}. \end{eqnarray} $

$ f = (f_{1}, f_{2}): \overline{\Omega}\rightarrow {{\Bbb R}} ^{2} $$ C^{1} $的向量值函数, 且在$ \overline{\Gamma}_{0} $上有$ f = 0 $, 则存在$ \sigma>0 $, 在$ \Gamma_{1} $上几乎处处满足$ f\cdot \nu\geq\sigma $.

$ 2M_{0} = \min\{\rho_{1}\rho_{1}\}, R_{0} = \max\limits_{(x, y)\in\overline{\Omega}}\{|f|, |f_{ix}|, |f_{iy}|\}, i = 1, 2 $, 其中, $ |f|^{2} = f_{1}^{2}+f_{2}^{2} $.$ \forall t\in[0, T], \tau\in[0, t] $, 将$ f\cdot\nabla\psi, f\cdot\nabla\phi, f\cdot\nabla\omega $分别乘以系统(2.2)的前三式, 在$ [0, t]\times\Omega $上积分并相加得

$ \begin{eqnarray} &&\int_{0}^{t}\int_{\Omega}[\rho_{1}(\psi_{tt}f\cdot\nabla\psi +\phi_{tt}f\cdot\nabla\phi)+\rho_{2}\omega_{tt}f\cdot\nabla\omega]{\rm d}x{\rm d}y{\rm d}\tau\\ &&-\int_{0}^{t}\int_{\Omega}[L_{1}\{\psi, \phi, \omega\}f\cdot\nabla\psi +L_{2}\{\psi, \phi, \omega\}f\cdot\nabla\phi+L_{3}\{\psi, \phi, \omega\}f\cdot\nabla\omega]{\rm d}x{\rm d}y{\rm d}\tau = 0. \end{eqnarray} $

分部积分得

$ \begin{eqnarray} &&\int_{\Omega}[\rho_{1}(\psi_{t}f\cdot\nabla\psi +\phi_{t}f\cdot\nabla\phi)+\rho_{2}\omega_{t}f\cdot\nabla\omega]_{0}^{t}{\rm d}x{\rm d}y\\ &&-\frac{1}{2}\int_{0}^{t}\int_{\Gamma_{1}}(f\cdot\nu)[\rho_{1}(|\psi_{t}|^{2} +|\phi_{t}|^{2})+\rho_{2}|\omega_{t}|^{2}]{\rm d}\Gamma_{1}{\rm d}\tau\\ &&+\frac{1}{2}\int_{0}^{t}\int_{\Omega}{\rm div}f[\rho_{1}(|\psi_{t}|^{2} +|\phi_{t}|^{2})+\rho_{2}|\omega_{t}|^{2}]{\rm d}x{\rm d}y{\rm d}\tau\\ &&+\int_{0}^{t}a(\psi, \phi, \omega;f\cdot\nabla\psi, f\cdot\nabla\phi, f\cdot\nabla\omega){\rm d}\tau\\ &&-\int_{0}^{t}\int_{\Gamma_{1}}[F_{1}\{\psi, \phi\}f\cdot\nabla\psi +F_{2}\{\psi, \phi\}f\cdot\nabla\phi+F_{3}\{\psi, \phi, \omega\}f\cdot\nabla\omega]{\rm d}\Gamma_{1}{\rm d}\tau = 0. \end{eqnarray} $

又由于

因此

为了方便起见, 记

下面对$ I_{1}, I_{2}, I_{3} $做估计.

由Poincaré和Cauchy-Schwarz不等式知, 存在与$ \psi, \phi, \omega $无关的正常数$ C_{1}, C_{2} $使得

因此, 我们有

$ \begin{eqnarray} &&\int_{0}^{t}\int_{\Gamma_{1}}(|\psi_{t}|^{2} +|\phi_{t}|^{2}+|\omega_{t}|^{2}){\rm d}\Gamma_{1}{\rm d}\tau\\ &\leq&\frac{1}{\sigma M_{0}} \bigg[C_{1}(I(t)+I(0))+2R_{0}\int_{0}^{t}I(\tau){\rm d}\tau+\frac{3C_{2}R_{0}}{2}\int_{0}^{t}\int_{\Gamma_{1}}[|u_{1}|^{2} +|u_{2}|^{2}+|u_{3}|^{2}]{\rm d}\Gamma_{1}{\rm d}\tau\bigg]\\ &\leq& C_{3}\bigg[I(t)+I(0)+\int_{0}^{t}I(\tau){\rm d}\tau+\int_{0}^{t}\int_{\Gamma_{1}}[|u_{1}|^{2} +|u_{2}|^{2}+|u_{3}|^{2}]{\rm d}\Gamma_{1}{\rm d}\tau\bigg], \end{eqnarray} $

这里, $ C_{3} $是某个正常数.

由(2.5)和(2.8)式即得

$ \begin{eqnarray} I(t)\leq C_{4}\bigg[I(0)+\int_{0}^{t}I(\tau){\rm d}\tau+\int_{0}^{t}\int_{\Gamma_{1}}[|u_{1}|^{2} +|u_{2}|^{2}+|u_{3}|^{2}]{\rm d}\Gamma_{1}{\rm d}\tau\bigg], \end{eqnarray} $

这里, $ C_{4} $是某个正常数.

由Gronwall不等式得

$ \begin{eqnarray} I(t)\leq C_{5}\bigg[I(0)+\int_{0}^{t}\int_{\Gamma_{1}}[|u_{1}|^{2} +|u_{2}|^{2}+|u_{3}|^{2}]{\rm d}\Gamma_{1}{\rm d}\tau\bigg], \end{eqnarray} $

这里, $ C_{5} $是某个正常数. 即

这里, $ C_{6} $是某个正常数.

对于任意$ Z = (z_{1}, z_{2}, z_{3})\in W $, 且$ \|Z\|_{W} = 1 $, 将$ Z = (z_{1}, z_{2}, z_{3}) $与系统(2.2)前三式在$ H $中作内积, 并分部积分得

这里$ \langle\cdot, \cdot\rangle_{W^{\ast}\times W} $是对偶积, $ (\cdot, \cdot)_{H} $是內积, $ C_{7} $是某个正常数. 因此, 由(2.10)式得

于是有

并且有

$ \begin{equation} \int_{0}^{t}\int_{\Gamma_{1}}(|\psi_{t}|^{2}+|\phi_{t}|^{2}+|\omega_{t}|^{2}){\rm d}\Gamma_{1}{\rm d}\tau \leq C(I(0)+ \int_{0}^{t}\int_{\Gamma_{1}}(|u_{1}|^{2}+|u_{2}|^{2}+|u{3}|^{2}){\rm d}\Gamma_{1}{\rm d}\tau. \end{equation} $

命题2.1证毕.

3 最优控制的存在唯一性

定理3.1   对于任意$ T>0 $以及$ {\cal Y}_{0}\in {\cal H} $, 最优控制问题(OCP)存在唯一解.

  我们利用标准的变分原理进行证明. 由目标函数$ J_{T}({\cal Y}_{0}, U) $的定义知, $ J_{T}({\cal Y}_{0}, U) $是强制的且有下界, 故必有下确界. 记

$ \begin{eqnarray} \inf\limits_{U\in L^{2}(0, T;{\cal U})}J_{T}({\cal Y}_{0}, U) = \inf\limits_{U\in L^{2}(0, T;{\cal U})}\int_{0}^{T}\ell({\cal Y}(t), U(t)){\rm d}t = \theta<\infty. \end{eqnarray} $

因此, 存在有界极小化序列$ \{U_{n}\}\subset L^{2}([0, T];{\cal U}) $, 使得

$ \begin{eqnarray} J_{T}({\cal Y}_{0}, U_{n})\longrightarrow\inf\limits_{U\in L^{2}(0, T;{\cal U})}J_{T}({\cal Y}_{0}, U) = \theta. \end{eqnarray} $

进一步可知, $ {U_{n}} $存在弱收敛的子列, 不妨仍记为$ {U_{n}} $, 即

$ \begin{eqnarray} U_{n}\stackrel{w}{\longrightarrow} U^{\ast} = (u_{1}^{\ast}, u_{2}^{\ast}, u_{3}^{\ast})\in L^{2}(0, T;{\cal U}). \end{eqnarray} $

由(2.4)式知, 对应于$ \{U_{n}\} $, 以及有界序列$ \{\Phi_{n}\}\subset L^{2}(0, T; W) $, $ \{\Phi_{nt}\}\subset L^{2}(0, T; H) $, $ \{\Phi_{ntt}\}\subset L^{2}(0, T:W^{\ast}) $, 存在子列, 仍记为$ \{\Phi_{n}\} $, 使得

$ \begin{eqnarray} \begin{array}{lll} \Phi_{n}\stackrel{w^{\ast}}{\longrightarrow}\Phi^{\ast}, & {\rm in}\quad L^{\infty}(0, T; W), \\ \Phi_{nt}\stackrel{w^{\ast}}{\longrightarrow}\Phi_{t}^{\ast}, & {\rm in}\quad L^{\infty}(0, T; H), \\ \Phi_{ntt}\stackrel{w^{\ast}}{\longrightarrow}\Phi_{tt}^{\ast}, {\quad}& {\rm in}\quad L^{2}(0, T; W^{\ast}).\end{array} \end{eqnarray} $

下面, 我们将证明:当$ U = U^{\ast} $时, $ \Phi^{\ast} $是系统(2.2)的弱解.

对于任意$ t\in[0, T], \tau\in[0, t] $, 以及$ \forall\widehat{\Phi} = (\widehat{\psi}, \widehat{\phi}, \widehat{\omega})\in C^{1}([0, T]\times\Omega) $, 且在$ \Gamma_{0} $上, 有$ \widehat{\Phi} = 0 $, 于是, 由(3.3)与(3.4)式有

$ \begin{eqnarray} &&\int_{0}^{t}[a(\psi_{n}, \phi_{n}, \omega_{n};\widehat{\psi}, \widehat{\phi}, \widehat{\omega}) -a(\psi^{\ast}, \phi^{\ast}, \omega^{\ast};\widehat{\psi}, \widehat{\phi}, \widehat{\omega})]{\rm d}\tau\longrightarrow 0, \\ &&\int_{0}^{t}\int_{\Omega}\rho_{1}\{[\psi_{nt}(x, y, \tau)-\psi_{t}^{\ast}(x, y, \tau)]\widehat{\psi}(x, y, \tau) +[\phi_{nt}(x, y, \tau)-\phi_{t}^{\ast}(x, y, \tau)]\widehat{\phi}(x, y, \tau)\}{\rm d}x{\rm d}y{\rm d}\tau\\ &&+\int_{0}^{t}\int_{\Omega}\rho_{2}[\omega_{nt}(x, y, \tau)-\omega_{t}^{\ast}(x, y, \tau)]\widehat{\omega}(x, y, \tau){\rm d}x{\rm d}y{\rm d}\tau\longrightarrow 0, \\ &&\int_{0}^{t}\int_{\Omega}\rho_{1}\{[\psi_{nt}(x, y, \tau)-\psi_{t}^{\ast}(x, y, \tau)]\widehat{\psi}_{t}(x, y, \tau) +[\phi_{nt}(x, y, \tau)-\phi_{t}^{\ast}(x, y, \tau)]\widehat{\phi}_{t}(x, y, \tau)\}{\rm d}x{\rm d}y{\rm d}\tau\\ &&+\int_{0}^{t}\int_{\Omega}\rho_{2}[\omega_{nt}(x, y, \tau)-\omega_{t}^{\ast}(x, y, \tau)]\widehat{\omega}_{t}(x, y, \tau){\rm d}x{\rm d}y{\rm d}\tau\longrightarrow 0, \\ &&\int_{0}^{t}\int_{\Gamma_{1}}[(u_{1n}-u_{1}^{\ast})\widehat{\psi}+(u_{2n}-u_{2}^{\ast})\widehat{\phi} +(u_{3n}-u_{3}^{\ast})\widehat{\omega}]{\rm d}\Gamma_{1}{\rm d}\tau\longrightarrow 0. \end{eqnarray} $

又由(2.4)式得, 对于任意$ t\in[0, T] $, $ \{\Phi_{nt}\} $$ H $中的有界序列, 因此, 必存在弱收敛的子列, 仍记为$ \{\Phi_{nt}\} $, 使得: $ \Phi_{nt}\stackrel{w}{\longrightarrow}\Phi_{t}\in H $.对于任意$ t\in[0, T] $, 定义如下算子$ \Lambda: H^{1}(0, T; W^{\ast})\rightarrow W^{\ast} $, 其中, $ W^{\ast} $$ W $的对偶空间. 那么算子$ \Lambda $是连续的, 且对于任意$ X\in W $, 有

$ \begin{eqnarray} (\Phi_{t}, X)_{H}& = &\lim\limits_{n\rightarrow \infty}\langle\Lambda\Phi_{nt}, X\rangle_{W^{\ast}\times W} \\ & = &\lim\limits_{n\rightarrow \infty}\langle\Phi_{nt}, \Lambda^{\ast}X\rangle_{H^{1}(0, T;W^{\ast})\times (H^{1}(0, T;W^{\ast}))^{\ast}}\\ & = &\langle\Phi_{t}^{\ast}, \Lambda^{\ast}X\rangle_{H^{1}(0, T;W^{\ast})\times (H^{1}(0, T;W^{\ast}))^{\ast}} \\ & = &\langle\Lambda\Phi_{t}^{\ast}, X\rangle_{W^{\ast}\times W}. \end{eqnarray} $

这里, $ \Lambda^{\ast} $表示$ \Lambda $的伴随算子, 且$ \Lambda^{\ast}: W^{\ast}\longrightarrow(H^{1}(0, T;W^{\ast}))^{\ast} $. 因此, 对于任意$ t\in[0, T] $, 以及$ \forall\widehat{\Phi} = (\widehat{\psi}, \widehat{\phi}, \widehat{\omega})\in C^{1}([0, T]\times\Omega) $, 且在$ \Gamma_{0} $上有$ \widehat{\Phi} = 0 $, 我们有

$ \begin{eqnarray} & &\int_{\Omega}\{\rho_{1}[\psi_{nt}(x, y, \tau)\widehat{\psi}(x, y, \tau) +\phi_{nt}(x, y, \tau)\widehat{\phi}(x, y, \tau)] +\rho_{2}\omega_{nt}(x, y, \tau)\widehat{\omega}(x, y, \tau)\}{\rm d}x{\rm d}y \\ &&\longrightarrow\int_{\Omega}\{\rho_{1}[\psi_{t}^{\ast}(x, y, \tau)\widehat{\psi}(x, y, \tau) +\phi_{t}^{\ast}(x, y, \tau)\widehat{\phi}(x, y, \tau)] +\rho_{2}\omega_{t}^{\ast}(x, y, \tau)\widehat{\omega}(x, y, \tau)\}{\rm d}x{\rm d}y.{\qquad} \end{eqnarray} $

因此, 当$ U = U^{\ast} $时, 对(3.5)和(3.7)式, 令$ n\rightarrow \infty $取极限得, $ \Phi^{\ast} $是系统(2.2)的弱解. 从而, 对任意控制$ U = (u_{1}, u_{2}, u_{3})\in L^{2}(0, T; {\cal U}) $$ (\Phi, \Phi_{t})\in L^{\infty}([0, T];{\cal H}) $的映射是连续的. 又由目标函数的定义可知, 目标函数$ J_{T}({\cal Y}_{0}, U) $是弱下半连续的, 这蕴含着

所以, $ ({\cal Y}^{\ast}, U^{\ast}) $是最优问题(2.1)满足系统(2.2)的最优解.由于$ J_{T}({\cal Y}_{0}, U) $是严格凸的, 于是最优解是唯一的. 证毕.

4 最优性条件

定理4.1  考虑如下线性系统

$ \begin{eqnarray} \left\{\begin{array}{lll} { } \rho_{1}\psi_{tt}-D(\psi_{xx}+\frac{1-\mu}{2}\psi_{yy} +\frac{1+\mu}{2}\phi_{xy}) +K(\psi+\omega_{x}) = 0, (x, y, t)\in\Omega\times (0, T), \\ { } \rho_{1}\phi_{tt}-D(\phi_{yy}+\frac{1-\mu}{2}\phi_{xx} +\frac{1+\mu}{2}\psi_{xy}) +K(\phi+\omega_{y}) = 0, (x, y, t)\in\Omega\times (0, T), \\ { } \rho_{2}\omega_{tt}-K[(\psi+\omega_{x})_{x}+(\phi+\omega_{y})_{y}] = 0, \quad (x, y, t)\in\Omega\times (0, T), \\ { } \psi = \phi = \omega = 0, \quad (x, y, t)\in\Gamma_{0}\times (0, T), \\ { } D[\nu_{1}\psi_{x}+\mu\nu_{1}\phi_{y}+\frac{1-\mu}{2}(\psi_{y}+\phi_{x})\nu_{2}] = u_{1}, {\quad} (x, y, t)\in\Gamma_{1}\times (0, T), \\ { } D[\nu_{2}\phi_{y}+\mu\nu_{2}\psi_{x}+\frac{1-\mu}{2}(\psi_{y}+\phi_{x})\nu_{1}] = u_{2}, {\quad} (x, y, t)\in\Gamma_{1}\times (0, T), \\ { } K(\frac{\partial\omega}{\partial{\bf \nu}}+\nu_{1}\psi+\nu_{2}\phi) = u_{3}, \quad (x, y, t)\in\Gamma_{1}\times (0, T), \\ (\psi(x, y, 0), \phi(x, y, 0), \omega(x, y, 0)) = (0, 0, 0), {\quad} (x, y)\in\Omega, \\ (\psi_{t}(x, y, 0), \phi_{t}(x, y, 0), \omega_{t}(x, y, 0)) = (0, 0, 0), {\quad} (x, y)\in\Omega \end{array}\right. \end{eqnarray} $

与对偶系统

$ \begin{eqnarray} \left\{\begin{array}{lll} { }\rho_{1}p_{tt}-D(p_{xx}+\frac{1-\mu}{2}p_{yy} +\frac{1+\mu}{2}q_{xy}) +K(p+r_{x}) = g_{1}, (x, y, t)\in\Omega\times (0, T), \\ { } \rho_{1}q_{tt}-D(q_{yy}+\frac{1-\mu}{2}q_{xx} +\frac{1+\mu}{2}p_{xy}) +K(q+r_{y}) = g_{2}, (x, y, t)\in\Omega\times (0, T), \\ { } \rho_{2}r_{tt}-K[(p+r_{x})_{x}+(q+r_{y})_{y}] = g_{3}, \quad (x, y, t)\in\Omega\times (0, T), \\ { } \psi = \phi = \omega = 0, \quad (x, y, t)\in\Gamma_{0}\times (0, T), \\ { } D[\nu_{1}p_{x}+\mu\nu_{1}q_{y}+\frac{1-\mu}{2}(p_{y}+q_{x})\nu_{2}] = 0, \quad (x, y, t)\in\Gamma_{1}\times (0, T), \\ { } D[\nu_{2}q_{y}+\mu\nu_{2}p_{x}+\frac{1-\mu}{2}(p_{y}+q_{x})\nu_{1}] = 0, \quad (x, y, t)\in\Gamma_{1}\times (0, T), \\ { } K(\frac{\partial r}{\partial{\bf \nu}}+\nu_{1}p+\nu_{2}q) = 0, \quad (x, y, t)\in\Gamma_{1}\times (0, T), \\ { } (p(x, y, T), q(x, y, T), r(x, y, T)) = (p_{0}(T), q_{0}(T), r_{0}(T)), \quad (x, y)\in\Omega, \\ { } (p_{t}(x, y, T), q_{t}(x, y, T), r_{t}(x, y, T)) = (p_{1}(T), q_{1}(T), r_{1}(T)), {\quad}(x, y)\in\Omega, \end{array}\right. \end{eqnarray} $

其中$ (g_{1}, g_{2}, g_{3})\in L^{2}([0, T];W^{\ast}) $, $ ((p_{0}(T), q_{0}(T), r_{0}(T));(p_{1}(T), q_{1}(T), r_{1}(T)))\in H^{\ast}\times W^{\ast} $, $ H^{\ast}, W^{\ast} $分别表示$ H, W $的对偶空间. 且成立着如下的等式

$ \begin{eqnarray} & &\int_{0}^{T}\int_{\Gamma_{1}}(pu_{1}+qu_{2}+ru_{3}){\rm d}\Gamma_{1}{\rm d}t\\ & = &\int_{0}^{T}\langle(\psi, \phi, \omega), (g_{1}, g_{2}, g_{3})\rangle_{W\times W^{\ast}}{\rm d}t +\left((p_{0}(T), q_{0}(T), r_{0}(T)), (\psi_{t}(T), \phi_{t}(T), \omega_{t}(T))\right)_{H}\\ &&-\langle(\rho_{1}\psi(T), \rho_{1}\phi(T), \rho_{2}\omega(T)), (p_{1}(T), q_{1}(T), r_{1}(T))\rangle_{W\times W^{\ast}}. \end{eqnarray} $

  对于$ (p, q, r)\in C^{0}([0, T];W)\cap C^{1}([0, T];H) $, 并用$ (p, q, r) $分别乘以系统(4.1)前三式, 在$ [0, T]\times\Omega $上积分并相加得

分部积分得

进一步有

因此有

由能量估计式及线性双曲方程关于时间的可逆性知系统(4.2)的解$ (p, q, r)\in C^{0}([0, T];H^{\ast})\cap C^{1}([0, T];W^{\ast}) $, 而$ W, H, L^{2}([0, T];H) $分别在$ H^{\ast}, W^{\ast}, L^{2}([0, T];W^{\ast}) $中稠密, 由稠密性理论得

证毕.

定理4.2   若$ (\overline{\Phi};\overline{U}) = ((\overline{\psi}, \overline{\phi}, \overline{\omega});(\overline{u}_{1}, \overline{u}_{2}, \overline{u}_{3})) $是最优控制问题(OCP)的最优解, 则满足以下最优性条件

$ \begin{eqnarray} \left\{\begin{array}{lll} { } \rho_{1}\overline{\psi}_{tt}-D(\overline{\psi}_{xx}+\frac{1-\mu}{2}\overline{\psi}_{yy} +\frac{1+\mu}{2}\overline{\phi}_{xy}) +K(\overline{\psi}+\overline{\omega}_{x}) = 0, (x, y, t)\in\Omega\times (0, T), \\ { } \rho_{1}\overline{\phi}_{tt}-D(\overline{\phi}_{yy}+\frac{1-\mu}{2}\overline{\phi}_{xx} +\frac{1+\mu}{2}\overline{\psi}_{xy}) +K(\overline{\phi}+\overline{\omega}_{y}) = 0, (x, y, t)\in\Omega\times (0, T), \\ { } \rho_{2}\overline{\omega}_{tt}-K[(\overline{\psi}+\overline{\omega}_{x})_{x}+(\overline{\phi}+\overline{\omega}_{y})_{y}] = 0, {\quad} (x, y, t)\in\Omega\times (0, T), \\ { } \overline{\psi} = \overline{\phi} = \overline{\omega} = 0, \quad (x, y, t)\in\Gamma_{0}\times (0, T), \\ { } D[\nu_{1}\overline{\psi}_{x}+\mu\nu_{1}\overline{\phi}_{y}+\frac{1-\mu}{2}(\overline{\psi}_{y}+\overline{\phi}_{x})\nu_{2}] = \overline{u}_{1}, {\quad} (x, y, t)\in\Gamma_{1}\times (0, T), \\ { } D[\nu_{2}\overline{\phi}_{y}+\mu\nu_{2}\overline{\psi}_{x}+\frac{1-\mu}{2}(\overline{\psi}_{y}+\overline{\phi}_{x})\nu_{1}] = \overline{u}_{2}, {\quad}(x, y, t)\in\Gamma_{1}\times (0, T), \\ { } K(\frac{\partial\overline{\omega}}{\partial{\bf \nu}}+\nu_{1}\overline{\psi}+\nu_{2}\overline{\phi}) = \overline{u}_{3}, {\quad}(x, y, t)\in\Gamma_{1}\times (0, T), \\ { } (\overline{\psi}(x, y, 0), \overline{\phi}(x, y, 0), \overline{\omega}(x, y, 0)) = (\psi_{01}, \phi_{01}, \omega_{01}), {\quad} (x, y)\in\Omega, \\ (\overline{\psi}_{t}(x, y, 0), \overline{\phi}_{t}(x, y, 0), \overline{\omega}_{t}(x, y, 0)) = (\psi_{02}, \phi_{02}, \omega_{02}), {\quad}(x, y)\in\Omega \end{array}\right. \end{eqnarray} $

$ \begin{eqnarray} \left\{\begin{array}{lll} { } \rho_{1}\overline{p}_{tt}-D(\overline{p}_{xx}+\frac{1-\mu}{2}\overline{p}_{yy} +\frac{1+\mu}{2}\overline{q}_{xy}) +K(\overline{p}+\overline{r}_{x})\\ { } = -[\rho_{1}\overline{\psi}_{tt}+D(\overline{\psi}_{xx}+\frac{1-\mu}{2}\overline{\psi}_{yy} +\frac{1+\mu}{2}\overline{\phi}_{xy}) -K(\overline{\psi}+\overline{\omega}_{x})], (x, y, t)\in\Omega\times (0, T), \\ { } \rho_{1}\overline{q}_{tt}-D(\overline{q}_{yy}+\frac{1-\mu}{2}\overline{q}_{xx} +\frac{1+\mu}{2}\overline{p}_{xy}) +K(\overline{q}+\overline{r}_{y})\\ { } = -[\rho_{1}\overline{\phi}_{tt}+D(\overline{\phi}_{yy}+\frac{1-\mu}{2}\overline{\phi}_{xx} +\frac{1+\mu}{2}\overline{\psi}_{xy}) -K(\overline{\phi}+\overline{\omega}_{y})], (x, y, t)\in\Omega\times (0, T), \\ { } \rho_{2}\overline{r}_{tt}-K[(\overline{p}+\overline{r}_{x})_{x}+(\overline{q}+\overline{r}_{y})_{y}]\\ { } = -(\rho_{2}\overline{\omega}_{tt}+K[(\overline{\psi}+\overline{\omega}_{x})_{x} +(\overline{\phi}+\overline{\omega}_{y})_{y}]), {\quad} (x, y, t)\in\Omega\times (0, T), \\ { } \overline{p} = \overline{q} = \overline{r} = 0, \quad (x, y, t)\in\Gamma_{0}\times (0, T), \\ { } D[\nu_{1}\overline{p}_{x}+\mu\nu_{1}\overline{q}_{y}+\frac{1-\mu}{2}(\overline{p}_{y}+\overline{q}_{x})\nu_{2}] = 0, \quad (x, y, t)\in\Gamma_{1}\times (0, T), \\ { } D[\nu_{2}\overline{q}_{y}+\mu\nu_{2}\overline{p}_{x}+\frac{1-\mu}{2}(\overline{p}_{y}+\overline{q}_{x})\nu_{1}] = 0, \quad (x, y, t)\in\Gamma_{1}\times (0, T), \\ { } K(\frac{\partial\overline{r}}{\partial{\bf \nu}}+\nu_{1}\overline{p}+\nu_{2}\overline{q}) = 0, \quad (x, y, t)\in\Gamma_{1}\times (0, T), \\ { } (\overline{p}(x, y, T), \overline{q}(x, y, T), \overline{\omega}(x, y, T)) = (0, 0, 0), \quad (x, y)\in\Omega, \\ { } (\overline{p}_{t}(x, y, T), \overline{q}_{t}(x, y, T), \overline{r}_{t}(x, y, T)) = -(\overline{\psi}_{t}(T), \overline{\phi}_{t}(T), \overline{\omega}_{t}(T)), {\quad} (x, y)\in\Omega. \end{array}\right. \end{eqnarray} $

其中$ (\overline{p}, \overline{q}, \overline{r})\in C^{0}([0, T];H^{\ast})\cap C^{1}([0, T];W^{\ast}) $是对偶系统(4.2)的解, 且在$ [0, T]\times\Gamma_{1} $上有

$ \begin{equation} (\overline{p}, \overline{q}, \overline{r}) = -\beta(\overline{u}_{1}, \overline{u}_{2}, \overline{u}_{3}). \end{equation} $

  由目标函数的表达式得

$ \begin{eqnarray} J_{T}({\cal Y}_{0}, U) & = &\int_{0}^{T}(\frac{1}{2}\|{\cal Y}(t)\|_{{\cal H}}^{2}+\frac{\beta}{2}\|U(t)\|_{{\cal U}}^{2}){\rm d}t\\ & = &\frac{1}{2}\int_{0}^{T}a(\psi, \phi, \omega;\psi, \phi, \omega){\rm d}t +\frac{1}{2}\int_{0}^{T}\int_{\Omega}[\rho_{1}(|\psi_{t}|^{2}+|\phi_{t}|^{2})+\rho_{2}|\omega_{t}|^{2}]{\rm d}x{\rm d}y{\rm d}t\\ &&+\frac{\beta}{2}\int_{0}^{T}\int_{\Gamma_{1}}(|u_{1}|^{2}+|u_{2}|^{2}+|u_{3}|^{2}){\rm d}\Gamma_{1}{\rm d}t. \end{eqnarray} $

对于任意的$ (\delta u_{1}, \delta u_{2}, \delta u_{3})\in L^{2}([0, T];{\cal U}) $, 对目标函数作变分得

分部积分得

其中$ (\delta\psi, \delta\phi, \delta\omega)\in C^{0}([0, T];W)\cap C^{1}([0, T];H) $是以下系统的弱解

$ \begin{eqnarray} \left\{\begin{array}{ll} { } \rho_{1}\delta\psi_{tt}-D((\delta\psi)_{xx}+\frac{1-\mu}{2}(\delta\psi)_{yy} +\frac{1+\mu}{2}(\delta\phi)_{xy}) +K(\delta\psi+(\delta\omega)_{x}) = 0, \\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; (x, y, t)\in\Omega\times (0, T), \\ { } \rho_{1}\delta\phi_{tt}-D((\delta\phi)_{yy}+\frac{1-\mu}{2}(\delta\phi)_{xx} +\frac{1+\mu}{2}(\delta\psi)_{xy}) +K(\delta\phi+(\delta\omega)_{y}) = 0, \\ \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; (x, y, t)\in\Omega\times (0, T), \\ { } \rho_{2}\delta\omega_{tt}-K[(\delta\psi+(\delta\omega)_{x})_{x}+(\delta\phi+(\delta\omega)_{y})_{y}] = 0, \quad(x, y, t)\in\Omega\times (0, T), \\ { } \delta\psi = \delta\phi = \delta\omega = 0, \quad (x, y, t)\in\Gamma_{0}\times (0, T), \\ { } D[\nu_{1}(\delta\psi)_{x}+\mu\nu_{1}(\delta\phi)_{y}+\frac{1-\mu}{2}((\delta\psi)_{y}+(\delta\phi)_{x})\nu_{2}] = \delta u_{1}, (x, y, t)\in\Gamma_{1}\times (0, T), \\ { } D[\nu_{2}(\delta\phi)_{y}+\mu\nu_{2}(\delta\psi)_{x}+\frac{1-\mu}{2}((\delta\psi)_{y}+(\delta\phi)_{x})\nu_{1}] = \delta u_{2}, (x, y, t)\in\Gamma_{1}\times (0, T), \\ { } K(\frac{\partial(\delta\omega)}{\partial{\bf \nu}}+\nu_{1}\delta\psi+\nu_{2}\delta\phi) = \delta u_{3}, \quad (x, y, t)\in\Gamma_{1}\times (0, T), \\ { } (\delta\psi(x, y, 0), \delta\phi(x, y, 0), \delta\omega(x, y, 0)) = (0, 0, 0), \quad (x, y)\in\Omega, \\ { } (\delta\psi_{t}(x, y, 0), \delta\phi_{t}(x, y, 0), \delta\omega_{t}(x, y, 0)) = (0, 0, 0), \quad (x, y)\in\Omega. \end{array}\right. \end{eqnarray} $

则一阶最优性条件等价于

$ \begin{eqnarray} & &-\int_{0}^{T}\int_{\Omega}[\delta\psi(\rho_{1}\psi_{tt}+L_{1}\{\psi, \phi, \omega\})+\delta\phi(\rho_{1}\phi_{tt}+L_{2}\{\psi, \phi, \omega\}) +\delta\omega(\rho_{2}\omega_{tt}+L_{3}\{\psi, \phi, \omega\})]{\rm d}t\\ &&+\int_{\Omega}[\rho_{1}(\delta\psi(T)\psi_{t}(T)+\delta\phi(T)\phi_{t}(T))+\rho_{2}\delta\omega(T)\omega_{t}(T)]{\rm d}x{\rm d}y\\ &&+\beta\int_{0}^{T}\int_{\Gamma_{1}}(u_{1}\delta u_{1}+u_{2}\delta u_{2}+u_{3}\delta u_{3}){\rm d}\Gamma_{1}{\rm d}t = 0. \end{eqnarray} $

另一方面, 由定理4.1得

$ \begin{eqnarray} & &\int_{0}^{T}\int_{\Gamma_{1}}(p\delta u_{1}+q\delta u_{2}+r\delta u_{3}){\rm d}\Gamma_{1}{\rm d}t\\ & = &\int_{0}^{T}\langle(\delta\psi, \delta\phi, \delta\omega), (g_{1}, g_{2}, g_{3})\rangle_{W\times W^{\ast}}{\rm d}t +\left((p_{0}(T), q_{0}(T), r_{0}(T)), (\delta\psi_{t}(T), \delta\phi_{t}(T), \delta\omega_{t}(T))\right)_{H}\\ &&-\langle(\rho_{1}\delta\psi(T), \rho_{1}\delta\phi(T), \rho_{2}\delta\omega(T)), (p_{1}(T), q_{1}(T), r_{1}(T))\rangle_{W\times W^{\ast}}. \end{eqnarray} $

比较(4.9)式和(4.10)式, 并由$ (\delta u_{1}, \delta u_{2}, \delta u_{3})\in L^{2}([0, T];{\cal U}) $的任意性, 我们可以得到

即由变分原理所得到的最优解满足(4.4)–(4.6)式. 证毕.

5 能观性与能量指数衰减的等价性

本节我们主要讨论Mindlin-Timoshenko板系统的能观性与系统能量指数衰减之间的关系. 首先我们采用文献[21]的方法证明如下的结果.

引理5.1  假定存在$ (x_{0}, y_{0})\in {{\Bbb R}} ^{2} $, 满足$ \widetilde{\Gamma} = \{(x, y)\in \Gamma_{1}|(x-x_{0}, y-y_{0})\cdot\nu>0\} $非空, 则存在$ T_{1}>0 $, 使得对任意$ T\geq T_{1} $

$ \begin{eqnarray} C_{1}\|{\cal Y}_{0}\|_{{\cal H}}^{2}\leq\int_{0}^{T}\int_{\widetilde{\Gamma}} (|\widetilde{\psi}_{t}|^{2}+|\widetilde{\phi}_{t}|^{2}+|\widetilde{\omega}_{t}|^{2}){\rm d}\widetilde{\Gamma}{\rm d}t, \end{eqnarray} $

存在$ T_{2}>0 $, 使得对任意$ T\geq T_{2} $

$ \begin{eqnarray} C_{2}\|{\cal Y}_{0}\|_{{\cal H}}^{2}\leq\int_{0}^{T}\int_{\Omega} (|\widetilde{\psi}_{t}|^{2}+|\widetilde{\phi}_{t}|^{2}+|\widetilde{\omega}_{t}|^{2}){\rm d}x{\rm d}y{\rm d}t, \end{eqnarray} $

其中, $ C_{1}, C_{2} $均为仅与$ T $有关的正常数, $ \widetilde{\Phi} = (\widetilde{\psi}, \widetilde{\phi}, \widetilde{\omega}) $是如下齐次系统的弱解, 且$ (\widetilde{\Phi}, \widetilde{\Phi}_{t})\in C^{0}([0, T];{\cal H}) $, 有

$ \begin{eqnarray} \left\{\begin{array}{lll} { } \rho_{1}\widetilde{\psi}_{tt}-D(\widetilde{\psi}_{xx}+\frac{1-\mu}{2}\widetilde{\psi}_{yy} +\frac{1+\mu}{2}\widetilde{\phi}_{xy}) +K(\widetilde{\psi}+\widetilde{\omega}_{x}) = 0, \quad (x, y, t)\in\Omega\times (0, T), \\ { } \rho_{1}\widetilde{\phi}_{tt}-D(\widetilde{\phi}_{yy}+\frac{1-\mu}{2}\widetilde{\phi}_{xx} +\frac{1+\mu}{2}\widetilde{\psi}_{xy}) +K(\widetilde{\phi}+\widetilde{\omega}_{y}) = 0, \quad (x, y, t)\in\Omega\times (0, T), \\ { } \rho_{2}\widetilde{\omega}_{tt}-K[(\widetilde{\psi}+\widetilde{\omega}_{x})_{x}+(\widetilde{\phi}+\widetilde{\omega}_{y})_{y}] = 0, \quad (x, y, t)\in\Omega\times (0, T), \\ { } \widetilde{\psi} = \widetilde{\phi} = \widetilde{\omega} = 0, \quad (x, y, t)\in\Gamma_{0}\times (0, T), \\ { } D[\nu_{1}\widetilde{\psi}_{x}+\mu\nu_{1}\widetilde{\phi}_{y}+\frac{1-\mu}{2}(\widetilde{\psi}_{y}+\widetilde{\phi}_{x})\nu_{2}] = 0, \quad (x, y, t)\in\Gamma_{1}\times (0, T), \\ { } D[\nu_{2}\widetilde{\phi}_{y}+\mu\nu_{2}\widetilde{\psi}_{x}+\frac{1-\mu}{2}(\widetilde{\psi}_{y}+\widetilde{\phi}_{x})\nu_{1}] = 0, \quad (x, y, t)\in\Gamma_{1}\times (0, T), \\ { } K(\frac{\partial\widetilde{\omega}}{\partial{\bf \nu}}+\nu_{1}\widetilde{\psi}+\nu_{2}\widetilde{\phi}) = 0, \quad (x, y, t)\in\Gamma_{1}\times (0, T), \\ (\widetilde{\psi}(x, y, 0), \widetilde{\phi}(x, y, 0), \widetilde{\omega}(x, y, 0)) = (\psi_{01}, \phi_{01}, \omega_{01}), \quad (x, y)\in\Omega, \\ (\widetilde{\psi}_{t}(x, y, 0), \widetilde{\phi}_{t}(x, y, 0), \widetilde{\omega}_{t}(x, y, 0)) = (\psi_{02}, \phi_{02}, \omega_{02}), \quad (x, y)\in\Omega. \end{array}\right. \end{eqnarray} $

  记$ F(x, y) = \eta(x, y)((x-x_{0}), (y-y_{0})) $, 其中, 乘子$ \eta(\cdot)\in C^{1}(\overline{\Omega}) $且满足在$ \overline{\Gamma}_{0} $上, $ \eta = 0 $; 在$ \Gamma_{1} $上, $ \eta = 1 $. 对边界$ \Gamma_{1} $作如下分割

$ M^{2} = \max\limits_{(x, y)\in\overline{\Omega}}|F(x, y)|^{2} = \max\limits_{(x, y)\in\overline{\Omega}}\{|x-x_{0}|^{2}+|y-y_{0}|^{2}\}, \quad 2M_{1} = \max\{\rho_{1}, \rho_{2}\}. $$ F\cdot\nabla\widetilde{\psi}, F\cdot\nabla\widetilde{\phi}, F\cdot\nabla\widetilde{\omega} $分别乘以系统(5.3)前三式, 并在$ [0, T]\times\Omega $上积分, 则有

分部积分得

$ \begin{eqnarray} &&\int_{0}^{T}\int_{\Gamma_{1}}(F\cdot\nu)[\rho_{1}(|\widetilde{\psi}_{t}|^{2}+|\widetilde{\phi}_{t}|^{2}) +\rho_{2}|\widetilde{\omega}_{t}|^{2}]{\rm d}\Gamma_{1}{\rm d}t\\ & = &2\int_{\Omega}[\rho_{1}(\widetilde{\psi}_{t}F\cdot\nabla\widetilde{\psi}+\widetilde{\phi}_{t}F\cdot\nabla\widetilde{\phi})+ \rho_{2}\widetilde{\omega}_{t}F\cdot\nabla\widetilde{\omega}]_{0}^{T}{\rm d}x{\rm d}y\\ &&+2\int_{0}^{T}\int_{\Omega}[\rho_{1}(|\widetilde{\psi}_{t}|^{2} +|\widetilde{\phi}_{t}|^{2})+\rho_{2}|\widetilde{\omega}_{t}|^{2}]{\rm d}x{\rm d}y{\rm d}t +2\int_{0}^{T}a(\widetilde{\psi}, \widetilde{\phi}, \widetilde{\omega};\widetilde{\psi}, \widetilde{\phi}, \widetilde{\omega}){\rm d}t\\ &&-2D\int_{0}^{T}\int_{\Omega}[|\widetilde{\psi}_{x}|^{2}+|\widetilde{\phi}_{y}|^{2} +2\mu\widetilde{\psi}_{x}\widetilde{\phi}_{y}+\frac{1-\mu}{2}|\widetilde{\psi}_{y}+\widetilde{\phi}_{x}|^{2}]{\rm d}x{\rm d}y{\rm d}t\\ &&-2K\int_{0}^{T}\int_{\Omega}[|\widetilde{\psi}+\widetilde{\omega}_{x}|^{2}+|\widetilde{\phi}+\widetilde{\omega}_{y}|^{2}]{\rm d}x{\rm d}y{\rm d}t. \end{eqnarray} $

由Poincaré不等式得

$ \begin{eqnarray} &&\left|\int_{\Omega}[\rho_{1}(\widetilde{\psi}_{t}F\cdot\nabla\widetilde{\psi}+\widetilde{\phi}_{t}F\cdot\nabla\widetilde{\phi})+ \rho_{2}\widetilde{\omega}_{t}F\cdot\nabla\widetilde{\omega}]_{0}^{T}{\rm d}x{\rm d}y\right|\\ &\leq &c_{1}\left\{\int_{\Omega}[\rho_{1}(|\widetilde{\psi}_{t}|^{2} +|\widetilde{\phi}_{t}|^{2})+\rho_{2}|\widetilde{\omega}_{t}|^{2}]_{0}^{T}{\rm d}x{\rm d}y +a(\widetilde{\psi}, \widetilde{\phi}, \widetilde{\omega};\widetilde{\psi}, \widetilde{\phi}, \widetilde{\omega})|_{0}^{T}\right\}\\ &\leq &2c_{1}I(0). \end{eqnarray} $

$ \widetilde{\psi}, \widetilde{\phi}, \widetilde{\omega} $分别乘以系统(4.3)前三式, 并在$ [0, T]\times\Omega $上积分并相加, 得

分部积分得

$ \begin{eqnarray} &&\int_{0}^{T}\int_{\Omega}[\rho_{1}(|\widetilde{\psi}_{t}|^{2} +|\widetilde{\phi}_{t}|^{2})+\rho_{2}|\widetilde{\omega}_{t}|^{2}]{\rm d}x{\rm d}y{\rm d}t -\int_{0}^{T}a(\widetilde{\psi}, \widetilde{\phi}, \widetilde{\omega};\widetilde{\psi}, \widetilde{\phi}, \widetilde{\omega}){\rm d}t\\ & = &\int_{\Omega}[\rho_{1}(\widetilde{\psi}_{t}\widetilde{\psi}+\widetilde{\phi}_{t}\widetilde{\phi}) +\rho_{2}(\widetilde{\omega}_{t}\widetilde{\omega}]_{0}^{T}{\rm d}x{\rm d}y. \end{eqnarray} $

再由Poincaré不等式得

$ \begin{eqnarray} \left|\int_{0}^{T}\int_{\Omega}[\rho_{1}(|\widetilde{\psi}_{t}|^{2} +|\widetilde{\phi}_{t}|^{2})+\rho_{2}|\widetilde{\omega}_{t}|^{2}]{\rm d}x{\rm d}y{\rm d}t -\int_{0}^{T}a(\widetilde{\psi}, \widetilde{\phi}, \widetilde{\omega};\widetilde{\psi}, \widetilde{\phi}, \widetilde{\omega}){\rm d}t\right|\leq c_{0}I(0). \end{eqnarray} $

由(5.4), (5.5)和(5.7)式得

$ \begin{eqnarray} MM_{1}\int_{0}^{T}\int_{\widetilde{\Gamma}}[|\widetilde{\psi}_{t}|^{2} +|\widetilde{\phi}_{t}|^{2}+|\widetilde{\omega}_{t}|^{2}]{\rm d}\widetilde{\Gamma}{\rm d}t &\geq&\frac{1}{2}\int_{0}^{T}\int_{\Gamma_{1}}(F\cdot\nu)[\rho_{1}(|\widetilde{\psi}_{t}|^{2} +|\widetilde{\phi}_{t}|^{2})+\rho_{2}|\widetilde{\omega}_{t}|^{2}]{\rm d}\Gamma_{1}{\rm d}t\\ &\geq&\int_{0}^{T}a(\widetilde{\psi}, \widetilde{\phi}, \widetilde{\omega}; \widetilde{\psi}, \widetilde{\phi}, \widetilde{\omega}){\rm d}t-2c_{1}I(0)-c_{0}I(0). \end{eqnarray} $

又由(5.8)式得

$ \begin{eqnarray} \int_{0}^{T}a(\widetilde{\psi}, \widetilde{\phi}, \widetilde{\omega};\widetilde{\psi}, \widetilde{\phi}, \widetilde{\omega}){\rm d}t\geq \int_{0}^{T}\int_{\Omega}[\rho_{1}(|\widetilde{\psi}_{t}|^{2} +|\widetilde{\phi}_{t}|^{2})+\rho_{2}|\widetilde{\omega}_{t}|^{2}]{\rm d}x{\rm d}y{\rm d}t - c_{0}I(0). \end{eqnarray} $

因此, 由(5.8)–(5.9)式得

$ \begin{eqnarray} &&MM_{1}\int_{0}^{T}\int_{\widetilde{\Gamma}}[|\widetilde{\psi}_{t}|^{2} +|\widetilde{\phi}_{t}|^{2}+|\widetilde{\omega}_{t}|^{2}]{\rm d}\widetilde{\Gamma}{\rm d}t\\ &\geq&\int_{0}^{T}\int_{\Omega}[\rho_{1}(|\widetilde{\psi}_{t}|^{2} +|\widetilde{\phi}_{t}|^{2})+\rho_{2}|\widetilde{\omega}_{t}|^{2}]{\rm d}x{\rm d}y{\rm d}t-2c_{1}I(0)-2c_{0}I(0). \end{eqnarray} $

由(5.8)和(5.10)式可得

因此, 记$ T_{1} = 4c_{1}+3c_{0}>0 $, 当$ T\geq T_{1} $时, 记$ C_{1} = \frac{1}{2MM_{0}}(T-T_{1})\geq0 $, 则有

故(5.1)式得证.

又由(5.7)式得

$ \begin{equation} 2\int_{0}^{T}\int_{\Omega}[\rho_{1}(|\widetilde{\psi}_{t}|^{2} +|\widetilde{\phi}_{t}|^{2})+\rho_{2}|\widetilde{\omega}_{t}|^{2}]{\rm d}x{\rm d}y{\rm d}t \geq TI(0)-c_{0}I(0). \end{equation} $

因此, 记$ T_{2} = c_{0}>0 $$ T\geq T_{2} $时, 记$ C_{2} = \frac{1}{2M_{1}}(T-T_{2})\geq0 $, 则由(5.11)式得

从而, (5.2)式得证. 引理5.1证毕.

定理5.1   假定$ {\cal Y}_{0}\in {\cal H} $, 系统(1.1)–(1.2)能量依$ {\cal H} $范数一致指数收敛到0, 即存在与$ {\cal Y}_{0} $无关, 而与$ T_{1} $有关的正常数$ M, \alpha $使得

当且仅当能观性条件(5.1)成立.

  (Ⅰ) 充分性

首先闭环系统(1.1)和(1.2)是适定的, 且其唯一弱解为

对于任意$ T>0 $, 考虑如下控制系统

$ \begin{eqnarray} \left\{\begin{array}{lll} { } \rho_{1}\psi_{tt}-D(\psi_{xx}+\frac{1-\mu}{2}\psi_{yy} +\frac{1+\mu}{2}\phi_{xy}) +K(\psi+\omega_{x}) = 0, \quad (x, y, t)\in\Omega\times (0, T), \\ { } \rho_{1}\phi_{tt}-D(\phi_{yy}+\frac{1-\mu}{2}\phi_{xx} +\frac{1+\mu}{2}\psi_{xy}) +K(\phi+\omega_{y}) = 0, \quad (x, y, t)\in\Omega\times (0, T), \\ { } \rho_{2}\omega_{tt}-K[(\psi+\omega_{x})_{x}+(\phi+\omega_{y})_{y}] = 0, \quad (x, y, t)\in\Omega\times (0, T), \\ { } \psi = \phi = \omega = 0, \quad (x, y, t)\in\Gamma_{0}\times (0, T), \\ { } D[\nu_{1}\psi_{x}+\mu\nu_{1}\phi_{y}+\frac{1-\mu}{2}(\psi_{y}+\phi_{x})\nu_{2}] = -\psi_{t}, \quad (x, y, t)\in\Gamma_{1}\times (0, T), \\ { } D[\nu_{2}\phi_{y}+\mu\nu_{2}\psi_{x}+\frac{1-\mu}{2}(\psi_{y}+\phi_{x})\nu_{1}] = -\phi_{t}, \quad (x, y, t)\in\Gamma_{1}\times (0, T), \\ { } K(\frac{\partial\omega}{\partial{\bf \nu}}+\nu_{1}\psi+\nu_{2}\phi) = -\omega_{t}, \quad (x, y, t)\in\Gamma_{1}\times (0, T), \\ (\psi(x, y, 0), \phi(x, y, 0), \omega(x, y, 0)) = (\psi_{01}, \phi_{01}, \omega_{01}), \quad (x, y)\in\Omega, \\ (\psi_{t}(x, y, 0), \phi_{t}(x, y, 0), \omega_{t}(x, y, 0)) = (\psi_{02}, \phi_{02}, \omega_{02}), \quad (x, y)\in\Omega. \end{array}\right. \end{eqnarray} $

$ \psi_{t}, \phi_{t}, \omega_{t} $分别乘以系统(5.12)前三式, 并在$ [0, T_{1}]\times\Omega $上积分并相加, 利用边界条件得到

因此

$ \begin{equation} 2\int_{0}^{T_{1}}\int_{\Gamma_{1}}[|\psi_{t}|^{2}+|\phi_{t}|^{2}+|\omega_{t}|^{2}]{\rm d}\Gamma_{1}{\rm d}t = I(0)-I(T_{1}). \end{equation} $

此外系统(5.12)的弱解分解为$ \Phi = \widetilde{\Phi}+\widehat{\Phi} $, 其中, $ \widetilde{\Phi} $是系统(5.3)的弱解, $ \widehat{\Phi} = (\widehat{\psi}, \widehat{\phi}, \widehat{\omega})\in C^{0}([0, T];W)\cap C^{1}([0, T];H) $是以下系统弱解

$ \begin{eqnarray} \left\{\begin{array}{lll} { } \rho_{1}\widehat{\psi}_{tt}-D(\widehat{\psi}_{xx}+\frac{1-\mu}{2}\widehat{\psi}_{yy} +\frac{1+\mu}{2}\widehat{\phi}_{xy}) +K(\widehat{\psi}+\widehat{\omega}_{x}) = 0, \quad (x, y, t)\in\Omega\times (0, T), \\ { } \rho_{1}\widehat{\phi}_{tt}-D(\widehat{\phi}_{yy}+\frac{1-\mu}{2}\widehat{\phi}_{xx} +\frac{1+\mu}{2}\widehat{\psi}_{xy}) +K(\widehat{\phi}+\widehat{\omega}_{y}) = 0, \quad (x, y, t)\in\Omega\times (0, T), \\ { } \rho_{2}\widehat{\omega}_{tt}-K[(\widehat{\psi}+\widehat{\omega}_{x})_{x}+(\widehat{\phi}+\widehat{\omega}_{y})_{y}] = 0, \quad (x, y, t)\in\Omega\times (0, T), \\ { } \widehat{\psi} = \widehat{\phi} = \widehat{\omega} = 0, \quad (x, y, t)\in\Gamma_{0}\times (0, T), \\ { } D[\nu_{1}\widehat{\psi}_{x}+\mu\nu_{1}\widehat{\phi}_{y}+\frac{1-\mu}{2}(\widehat{\psi}_{y}+\widehat{\phi}_{x})\nu_{2}] = -\psi_{t}, \quad (x, y, t)\in\Gamma_{1}\times (0, T), \\ { } D[\nu_{2}\widehat{\phi}_{y}+\mu\nu_{2}\widehat{\psi}_{x}+\frac{1-\mu}{2}(\widehat{\psi}_{y}+\widehat{\phi}_{x})\nu_{1}] = -\phi_{t}, \quad (x, y, t)\in\Gamma_{1}\times (0, T), \\ { } K(\frac{\partial\widehat{\omega}}{\partial{\bf \nu}}+\nu_{1}\widehat{\psi}+\nu_{2}\widehat{\phi}) = -\omega_{t}, \quad (x, y, t)\in\Gamma_{1}\times (0, T), \\ { } (\widehat{\psi}(x, y, 0), \widehat{\phi}(x, y, 0), \widehat{\omega}(x, y, 0)) = (0, 0, 0), \quad (x, y)\in\Omega, \\ { } (\widehat{\psi}_{t}(x, y, 0), \widehat{\phi}_{t}(x, y, 0), \widehat{\omega}_{t}(x, y, 0)) = (0, 0, 0), \quad (x, y)\in\Omega. \end{array}\right. \end{eqnarray} $

由能观性条件及命题2.1中(2.4)式知

$ \begin{eqnarray} I(0)& = &\|(\Phi_{01}\Phi_{02})\|_{{\cal H}}^{2}\leq\frac{1}{C}\int_{0}^{T_{1}}\int_{\Gamma_{1}}(|\widetilde{\psi}_{t}|^{2}+|\widetilde{\phi}_{t}|^{2}+|\widetilde{\omega}_{t}|^{2}){\rm d}\Gamma_{1}{\rm d}t\\ &\leq&\frac{1}{C}\bigg[\int_{0}^{T_{1}}\int_{\Gamma_{1}}(|\psi_{t}|^{2}+|\phi_{t}|^{2}+|\omega_{t}|^{2}){\rm d}\Gamma_{1}{\rm d}t +\int_{0}^{T_{1}}\int_{\Gamma_{1}}(|\widehat{\psi}_{t}|^{2}+|\widehat{\phi}_{t}|^{2}+|\widehat{\omega}_{t}|^{2}){\rm d}\Gamma_{1}{\rm d}t\bigg]\\ &\leq& C' \int_{0}^{T_{1}}\int_{\Gamma_{1}}(|\psi_{t}|^{2}+|\phi_{t}|^{2}+|\omega_{t}|^{2}){\rm d}\Gamma_{1}{\rm d}t. \end{eqnarray} $

由(5.13)和(5.15)式得

$ \alpha = \frac{\ln(1+\frac{1}{C'})}{T_{1}} $, 则有

$ \begin{equation} I(T_{1})\leq {\rm e}^{-\alpha T_{1}}I(0). \end{equation} $

因此, 对于$ \forall k\in {\Bbb N}^{+} $, 有$ I(kT_{1})\leq {\rm e}^{-\alpha T_{1}}I((k-1)T_{1}) $. 于是对于$ \forall t\in [0, \infty) $, 存在$ k\in {\Bbb N}^{+} $, 使得$ t\in [kT_{1}, (k+1)T_{1}) $

$ M = 1+\frac{2}{C'} $, 则$ I(t)\leq M{\rm e}^{-\alpha t}I(0) $, 即$ \|(\Phi, \Phi_{t})\|_{{\cal H}}^{2}\leq M{\rm e}^{-\alpha t}\|(\Phi_{01}, \Phi_{02})\|_{{\cal H}}^{2} $.

(Ⅱ) 必要性

对于$ \forall t>0 $, 将$ \psi_{t}, \phi_{t}, \omega_{t} $分别乘以系统(5.14) 前三式, 在$ [0, t]\times\Omega $上积分并相加, 分部积分得

又由于系统是指数稳定的, 故存在足够大的$ T'>0 $, 使得

$ \begin{eqnarray} \int_{0}^{T'}\int_{\Gamma_{1}}(|\psi_{t}|^{2}+|\phi_{t}|^{2}+|\omega_{t}|^{2}){\rm d}\Gamma_{1}{\rm d}t\geq \frac{1}{4}I(0). \end{eqnarray} $

再用$ \widehat{\psi}_{t}, \widehat{\phi}_{t}, \widehat{\omega}_{t} $分别乘以系统(5.14) 前三个等式, 在$ [0, T']\times\Omega $上积分并相加得

分部积分得

亦即

$ \begin{equation} 0\leq\frac{1}{2}\|(\widehat{\Phi}(T'), \widehat{\Phi}_{t}(T'))\|_{{\cal H}}^{2} = -\int_{0}^{T'}\int_{\Gamma_{1}}(\widehat{\psi}_{t}(\widehat{\psi}_{t}+\widetilde{\psi}_{t}) +\widehat{\phi}_{t}(\widehat{\phi}_{t}+\widetilde{\phi}_{t})+\widehat{\omega}_{t}(\widehat{\omega}_{t}+\widetilde{\omega}_{t})){\rm d}\Gamma_{1}{\rm d}t. \end{equation} $

因此, 由Cauchy-Schwarz以及Young不等式, 我们有

$ \begin{eqnarray} \int_{0}^{T'}\int_{\Gamma_{1}}(|\widehat{\psi}_{t}|^{2}+|\widehat{\phi}_{t}|^{2}+|\widehat{\omega}_{t}|^{2}){\rm d}\Gamma_{1}{\rm d}t \leq C''\int_{0}^{T'}\int_{\Gamma_{1}}(|\widetilde{\psi}_{t}|^{2}+|\widetilde{\phi}_{t}|^{2}+|\widetilde{\omega}_{t}|^{2}){\rm d}\Gamma_{1}{\rm d}t. \end{eqnarray} $

注意到: $ \psi = \widehat{\psi}+\widetilde{\psi}, \phi = \widehat{\phi}+\widetilde{\phi}, \omega = \widehat{\omega}+\widetilde{\omega} $. 于是, 我们有

$ \begin{eqnarray} & &\int_{0}^{T'}\int_{\Gamma_{1}}(|\widehat{\psi}_{t}|^{2}+|\widehat{\phi}_{t}|^{2}+|\widehat{\omega}_{t}|^{2}){\rm d}\Gamma_{1}{\rm d}t +\int_{0}^{T'}\int_{\Gamma_{1}}(|\widetilde{\psi}_{t}|^{2}+|\widetilde{\phi}_{t}|^{2}+|\widetilde{\omega}_{t}|^{2}){\rm d}\Gamma_{1}{\rm d}t\\ &\geq&\frac{1}{2}\int_{0}^{T'}\int_{\Gamma_{1}}(|\psi_{t}|^{2}+|\phi_{t}|^{2}+|\omega_{t}|^{2}){\rm d}\Gamma_{1}{\rm d}t. \end{eqnarray} $

上式结合(5.17)和(5.19)式得

故能观性条件(5.1)得证. 证毕.

6 次最优性和最优轨线指数稳定性

接下来我们研究系统(2.2)的次最优性与最优轨线的指数稳定性.

命题6.1   对于任意初始对$ {\cal Y}_{0} = (\Phi_{01}, \Phi_{02})\in {\cal H} $及任意$ T>0 $, 系统(2.2)存在控制$ \widehat{U} = (\widehat{u}_{1}, \widehat{u}_{2}, \widehat{u}_{3})\in L^{2}([0, T];{\cal U}) $使得

$ \begin{eqnarray} V_{T}({\cal Y}_{0})\leq J_{T}({\cal Y}_{0};\widehat{U})\leq \gamma_{1}(T)\|{\cal Y}_{0}\|_{{\cal H}}^{2} , \end{eqnarray} $

其中$ \gamma_{1}(\cdot) $是一个连续、不减的有界函数. 进一步, 存在只与$ T $有关的正常数$ \gamma_{2}(T) $, 使得

$ \begin{eqnarray} V_{T}({\cal Y}_{0})\geq \gamma_{2}(T)\|{\cal Y}_{0}\|_{{\cal H}}^{2} . \end{eqnarray} $

  取$ u_{1} = -\psi_{t}, u_{2} = -\phi_{t}, u_{3} = -\omega_{t} $, 那么

$ \begin{eqnarray} I(t)\leq M{\rm e}^{-\alpha t}I(0), \quad \forall t\in[0, T]. \end{eqnarray} $

对(6.3)式两边在$ [0, T] $上积分得

再由(5.13)式得

$ \gamma_{1}(T) = \frac{M}{2\alpha}(1-{\rm e}^{-\alpha T})+\frac{\beta}{4} $, 由值函数的定义, 我们有

即(6.1)式成立.

为了证明(6.2)式, 对于任意$ U = (u_{1}, u_{2}, u_{3})\in L^{2}([0, T];{\cal U}) $, 我们应用叠加原理, 将系统(2.2)的弱解表示为$ \Phi = \widetilde{\Phi}+\widehat{\Phi} $, 其中$ \widetilde{\Phi} = (\widetilde{\psi}, \widetilde{\phi}, \widetilde{\omega}) $是系统(5.3)的弱解, $ \widehat{\Phi} = (\widehat{\psi}, \widehat{\phi}, \widehat{\omega}) $是下面系统的弱解

$ \begin{eqnarray} \left\{\begin{array}{lll} { } \rho_{1}\widehat{\psi}_{tt}-D(\widehat{\psi}_{xx}+\frac{1-\mu}{2}\widehat{\psi}_{yy} +\frac{1+\mu}{2}\widehat{\phi}_{xy}) +K(\widehat{\psi}+\widehat{\omega}_{x}) = 0, \quad (x, y, t)\in\Omega\times (0, T), \\ { } \rho_{1}\widehat{\phi}_{tt}-D(\widehat{\phi}_{yy}+\frac{1-\mu}{2}\widehat{\phi}_{xx} +\frac{1+\mu}{2}\widehat{\psi}_{xy}) +K(\widehat{\phi}+\widehat{\omega}_{y}) = 0, \quad (x, y, t)\in\Omega\times (0, T), \\ { } \rho_{2}\widehat{\omega}_{tt}-K[(\widehat{\psi}+\widehat{\omega}_{x})_{x}+(\widehat{\phi}+\widehat{\omega}_{y})_{y}] = 0, \quad (x, y, t)\in\Omega\times (0, T), \\ { } \widehat{\psi} = \widehat{\phi} = \widehat{\omega} = 0, \quad (x, y, t)\in\Gamma_{0}\times (0, T), \\ { } D[\nu_{1}\widehat{\psi}_{x}+\mu\nu_{1}\widehat{\phi}_{y}+\frac{1-\mu}{2}(\widehat{\psi}_{y}+\widehat{\phi}_{x})\nu_{2}] = u_{1}, \quad (x, y, t)\in\Gamma_{1}\times (0, T), \\ { } D[\nu_{2}\widehat{\phi}_{y}+\mu\nu_{2}\widehat{\psi}_{x}+\frac{1-\mu}{2}(\widehat{\psi}_{y}+\widehat{\phi}_{x})\nu_{1}] = u_{2}, \quad (x, y, t)\in\Gamma_{1}\times (0, T), \\ { } K(\frac{\partial\widehat{\omega}}{\partial{\bf \nu}}+\nu_{1}\widehat{\psi}+\nu_{2}\widehat{\phi}) = u_{3}, \quad (x, y, t)\in\Gamma_{1}\times (0, T), \\ { } (\widehat{\psi}(x, y, 0), \widehat{\phi}(x, y, 0), \widehat{\omega}(x, y, 0)) = (0, 0, 0), \quad (x, y)\in\Omega, \\ { } (\widehat{\psi}_{t}(x, y, 0), \widehat{\phi}_{t}(x, y, 0), \widehat{\omega}_{t}(x, y, 0)) = (0, 0, 0), \quad (x, y)\in\Omega. \end{array}\right. \end{eqnarray} $

由能观性条件(5.2)和(2.4)得

由控制变量$ U = (u_{1}, u_{2}, u_{3})\in L^{2}([0, T];{\cal U}) $的任意性, 我们得到只与$ T $有关的正常数$ \gamma_{2}(T) = \frac{1}{C''(T)} $使得(6.2)式成立. 证毕.

引理6.1  对于任意初始值$ {\cal Y}_{0}\in {\cal H} $以及$ \delta>0 $, 当$ T>\delta $时, 则, 对所有的$ \widehat{t}\in[\delta, T] $, 有

$ \begin{eqnarray} V_{T}({\cal Y}_{T}^{\ast}(\delta, {\cal Y}_{0}, 0)) \leq\int_{\delta}^{\widehat{t}}\ell({\cal Y}_{T}^{\ast}(t, {\cal Y}_{0}, 0), {\cal U}_{T}^{\ast}(t, {\cal Y}_{0}, 0)){\rm d}t +\gamma_{1}(T+\delta-\widehat{t})\left\|{\cal Y}_{T}^{\ast}(\widehat{t}, {\cal Y}_{0}, 0)\right\|_{{\cal H}}^{2} \end{eqnarray} $

和对所有的$ \widetilde{t}\in[0, T] $, 有

$ \begin{eqnarray} \int_{\widetilde{t}}^{T}\ell({\cal Y}_{T}^{\ast}(t, {\cal Y}_{0}, 0), {\cal U}_{T}^{\ast}(t, {\cal Y}_{0}, 0)){\rm d}t \leq\gamma_{1}(T-\widetilde{t})\left\|{\cal Y}_{T}^{\ast}(\widetilde{t}, {\cal Y}_{0}, 0)\right\|_{{\cal H}}^{2}. \end{eqnarray} $

  取$ \xi = \frac{1}{2}\min\{1, \beta\} $, 对于任意$ {\cal Y}_{0}\in{\cal H} $$ \overline{t}\in[0, T] $, 由(1.4)式得

$ \begin{eqnarray} \ell({\cal Y}_{T}^{\ast}(t, {\cal Y}_{0}, 0), U_{T}^{\ast}(t, {\cal Y}_{0}, 0))\geq\xi [\|{\cal Y}_{T}^{\ast}(t, {\cal Y}_{0}, 0)\|_{{\cal H}}^{2}+\|U_{T}^{\ast}(t, {\cal Y}_{0}, 0)\|_{{\cal U}}^{2}]. \end{eqnarray} $

因此, 我们有

又由(2.4)式得

因此, 对于任意$ \overline{t}\in[0, T] $, 都有$ {\cal Y}_{T}^{\ast}(\overline{t}, {\cal Y}_{0}, 0)\in{\cal H} $.

对于任意$ \widehat{t}\in[\delta, T] $, 我们有

$ {\cal Y}_{T}^{\ast}(\cdot, {\cal Y}^{\ast}(\delta), \delta) $是系统在区间$ [\delta, T+\delta] $的最优解, 根据贝尔曼最优性原理, 我们有

因此, (6.5)式成立.

接下来证明(6.6)式. 对于任意$ \widetilde{t}\in[0, T] $, 我们有

因此, 对所有$ \widetilde{t}\in[0, T] $都有

证毕.

定理6.1  对于任意初始值$ {\cal Y}_{0}\in{\cal H} $, 以及样本时间$ \delta>0 $和预测时间$ T>\delta $, 存在只与$ T $有关的函数

使得以下估计式

$ \begin{equation} V_{T}({\cal Y}_{T}^{\ast}(\delta, {\cal Y}_{0}, 0)) \leq\sigma_{1}(T)\int_{\delta}^{T}\ell({\cal Y}_{T}^{\ast}(t, {\cal Y}_{0}, 0), U_{T}^{\ast}(t, {\cal Y}_{0}, 0)){\rm d}t \end{equation} $

$ \begin{equation} \int_{\delta}^{T}\ell({\cal Y}_{T}^{\ast}(t, {\cal Y}_{0}, 0), U_{T}^{\ast}(t, {\cal Y}_{0}, 0)){\rm d}t \leq\sigma_{2}(T)\int_{0}^{\delta}\ell({\cal Y}_{T}^{\ast}(t, {\cal Y}_{0}, 0), U_{T}^{\ast}(t, {\cal Y}_{0}, 0)){\rm d}t \end{equation} $

成立.

  由于$ {\cal Y}_{T}^{\ast}(\cdot, {\cal Y}_{0}, 0)\in C([0, T];{\cal H}) $, 故一定存在$ t_{1}\in[\delta, T], t_{2}\in[0, \delta] $, 使得

由(6.5)和(6.7)式可得

即(6.8)成立.

同理, 由(6.6)和(6.7)式得

因此(6.9)式成立. 证毕.

定理6.2  对于任意初始值$ {\cal Y}_{0}\in{\cal H} $以及样本时间$ \delta>0 $, 存在$ \widetilde{T}>\delta $$ \kappa\in(0, 1) $, 当$ T\geq\widetilde{T} $时, 使得

$ \begin{equation} V_{T}({\cal Y}_{T}^{\ast}(\delta, {\cal Y}_{0}, 0))\leq V_{T}({\cal Y}_{0}) -\kappa\int_{0}^{\delta}\ell({\cal Y}_{T}^{\ast}(t, {\cal Y}_{0}, 0), U_{T}^{\ast}(t, {\cal Y}_{0}, 0)){\rm d}t. \end{equation} $

成立.

  由定理6.1得

于是, 当$ T\rightarrow \infty $时, $ 1-\sigma_{2}(T)(\sigma_{1}(T)-1) = 1-\frac{\gamma_{1}^{2}(T)}{\xi^{2}\delta(T-\delta)}\rightarrow1 $. 因此, 存在$ \widetilde{T}>\delta $, 使得当$ T\geq\widetilde{T} $时, 存在$ \kappa\in(0, 1) $, 使得$ 1-\sigma_{2}(T)(\sigma_{1}(T)-1)>\kappa $. 因此(6.10)式成立. 证毕.

定理6.3  对于给定的样本时间$ \delta>0 $, 则存在$ \widetilde{T}>\delta $$ \kappa\in(0, 1) $, 以及对每一预测时间$ T\geq\widetilde{T} $以及初始值$ {\cal Y}_{0}\in{\cal H} $, 滚动时域控制$ U_{T}^{\ast}(\cdot) $使得

$ \begin{equation} \kappa V_{\infty}({\cal Y}_{0})\leq \kappa J_{\infty}({\cal Y}_{0}, U_{T}^{\ast}(\cdot) ) \leq V_{T}({\cal Y}_{0})\leq V_{\infty}({\cal Y}_{0}) \end{equation} $

成立. 进一步, 我们可以得到最优轨线是指数稳定的, 即存在只与$ \delta, \kappa $有关的正数$ M, \eta $使得

$ \begin{equation} \|{\cal Y}_{T}^{\ast}(t, {\cal Y}_{0}, 0)\|\leq M{\rm e}^{-\eta t}. \end{equation} $

成立.

  由于$ \kappa V_{\infty}({\cal Y}_{0})\leq \kappa J_{\infty}({\cal Y}_{0}, U_{T}^{\ast}(\cdot) ) $$ V_{T}({\cal Y}_{0})\leq V_{\infty}({\cal Y}_{0}) $显然成立. 因此, 我们只需证明$ \kappa J_{\infty}({\cal Y}_{0}, U_{T}^{\ast}(\cdot) ) \leq V_{T}({\cal Y}_{0}) $即可.

对于给定$ \delta>0 $, 取$ t_{k} = k\delta $, 由定理6.2可得, 存在$ \widetilde{T}>\delta $$ \kappa\in(0, 1) $, 当$ T\geq\widetilde{T} $时, 使得

$ \begin{eqnarray} && V_{T}({\cal Y}_{T}^{\ast}(t_{k+1}, {\cal Y}(t_{k}), t_{k}))\\ &\leq& V_{T}({\cal Y}_{T}^{\ast}(t_{k}, {\cal Y}(t_{k}), t_{k})) -\kappa\int_{t_{k}}^{t_{k+1}}\ell({\cal Y}_{T}^{\ast}(t, {\cal Y}(t_{k}), t_{k}), U_{T}^{\ast}(t, {\cal Y}(t_{k}), t_{k})){\rm d}t. \end{eqnarray} $

因此, 由递推得

$ \begin{equation} V_{T}({\cal Y}_{T}^{\ast}(t_{k+1}, {\cal Y}(t_{k}), t_{k})) \leq V_{T}({\cal Y}_{0}) -\kappa\int_{0}^{t_{k+1}}\ell({\cal Y}_{T}^{\ast}(t, {\cal Y}_{0}, 0), U_{T}^{\ast}(t, {\cal Y}_{0}, 0)){\rm d}t, k = 0, 1, 2, \cdots. \end{equation} $

上式蕴含着

$ \begin{equation} \kappa\int_{0}^{t_{k+1}}\ell({\cal Y}_{T}^{\ast}(t, {\cal Y}_{0}, 0), U_{T}^{\ast}(t, {\cal Y}_{0}, 0)){\rm d}t \leq V_{T}({\cal Y}_{0}). \end{equation} $

$ k\rightarrow \infty $, 则有

从而(6.11)式成立.

对于任意$ k\in {\Bbb N}^{+} $, 由(6.6)式得

$ \begin{eqnarray} && V_{T}({\cal Y}_{T}^{\ast}(t_{k}, {\cal Y}(t_{k-1}), t_{k-1}))-V_{T}({\cal Y}_{T}^{\ast}(t_{k-1}, {\cal Y}(t_{k-1}), t_{k-1}))\\ &\leq&-\kappa\int_{t_{k-1}}^{t_{k}}\ell({\cal Y}_{T}^{\ast}(t, {\cal Y}(t_{k-1}), t_{k-1}), U_{T}^{\ast}(t, {\cal Y}(t_{k-1}), t_{k-1})){\rm d}t\\ &\leq&-\kappa V_{\delta}({\cal Y}_{T}^{\ast}(t_{k-1}, {\cal Y}(t_{k-1}), t_{k-1})). \end{eqnarray} $

又由(6.1)和(6.2)式知, 对于任意$ {\cal Y}_{0}\in{\cal H} $, 我们有

因此

$ \begin{equation} V_{\delta}({\cal Y}_{T}^{\ast}(t_{k-1}, {\cal Y}(t_{k-1}), t_{k-1})) \geq\frac{\gamma_{2}(\delta)}{\gamma_{1}(T)} V_{T}({\cal Y}_{T}^{\ast}(t_{k-1}, {\cal Y}(t_{k-1}), t_{k-1})). \end{equation} $

再由(6.16)和(6.17)式得

$ \mu = 1-\frac{\kappa\gamma_{2}(\delta)}{\gamma_{1}(T)} $, 注意到$ 0<\gamma_{2}(\delta)\leq\gamma_{1}(\delta)\leq\gamma_{1}(T) $$ \kappa\in(0, 1) $, 所以, $ \mu\in(0, 1) $, 且对$ k\in{\Bbb N}^{+} $

$ \begin{equation} V_{T}({\cal Y}_{T}^{\ast}(t_{k}, {\cal Y}(t_{k-1}), t_{k-1})) \leq\mu V_{T}({\cal Y}_{T}^{\ast}(t_{k-1}, {\cal Y}(t_{k-1}), t_{k-1})). \end{equation} $

若再记$ \eta = \frac{\ln|\mu|}{\delta} $, 则对$ k\in{\Bbb N}^{+} $

$ \gamma = \frac{\gamma_{1}(T)}{\gamma_{2}(T)} $, 则对$ k\in{\Bbb N}^{+} $

$ \begin{eqnarray} \|{\cal Y}_{T}^{\ast}(t_{k}, {\cal Y}(t_{k-1}), t_{k-1})\|_{{\cal H}}^{2} \leq \gamma {\rm e}^{-\eta t_{k}}\|{\cal Y}_{0}\|_{{\cal H}}^{2}. \end{eqnarray} $

故对任意$ t>0 $, 存在$ k\in{\Bbb N}^{+} $, 使得$ t\in[k\delta, (k+1)\delta] = [t_{k}, t_{k+1}] $, 且由(2.4), (6.1)和(6.19)式得

$ M = \gamma C(1+\frac{2\gamma_{1}(T)}{\beta})\frac{1}{1-\frac{\kappa\gamma_{2}(\delta)}{\gamma_{1}(T)}}\|{\cal Y}_{0}\|_{{\cal H}}^{2} $, 故有$ \|{\cal Y}_{T}^{\ast}(t, {\cal Y}_{0}, 0)\|_{{\cal H}}^{2} \leq M {\rm e}^{-\eta t}. $证毕.

参考文献

Sadek I , Sloss J M , Bruch J C J , Adali S .

Optimal control of a Timoshenko beam by distributed force

Journal of Optimization Theory and Applications, 1986, 50 (3): 451- 461

DOI:10.1007/BF00938631      [本文引用: 1]

Zelikin M I , Manita L A .

Optimal control for a Timoshenko beam

C R Mecanique, 2006, 334 (4): 292- 297

URL    

Zhang C G , He Z R .

Optimality conditions for a Timoshenko beam equation with periodic constraint

Z Angew Math Phys, 2014, 65, 315- 324

DOI:10.1007/s00033-013-0333-1     

章春国, 刘宇标, 刘维维.

Timoshenko梁的最优控制问题

数学物理学报, 2018, 38A (3): 454- 466

DOI:10.3969/j.issn.1003-3998.2018.03.004      [本文引用: 1]

Zhang C G , Liu Y B , Liu W W .

Boundary optimal control for the Timoshenko beam

Acta Math Sci, 2018, 38A (3): 454- 466

DOI:10.3969/j.issn.1003-3998.2018.03.004      [本文引用: 1]

Campelo A D S , Almeida J D S , Santos M L .

Stability to the dissipative Reissner-Mindlin-Timoshenko acting on displacement equation

European Journal of Applied Mathematics, 2016, 27 (2): 157- 193

DOI:10.1017/S0956792515000467      [本文引用: 1]

Dalsen G V .

Stabilization of a thermoelastic Mindlin-Timoshenko plate model revisited

Z Angew Math Phys, 2013, 64 (4): 1305- 1325

DOI:10.1007/s00033-012-0289-6     

Dalsen G V .

Polynomial decay rate of a thermoelastic Mindlin-Timoshenko plate model with Dirichlet boundary conditions

Z Angew Math Phys, 2015, 66 (1): 113- 128

DOI:10.1007/s00033-013-0391-4     

Lagnese J E .

Boundary Stabilization of Thin Plates

Philadelphia, PA: Society for Industrial and Applied Mathematics, 1989,

[本文引用: 1]

Rao B .

Stabilization of elastic plates with dynamical boundary control

SIAM Journal on Control and Optimization, 2006, 36 (1): 148- 163

URL    

Rivera J E M , Oquendo H P .

Asymptotic Behavior of a Mindlin-Timoshenko Plate with Viscoelastic Dissipation on the Boundary

Funkcialaj Ekvacioj, 2003, 46 (3): 363- 382

DOI:10.1619/fesi.46.363     

Sare H .

On the stability of Mindlin-Timoshenko plates

Quarterly of Applied Mathematics, 2009, 67 (2): 249- 263

DOI:10.1090/S0033-569X-09-01110-2     

Dalsen G V .

Exponential stabilization of magnetoelastic waves in a Mindlin-Timoshenko plate by localized internal damping

Z Angew Math Phys, 2015, 66 (4): 1751- 1776

DOI:10.1007/s00033-015-0507-0     

Nicaise S .

Internal stabilization of a Mindlin-Timoshenko model by interior feedbacks

Mathematical Control and Related Fields, 2013, 1 (3): 331- 352

Rivera J E M , Qin Y .

Polynomial decay for the energy with an acoustic boundary condition

Applied Mathematics Letters, 2003, 16 (2): 249- 256

DOI:10.1016/S0893-9659(03)80039-3     

Avalos G , Toundykov D .

Boundary stabilization of structural acoustic interactions with interface on a Reissner-Mindlin plate

Nonlinear Analysis Real World Applications, 2011, 12 (6): 2985- 3013

URL    

Pokojovy M .

On stability of hyperbolic thermoelastic Reissner-Mindlin-Timoshenko plates

Mathematical Methods in the Applied Sciences, 2015, 38 (7): 1225- 1246

DOI:10.1002/mma.3140     

Komornik V .

Rapid boundary stabilization of linear distributed systems

SIAM Journal on Control and Optimization, 1997, 35 (5): 1591- 1613

DOI:10.1137/S0363012996301609      [本文引用: 2]

Azmi B , Kunisch K .

On the stabilizability of the Burgers equation by receding Horizon control

SIAM Journal on Control and Optimization, 2016, 54 (3): 1378- 1405

DOI:10.1137/15M1030352      [本文引用: 1]

Azmi B , Kunisch K .

Receding horizon control for the stabilization of the wave equation

Discrete and Continuous Dynamical Systems, 2017, 38 (2): 449- 484

[本文引用: 1]

Adams R A . Sobolev Spaces. New York: Acadamic Press, 1975

[本文引用: 1]

Lions J L. 分布系统的精确能控性、摄动和镇定. 严金海, 黄英, 译. 北京: 高等教育出版社, 2012

[本文引用: 1]

Lions J L. Controlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués//Translated by Yan J H, Huang Y. Beijing: Higher Education Press, 2012

[本文引用: 1]

/