数学物理学报, 2021, 41(5): 1270-1282 doi:

论文

二维定常Chaplygin气体绕直楔流动

贾嘉,

华东师范大学数学科学学院 上海 200241

The Two-Dimensional Steady Chaplygin Gas Flows Passing a Straight Wedge

Jia Jia,

School of Mathematical Sciences, East China Normal University, Shanghai 200241

收稿日期: 2020-07-29  

Received: 2020-07-29  

作者简介 About authors

贾嘉,E-mail:jmjvictory@163.com , E-mail:jmjvictory@163.com

Abstract

The purpose of this paper is to investigate the two-dimensional steady supersonic chaplygin gas flows passing a straight wedge. By the definition of Radon measure solution, the accurate expressions are obtained for all cases where the Mach number is greater than 1. It is quite different from the polytropic gas, for the chaplygin gas flows passing problems, there exists a Mach number $ M^{\ast}_{0} $, when the Mach number of incoming flows is greater than or equal to $ M^{\ast}_{0} $, the quality will be concentrated on the surface of the straight wedge. At this time, there are not piecewise smooth solutions in the Lebesgue sense. The limit analysis is used to prove that the limit obtained by Lebesgue integral is consistent with the solution obtained in the sence of Radon measure solution.

Keywords: Chaplygin gas ; Radon measure solution ; Riemann problem ; Hypersonic limit

PDF (349KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

贾嘉. 二维定常Chaplygin气体绕直楔流动. 数学物理学报[J], 2021, 41(5): 1270-1282 doi:

Jia Jia. The Two-Dimensional Steady Chaplygin Gas Flows Passing a Straight Wedge. Acta Mathematica Scientia[J], 2021, 41(5): 1270-1282 doi:

1 引言

本文考虑Chaplygin气体的二维定常等熵可压Euler方程组, 由如下质量和动量守恒方程组成

$ \begin{equation} \left\{\begin{array}{ll}(\rho u)_{x}+(\rho v)_{y} = 0, &\\(\rho u^{2}+p)_{x}+(\rho uv)_{y} = 0, &\\(\rho uv)_{x}+(\rho v^{2}+p)_{y} = 0, \end{array}\right. \end{equation} $

其中, $ \rho $$ (u, v) $分别表示质量密度和流体的速度, $ p $为压强, 状态方程为$ p = g(s)-\frac{f(s)}{\rho} $(参看文献[1-2]), 在等熵系统中$ s $为常数, 为方便起见, 取$ p = -\frac{1}{\rho} $.

Chaplygin气体在空气动力学中起着至关重要的作用, 其引入一方面作为用于近似计算空气动力学中机翼的升力问题[1], 另一方面是近年来研究较热的有关暗物质的模型[3]. 由此可见, 无论从理论还是从应用角度, Chaplygin气体在双曲守恒律方程的研究中占据着重要地位. 文献[4]中Qu和Yuan给出了Chaplygin气体一维活塞问题的Radon测度解的定义, 证明了当活塞运动的Mach数适当大时在活塞表面形成质量集中, 无法用Lebesgue积分解刻画, 而用Radon测度解来刻画能很好地解决这一问题, 得到解的存在性. 文献[5]中Qu和Yuan等证明了来流Mach数趋于无穷时, 会在楔体表面形成质量集中. 本文主要研究二维定常Chaplygin气体绕直楔流动的相关问题, 在Radon测度解的意义下, 对Mach数大于1和楔角在$ [0, \frac{\pi}{2}] $的情形进行完整分析.

方程组(1.1) 可写成一般的守恒律形式

$ \begin{equation} \partial_{x}F(U)+\partial_{y}G(U) = 0, \ U = (\rho, u, v)^{T}, \end{equation} $

其中$ F(U) = (\rho u, \rho u^{2}+p, \rho uv)^{T}, G(U) = (\rho v, \rho uv, \rho v^{2}+p)^{T} $.

直楔为$ \{(x, y)\in {{\Bbb R}} ^{2}:x\geq 0, 0\leq y\leq ax \} $, 其中$ a = \tan\theta $, $ \theta\in(0, \frac{\pi}{2}) $表示楔面的倾角.因此, 我们考虑的区域为$ \Omega = \{(x, y)\in {{\Bbb R}} ^{2}:x> 0, y >ax \} $. 直楔的表面为$ W = \{(x, y)\in {{\Bbb R}} ^{2}:x\geq 0, y = ax \} $.

假定气体在直楔表面满足滑移条件

$ \begin{equation} v = au . \end{equation} $

在直线$ I = \{(x, y)\in {{\Bbb R}} ^{2}:x = 0, y >0 \} $上, 气体的状态为

$ \begin{equation} U = U_{\infty}, \quad 在I上, \end{equation} $

其中$ U_{\infty} = (\rho_{\infty}, u_{\infty}, 0)^{T} $为常数.

经过量纲分析(参看文献[4]), 方程组(1.1) 的初值可化为

$ \begin{equation} U = U_{0} = (1, 1, 0)^{T}, \end{equation} $

且压强与马赫数的关系为

$ \begin{equation} p_{0} = -\frac{1}{M^{2}_{0}}, \end{equation} $

$ \begin{equation} p_{1} = -\frac{1}{\rho}\frac{1}{M^{2}_{0}}, \end{equation} $

其中$ M_{0} $为来流的马赫数, 由$ M_{0} = \frac{q}{c} $给出, $ q $为气体的速度大小, $ c $为音速, 满足$ c = \sqrt{\frac{\partial p}{\partial \rho}} $.

2 积分弱解及可解范围

定义2.1[5]   称$ U\in L^{\infty}(\Omega) $为方程(1.2)(1.3)(1.5) 的积分弱解, 如果对于任意$ \phi \in C^{1}_{0}({{\Bbb R}} ^{2}) $, 成立

$ \begin{equation} \int_{\Omega}(F(U)\partial_{x}\phi+G(U)\partial_{y}\phi){\rm d}x{\rm d}y = \int^{\infty}_{0}(aF(U|_{w})-G(U|_{w}))\phi(x, ax){\rm d}x -\int^{\infty}_{0}F(U_{0})\phi(0, y){\rm d}y. \end{equation} $

方程(1.2)(1.3)(1.5) 的求解构成了一个Riemann问题(参看文献[6-8]), 下文中我们将利用自相似方法构造特殊类型的解来解该Riemann问题. 假设Riemann问题的形式解为$ U(x, y) = V(\frac{x}{y}) $, 令$ \eta = \frac{x}{y} $, 且解具有分片常数的形式

在间断$ \eta = \frac{1}{\sigma} $处, $ V_{1} $$ \sigma $满足如下的Rankine-Hugoniot条件

$ \begin{equation} \left\{\begin{array}{ll} { } \sigma(\rho_{1} u_{1}-\rho_{0} u_{0}) = \rho_{1} v_{1}-\rho_{0} v_{0}, \\ { } \sigma(\rho_{1} u_{1}^{2}+p_{1}-\rho_{0} u_{0}^{2}-p_{0}) = \rho_{1} u_{1}v_{1}-\rho_{0} u_{0}v_{0}, \\ { } \sigma(\rho_{1} u_{1}v_{1}-\rho_{0} u_{0}v_{0}) = \rho_{1} v_{1}^{2}+p_{1}-\rho_{0}v_{0}^{2}-p_{0}, \end{array}\right. \end{equation} $

将式(1.6)和(1.7) 代入式(2.2), 得到波后Chaplygin气体的物理量为

$ \begin{equation} \rho_{1} = \frac{\sqrt{M^{2}_{0}-1}+\tan\theta}{\sqrt{M^{2}_{0}-1}+(1-M^{2}_{0})\tan\theta}, \end{equation} $

$ \begin{equation} p_{1} = -\frac{1}{M^{2}_{0}}\frac{\sqrt{M^{2}_{0}-1}+(1-M^{2}_{0})\tan\theta}{\sqrt{M^{2}_{0}-1}+\tan\theta}, \end{equation} $

$ \begin{equation} v_{1} = -\sqrt{M^{2}_{0}-1}(u_{1}-1), \end{equation} $

$ \begin{equation} \sigma = \frac{1}{\sqrt{M^{2}_{0}-1}}. \end{equation} $

当激波间断与直楔表面重合, 此时满足$ \sigma = \frac{1}{\sqrt{M^{2}_{0}-1}} = \tan\theta $, 解得$ M_{0} = \frac{\sqrt{1+\tan^{2}\theta}}{\tan\theta} = \frac{\sqrt{1+a^{2}}}{a} $, 称$ \frac{\sqrt{1+a^{2}}}{a} $为来流Mach数的临界值, 记为$ M^{\ast}_{0} $.

由式(2.3) 知, 当$ M_{0}\rightarrow M^{\ast}_{0} $时, 成立

$ \begin{equation} \lim\limits_{M_{0}\rightarrow M^{\ast}_{0}}\rho_{1} = \lim\limits_{M_{0}\rightarrow M^{\ast}_{0}}\frac{\sqrt{M^{2}_{0}-1}+\tan\theta}{\sqrt{M^{2}_{0}-1}+(1-M^{2}_{0})\tan\theta} = \infty, \end{equation} $

由此可见, 当来流Mach数$ M_{0} $趋于$ M^{\ast}_{0} $时, 密度趋于无穷, 此时不能用积分弱解来刻画, 所以在下文第3节我们引入Radon测度解的定义, 把积分弱解进行了推广.

在第4节我们将详细地讨论来流Mach数$ M_{0} $趋于三种极限情况:

为方便后文讨论, 我们先给出如下引理.

引理2.1  方程(1.2)(1.3)(1.5) 存在含激波的分片光滑解的条件为来流Mach数$ M_{0} $满足$ 1<M_{0}<\frac{\sqrt{1+a^{2}}}{a} $, 且波后的Mach数$ M_{1}>1 $, 为超音速流.

   若方程(1.2)(1.3)(1.5) 存在积分弱解, 则在间断处相应的Rankine-Hugoniot条件成立, 由密度的非负性结合表达式(2.3) 可知, 来流Mach数$ M_{0} $的范围为$ 1<M_{0}<M^{\ast}_{0} $.

波后的Mach数:

$ \begin{eqnarray} M_{1} = \frac{q_{1}}{c_{1}} = \frac{\sqrt{u^{2}_{1}+v^{2}_{1}}}{\sqrt{\frac{\partial P_{1}}{\partial\rho_{1}}}} = \sqrt{u^{2}_{1}+(M^{2}_{0}-1)(u_{1}-1)^{2}}\rho_{1}M_{0}, \end{eqnarray} $

将式(1.7)和(2.3)代入式(2.8), 得

因为来流Mach数$ M_{0} $的范围为$ 1<M_{0}<\frac{\sqrt{1+a^{2}}}{a} $, 所以$ \frac{1}{M_{0}}-\sqrt{1-\frac{1}{M^{2}_{0}}}a\in(0, 1) $, 于是

得出波后的Mach数$ M_{1}>1 $, 为超音速流.

引理2.2  当来流Mach数趋于$ M_0^{*-} $时, 对于波后Chaplygin气体物理量, 我们有下面的结果

$ \begin{equation} \lim\limits_{M_{0}\rightarrow M^{\ast-}_{0}}u_{1} = \frac{1}{1+a^{2}}, \end{equation} $

$ \begin{equation} \lim\limits_{M_{0}\rightarrow M^{\ast-}_{0}}v_{1} = \frac{a}{1+a^{2}}, \end{equation} $

$ \begin{equation} \lim\limits_{M_{0}\rightarrow M^{\ast-}_{0}}p_{1} = 0, \end{equation} $

$ \begin{equation} \lim\limits_{M_{0}\rightarrow M^{\ast-}_{0}}(1-a{\sqrt{M^{2}_{0}-1}})\rho_{1} = a^{2}+1, \end{equation} $

$ \begin{equation} \lim\limits_{M_{0}\rightarrow M^{\ast-}_{0}}\rho_{1}(\sigma-a) = a^{3}+a, \end{equation} $

$ \begin{equation} \lim\limits_{M_{0}\rightarrow M^{\ast-}_{0}}\frac{p_{1}}{\rho_{1}} = 0 . \end{equation} $

   因为$ M_{0}\rightarrow M^{\ast-}_{0} $时, 极限过程没有奇性产生, 所以根据文献[5]中的结论, 可得式(2.9)和(2.10).

对表达式(2.3)(2.4), 直接取极限$ M_{0}\rightarrow M^{\ast-}_{0} $, 可得式(2.11)(2.14).

结合式(2.3)和(2.6), 得

引理$ 2.2 $得证.

注2.1  通过引理2.2, 可知来流Mach数趋于$ M_0^{*-} $时, 激波斜率趋于楔面的斜率$ a $, 密度会趋于无穷.

综上, 描述Chaplygin气体绕流问题的方程(1.2)(1.3)(1.5) 存在分片常数$ V(\eta) $形式解的条件为来流Mach数$ M_{0} $的范围为$ 1<M_{0}<M^{\ast}_{0} $, 当Mach数$ M_{0} $大于等于$ M^{\ast}_{0} $时, 该问题不存在分片常数的积分弱解, 并且当$ M_{0} $趋于$ M^{\ast}_{0} $时, 波后的密度趋于无穷, 不仅如此, 质量还会在楔面上形成集中现象. 由此, 我们考虑在Radon测度解的框架下来研究该问题解的存在性, 并且证明上述积分弱解也是Radon测度解. 在这个意义上, Radon测度解是积分弱解的一个推广, 并且确实可以解决利用积分弱解无法刻画的问题.

3 Radon测度解及一般$ M_{0} $的可解性

$ B $为Euclid平面$ {{\Bbb R}} ^{2} $上的Borel $ \sigma $代数, 考虑$ ( {{\Bbb R}} ^{2}, B) $上的Radon测度, 记做

$ \begin{equation} \langle m, \phi\rangle = \int_{R^{2}}\phi(x, y)m({\rm d}x{\rm d}y), \end{equation} $

其中配对关系为Radon测度$ m $和试验函数$ \phi \in C_{0}({{\Bbb R}} ^{2}) $, $ \mu\ll\nu $表示$ \mu $关于$ \nu $绝对连续(参看文献[9-10]).

定义3.1[5]   令$ L $为Lipschitz曲线, 其参数方程为$ \bigg\{\begin{array}{cc}x = x(t), &\\y = y(t), &\end{array} t\in[0, T) $, $ \omega_{L}(t)\in L^{1}_{loc}(0, T) $.$ L\subset R^{2} $上带有权重$ w_{L} $的Dirac测度[11]由下述等式给出

$ \begin{equation} \langle \omega_{L}\delta_{L}, \phi\rangle = \int^{T}_{0}\omega_{L}(t)\phi(x(t), y(t))\sqrt{x'^{2}(t)+y'^{2}(t)}{\rm d}t, \quad \forall \phi \in C_{0}({{\Bbb R}} ^{2}) . \end{equation} $

定义3.2[5]   对固定Mach数$ M_{0} $, $ 0<M_{0}\leq \infty $, 令$ \varrho, m^{0}, m^{1}, m^{2}, n^{0}, n^{1}, n^{2}, \wp $$ \overline{\Omega} $上的Radon测度, $ \omega_{p}\in L^{1}_{loc}({{\Bbb R}} ^{+}\bigcup \{0\}) $, 且$ \omega_{p}\geq0 $, 称$ (\varrho, u, v, \omega_{p}) $为方程(1.2)(1.3)(1.5) 的Radon测度解, 如果满足

i) $ \varrho $为非负Radon测度, 使得$ \wp\ll\varrho, (m^{0}, n^{0})\ll\varrho $, $ (m^{1}, n^{1})\ll(m^{0}, n^{0}) $, $ (m^{2}, n^{2})\ll(m^{1}, n^{1}) $, 且相应的Radon-Nikodym导数$ \varrho $-a.e. 意义下满足

$ \begin{equation} u = \frac{m^{0}({\rm d}x{\rm d}y)}{\varrho({\rm d}x{\rm d}x)} = \frac{\frac{m^{1}({\rm d}x{\rm d}y)}{\varrho({\rm d}x{\rm d}x)}}{\frac{m^{0}({\rm d}x{\rm d}y)}{\varrho({\rm d}x{\rm d}x)}} = \frac{\frac{n^{1}({\rm d}x{\rm d}y)}{\varrho({\rm d}x{\rm d}x)}}{\frac{n^{0}({\rm d}x{\rm d}y)}{\varrho({\rm d}x{\rm d}x)}}, \end{equation} $

$ \begin{equation} v = \frac{n^{0}({\rm d}x{\rm d}y)}{\varrho({\rm d}x{\rm d}y)} = \frac{\frac{m^{2}({\rm d}x{\rm d}y)}{\varrho({\rm d}x{\rm d}y)}}{\frac{m^{0}({\rm d}x{\rm d}y)}{\varrho({\rm d}x{\rm d}y)}} = \frac{\frac{n^{2}({\rm d}x{\rm d}y)}{\varrho({\rm d}x{\rm d}y)}}{\frac{n^{0}({\rm d}x{\rm d}y)}{\varrho({\rm d}x{\rm d}y)}}, \end{equation} $

ii) $ \forall \phi \in C^{1}_{0}({{\Bbb R}} ^{2}) $, 成立

$ \begin{equation} \langle m^{0}, \partial_{x}\phi\rangle+\langle n^{0}, \partial_{y}\phi\rangle+\int^{\infty}_{0}(\rho_{0}u_{0})\phi(0, y){\rm d}y = 0, \end{equation} $

$ \begin{equation} \langle m^{1}, \partial_{x}\phi\rangle+\langle n^{1}, \partial_{y}\phi\rangle+\langle \wp, \partial_{x}\phi\rangle+\langle \omega_{p} n_{1}\delta_{w}, \phi\rangle+\int^{\infty}_{0}(\rho_{0}u^{2}_{0}+p_{0})\phi(0, y){\rm d}y = 0, \end{equation} $

$ \begin{equation} \langle m^{2}, \partial_{x}\phi\rangle+\langle n^{2}, \partial_{y}\phi\rangle+\langle \wp, \partial_{y}\phi\rangle+\langle \omega_{p} n_{2}\delta_{w}, \phi\rangle+\int^{\infty}_{0}(\rho_{0}u_{0}v_{0})\phi(0, y){\rm d}y = 0. \end{equation} $

注3.1  $ \overrightarrow{n} = (n_{1}, n_{2}) = \frac{(-a, 1)}{\sqrt{1+a^{2}}} $为直楔的单位内法向量.

引理3.1  定义3.2中Radon测度解是定义2.1中积分弱解的推广.

   由积分弱解的定义(2.1) 式, 变形得

结合散度定理[12], 式(2.1)可改写为

这与定义3.2中Radon测度解的定义一致, 由此可见, 积分弱解也是Radon测度解, 即定义3.2中Radon测度解是定义2.1中积分弱解的推广.

由引理2.1知, 方程(1.2)(1.3)(1.5) 存在含激波的分片光滑解的条件为来流Mach数$ M_{0} $满足$ 1<M_{0}<\frac{\sqrt{1+a^{2}}}{a} $. 当来流Mach数大于等于$ \frac{\sqrt{1+a^{2}}}{a} $时, 不能用积分弱解表示, 此时考虑Radon测度解.

下面我们给出当来流Mach数$ M_{0} $大于等于临界Mach数$ M^{\ast}_{0} $时, 方程(1.2)(1.3)(1.5) 的Radon测度解的存在性.

引理3.2  来流Mach数$ M_{0} $满足$ M_{0}\geq M^{\ast}_{0} = \frac{\sqrt{1+a^{2}}}{a} $时, 方程(1.2)(1.3)(1.5) 存在Radon测度解.

   要证明方程(1.2)(1.3)(1.5) 存在Radon测度解, 只需将其Radon测度解求解出来即完成证明.

$ I_{\Omega} $为区域$ \Omega $上的特征函数, 即$ I_{\Omega}(x, y) = \bigg\{\begin{array}{cc}1, &(x, y)\in\Omega\\0, & \rm{其它} \end{array} $.

$ \begin{equation} m^{0} = \rho_{0}u_{0}I_{\Omega}L^{2}+w^{0}_{m}(x)\delta_{w} = I_{\Omega}L^{2}+w^{0}_{m}(x)\delta_{w}, \end{equation} $

$ \begin{equation} n^{0} = \rho_{0}v_{0}I_{\Omega}L^{2}+w^{0}_{n}(x)\delta_{w} = w^{0}_{n}(x)\delta_{w}, \end{equation} $

$ \begin{equation} \wp = -\frac{1}{M^{2}_{0}}I_{\Omega}L^{2}, \end{equation} $

$ \begin{equation} m^{1} = I_{\Omega}L^{2}+w^{1}_{m}(x)\delta_{w}, \end{equation} $

$ \begin{equation} n^{1} = w^{1}_{n}(x)\delta_{w}, \end{equation} $

$ \begin{equation} m^{2} = w^{2}_{m}(x)\delta_{w}, \end{equation} $

$ \begin{equation} n^{2} = w^{2}_{n}(x)\delta_{w}, \end{equation} $

其中, $ w^{0}_{m}(x), w^{1}_{m}(x), w^{2}_{m}(x), w^{0}_{n}(x), w^{1}_{n}(x), w^{2}_{n}(x) $为待定函数.

将式(3.8)(3.9) 代入式(3.5), 得

$ \begin{eqnarray} && -\sqrt{1+a^{2}}w^{0}_{m}(0)\phi(0, 0)+a\int^{\infty}_{0}\phi(x, ax){\rm d}x +\sqrt{1+a^{2}}\int^{\infty}_{0}(-aw^{0}_{m}(x)+w^{0}_{n}(x))\partial_{y}\phi(x, ax){\rm d}x{}\\ && - \sqrt{1+a^{2}}\int^{\infty}_{0}\frac{\rm d}{{\rm d}x}w^{0}_{m}(x)\phi(x, ax){\rm d}x = 0 . \end{eqnarray} $

$ \phi $的任意性, 得

解得

$ \begin{equation} \left\{\begin{array}{ll}{ } w^{0}_{m}(x) = \frac{a}{\sqrt{1+a^{2}}}x, \\ [3mm]{ } w^{0}_{n}(x) = \frac{a^{2}}{\sqrt{1+a^{2}}}x.\end{array}\right. \end{equation} $

类似地, 将式(3.10)(3.11)(3.12) 代入式(3.6), 得

$ \begin{equation} \left\{\begin{array}{ll} w^{1}_{n}(x) = aw^{1}_{m}(x), \\{ } a(1-\frac{1}{M^{2}_{0}})+\sqrt{1+a^{2}}w_{p}n_{1} = \sqrt{1+a^{2}}\frac{\rm d}{{\rm d}x}w^{1}_{m}(x), \\ [2mm]w^{1}_{m}(0) = 0.\end{array}\right. \end{equation} $

将式(3.10)(3.13)(3.14) 代入式(3.7), 得

$ \begin{equation} \left\{\begin{array}{ll}w^{2}_{m}(0) = 0, \\{ } \frac{1}{M^{2}_{0}}+\sqrt{1+a^{2}}[w_{p}n_{2}-\frac{\rm d}{{\rm d}x}w^{2}_{m}(x)] = 0, \\{ } w^{2}_{n}(x) = aw^{2}_{m}(x), \end{array}\right. \end{equation} $

利用直楔上的滑移条件(1.3), 结合式(3.17)(3.18), 得到

$ \begin{equation} \left\{\begin{array}{ll}{ } w^{1}_{m}(x) = \frac{ax}{(1+a^{2})\sqrt{1+a^{2}}}, \\{ } w^{2}_{m}(x) = \frac{a^{2}x}{(1+a^{2})\sqrt{1+a^{2}}}, \\{ } w_{p}(x) = \frac{a^{2}}{1+a^{2}}-\frac{1}{M^{2}_{0}}, \\{ } w^{1}_{n}(x) = \frac{a^{2}x}{(1+a^{2})\sqrt{1+a^{2}}}, \\{ } w^{2}_{n}(x) = \frac{a^{3}x}{(1+a^{2})\sqrt{1+a^{2}}} .\end{array}\right. \end{equation} $

综上, 描述Chaplygin气体绕流问题的方程(1.2)(1.3)(1.5) 的Radon测度解的密度测度为

$ \begin{equation} \varrho = I_{\Omega}L^{2}+a\sqrt{1+a^{2}}x\delta_{w}, \end{equation} $

速度为

$ \begin{equation} u = I_{\Omega}+\frac{1}{1+a^{2}}I_{w}, \end{equation} $

$ \begin{equation} v = \frac{a}{1+a^{2}}I_{w}. \end{equation} $

于是方程(1.2)(1.3)(1.5) 的Radon测度解的存在性得证.

4 几类极限的讨论

在第3节中, 我们讨论了描述Chaplygin气体绕流问题方程的Radon测度解及一般Mach数$ M_{0} $的可解性, 本节将详细地讨论来流Mach数$ M_{0} $趋于三种极限状态情况:$ M_{0}\rightarrow M^{\ast-}_{0} $ (引理4.1), $ M_{0}\rightarrow \infty $ (引理4.2), $ M_{0}\rightarrow 1^{+} $ (引理4.3).

引理4.1  来流Mach数$ M_{0}\rightarrow M^{\ast-}_{0} $时, 方程(1.2)(1.3)(1.5) 通过积分弱解的定义取极限得到的结果与构造方法得到的Radon测度解结果相同, Radon测度解弱收敛到密度包含Dirac测度的奇异测度解, 其中Dirac测度的支撑在直楔表面.

   由第2节可知, 对任意试验函数$ \phi \in C_{0}({{\Bbb R}} ^{2}) $, 由于$ \eta = \frac{x}{y} $, 有

$ \begin{eqnarray} \int^{\frac{1}{a}}_{0}\rho v\phi(\eta){\rm d}\eta& = &\int^{\frac{1}{\sigma}}_{0}\rho_{0} v_{0}\phi(\eta){\rm d}\eta + \int^{\frac{1}{a}}_{\frac{1}{\sigma}}\rho_{1} v_{1}\phi(\eta){\rm d}\eta\\& = &\int^{\frac{1}{\sigma}}_{0}\phi(\eta){\rm d}\eta+\rho_{1} v_{1}\int^{\frac{1}{a}}_{\frac{1}{\sigma}}\phi(\eta){\rm d}\eta. \end{eqnarray} $

由于$ { } \lim\limits_{M_{0}\rightarrow M^{\ast-}_{0}} \sigma = a $, 所以

$ \begin{equation} \lim\limits_{M_{0}\rightarrow M^{\ast-}_{0}}\int^{\frac{1}{\sigma}}_{0}\phi(\eta){\rm d}\eta = \int^{\frac{1}{a}}_{0}\phi(\eta){\rm d}\eta, \end{equation} $

$ \begin{eqnarray} \lim\limits_{M_{0}\rightarrow M^{\ast-}_{0}}\rho_{1} v_{1}\int^{\frac{1}{a}}_{\frac{1}{\sigma}}\phi(\eta){\rm d}\eta & = &\lim\limits_{M_{0}\rightarrow M^{\ast-}_{0}}\rho_{1} v_{1}(\frac{1}{a}-\frac{1}{\sigma})\frac{1}{\frac{1}{a}-\frac{1}{\sigma}}\int^{\frac{1}{a}}_{\frac{1}{\sigma}}\phi(\eta){\rm d}\eta\\& = &\frac{(a^{3}+a)\frac{a}{1+a^{2}}}{a^{2}}\phi(\frac{1}{a}) = \phi(\frac{1}{a}). \end{eqnarray} $

$ \psi(x, y) \in C_{0}({{\Bbb R}} ^{2}) $, 满足$ \phi(\eta, y) = \psi(\eta y, y) $, 则

得到

$ \begin{equation} w^{0}_{n}(x) = \frac{a^{2}x}{\sqrt{1+a^{2}}}, \end{equation} $

同理, 可得

$ \begin{equation} w^{1}_{n}(x) = \frac{a^{2}x}{(1+a^{2})\sqrt{1+a^{2}}}, \end{equation} $

$ \begin{equation} w^{2}_{n}(x) = \frac{a^{3}x}{(1+a^{2})\sqrt{1+a^{2}}}, \end{equation} $

这与第3节中求得的式(3.16)和(3.19)一致.

其次, 由压强的关系(1.6)–(1.7), 知

$ \begin{equation} p(x, y) = \left\{\begin{array}{ll}{ } p_{0} = -\frac{1}{M^{2}_{0}, }&{ } 0\leq \frac{x}{y} <\frac{1}{\sigma}, \\p_{1}, &{ } \frac{1}{\sigma}<\frac{x}{y}\leq\frac{1}{a}.\end{array}\right. \end{equation} $

$ M_{0}\rightarrow M^{\ast-}_{0} $时, 有$ p_{0}\rightarrow -\frac{a^{2}}{a^{2}+1}, p_{1}\rightarrow 0, p\rightarrow -\frac{a^{2}}{a^{2}+1} $, 在上述测度收敛意义下成立, 于是得到

对式(4.4)–(4.6)关于$ M_{0}\rightarrow M^{\ast-}_{0} $取极限, 得

$ \begin{equation} (n^{0}(M_{0}), n^{1}(M_{0}), n^{2}(M_{0}))\rightarrow (n^{0}, n^{1}, n^{2}) . \end{equation} $

同理, 可得

$ \begin{equation} (m^{0}(M_{0}), m^{1}(M_{0}), m^{2}(M_{0}))\rightarrow (m^{0}, m^{1}, m^{2}) . \end{equation} $

则式(2.1) 可以改写为

$ \begin{equation} \langle m^{0}, \partial_{x}\phi\rangle+\langle n^{0}, \partial_{y}\phi\rangle+\int^{\infty}_{0}\phi(0, y){\rm d}y = 0, \end{equation} $

$ \begin{eqnarray} && \langle m^{1}, \partial_{x}\phi\rangle+\langle n^{1}, \partial_{y}\phi\rangle+\langle \wp, \partial_{x}\phi\rangle-\int^{\infty}_{0}\frac{a}{\sqrt{a^{2}+1}}p_{1}\phi(x, ax)\sqrt{1+a^{2}}{\rm d}x {}\\&& +\int^{\infty}_{0}(1+p_{0})\phi(0, y){\rm d}y = 0, \end{eqnarray} $

$ \begin{equation} \langle m^{2}, \partial_{x}\phi\rangle+\langle n^{2}, \partial_{y}\phi\rangle+\langle \wp, \partial_{x}\phi\rangle+\int^{\infty} _{0}\frac{1}{\sqrt{a^{2}+1}}p_{1}\phi(x, ax)\sqrt{1+a^{2}}{\rm d}x = 0. \end{equation} $

由于$ \langle\wp, \phi\rangle = \int_{\Omega}p\phi {\rm d}x{\rm d}y $, 所以$ \langle\wp, \phi\rangle\rightarrow -\frac{a^{2}}{a^{2}+1}\int_{\Omega} \phi {\rm d}x{\rm d}y = 0, $得到

$ \begin{equation} -\int^{\infty}_{0}\frac{a}{\sqrt{a^{2}+1}}p_{1}\phi(x, ax)\sqrt{1+a^{2}}{\rm d}x\rightarrow \langle w_{p}n_{1}\delta_{w}, \phi \rangle , \end{equation} $

$ \begin{equation} \int^{\infty}_{0}\frac{1}{\sqrt{a^{2}+1}}p_{1}\phi(x, ax)\sqrt{1+a^{2}}{\rm d}x\rightarrow \langle w_{p}n_{2}\delta_{w}, \phi \rangle . \end{equation} $

根据式(4.8)–(4.9), 当$ M_{0}\rightarrow M^{\ast-}_{0} $时, 式(3.5)–(3.7) 成立.

注4.1  由第1节可知, 楔面的斜率$ a = \tan\theta $, $ \theta\in(0, \frac{\pi}{2}) $表示楔面的倾角, 当$ \theta = 0 $时, $ a = 0 $, 此时$ \frac{\sqrt{1+a^{2}}}{a} = \infty $, 该情形归结为下文引理4.2;当$ \theta = \frac{\pi}{2} $时, $ a = \infty $, 此时$ \frac{\sqrt{1+a^{2}}}{a} = 1 $, 该情形归结为下文引理4.3.

引理4.2  来流Mach数$ M_{0}\rightarrow \infty $时, 得到极限流

   当$ M_{0}\geq M^{\ast}_{0} $时, 不存在积分弱解意义下形如$ V(\eta) $的分片常数解, 此时考虑Radon测度解. 按照第3节中定义3.2构造Radon测度解, 经过计算, 得到如下结果

$ \begin{equation} \left\{\begin{array}{ll}{ } w^{0}_{m}(x) = \frac{a}{\sqrt{1+a^{2}}}x, \\{ } w^{0}_{n}(x) = \frac{a^{2}}{\sqrt{1+a^{2}}}x, \\{ } w^{1}_{m}(x) = \frac{ax}{(1+a^{2})\sqrt{1+a^{2}}}, \\{ } w^{1}_{n}(x) = \frac{a^{2}x}{(1+a^{2})\sqrt{1+a^{2}}}, \\{ } w^{2}_{m}(x) = \frac{a^{2}x}{(1+a^{2})\sqrt{1+a^{2}}}, \\{ } w^{2}_{n}(x) = \frac{a^{3}x}{(1+a^{2})\sqrt{1+a^{2}}}, \\{ } w_{p}(x) = \frac{a^{2}}{1+a^{2}}-\frac{1}{M^{2}_{0}} .\end{array}\right. \end{equation} $

$ M_{0}\rightarrow \infty $时, 有

$ \begin{equation} \left\{\begin{array}{ll}{ } w^{0}_{n}(x)\rightarrow \frac{a^{2}}{\sqrt{1+a^{2}}}x, \\ { } w^{1}_{n}(x)\rightarrow \frac{a^{2}}{(1+a^{2})\sqrt{1+a^{2}}}x, \\ { } w^{2}_{n}(x)\rightarrow \frac{a^{3}}{(1+a^{2})\sqrt{1+a^{2}}}x . \end{array}\right. \end{equation} $

$ \begin{equation} \left\{\begin{array}{ll} { } w^{0}_{m}(x)\rightarrow \frac{a}{\sqrt{1+a^{2}}}x, \\ { } w^{1}_{m}(x)\rightarrow \frac{a}{(1+a^{2})\sqrt{1+a^{2}}}x, \\ { } w^{2}_{m}(x)\rightarrow \frac{a^{2}}{(1+a^{2})\sqrt{1+a^{2}}}x . \end{array}\right. \end{equation} $

该结果与文献[5]中多方气体的结果一致.

注4.2  通过引理4.2, 可知来流Mach数$ M_{0} $趋于无穷时, 在定义3.2 Radon测度解意义下得到极限流, 结果与文献[5]中多方气体结果相同.

引理4.3  来流Mach数$ M_{0}\rightarrow 1^{+} $时, 激波斜率趋于无穷, 此时激波极限位置垂直于来流, 得到密度趋于无穷的静止气体.

   当来流Mach数$ M_{0} $趋于$ 1^{+} $时, 我们有如下的结果

$ \begin{equation} \lim\limits_{M_{0}\rightarrow 1^{+}} u_{1} = 0, \end{equation} $

$ \begin{equation} \lim\limits_{M_{0}\rightarrow 1^{+}} v_{1} = 0, \end{equation} $

$ \begin{equation} \lim\limits_{M_{0}\rightarrow 1^{+}} p_{1} = 0, \end{equation} $

$ \begin{equation} \lim\limits_{M_{0}\rightarrow 1^{+}} \sqrt{M^{2}_{0}-1}\rho_{1} = a, \end{equation} $

$ \begin{equation} \lim\limits_{M_{0}\rightarrow 1^{+}}\frac{ p_{1}}{\rho_{1}} = 0, \end{equation} $

$ \begin{equation} \lim\limits_{M_{0}\rightarrow 1^{+}} \frac{1}{\sigma} = 0 . \end{equation} $

由式(2.5) 得

又由滑移条件(1.3) 知, $ v $$ u $为同阶量, 所以式(4.18)(4.19) 成立.

对表达式(2.4), 直接取极限$ M_{0}\rightarrow 1^{+} $, 可得式(4.20).

由式(2.3)–(2.4) 知

由式(2.6) 知

此时激波斜率趋于无穷, 激波极限位置垂直于来流.由式(4.1) 知

$ \begin{eqnarray} \int^{\frac{1}{a}}_{0}\rho v\phi(\eta){\rm d}\eta = \int^{\frac{1}{\sigma}}_{0}\phi(\eta){\rm d}\eta+\rho_{1}v_{1}\int^{\frac{1}{a}}_{\frac{1}{\sigma}}\phi(\eta){\rm d}\eta, \end{eqnarray} $

$ \lim\limits_{M_{0}\rightarrow 1^{+}} \frac{1}{\sigma} = 0 $, 所以得到

由式(2.3)和(2.5)得

所以

进而

得到

又因为

同理, 将上述过程中$ \rho_{1}v_{1} $换为$ \rho_{1}u_{1}v_{1} $, $ \rho_{1}v^{2}_{1}+p_{1} $, 得到

由式(2.3) 知

此时密度趋于无穷, 又因为

同上述过程类似, 可得

所以, 当来流Mach数$ M_{0}\rightarrow 1^{+} $时, 得到密度趋于无穷的静止气体.

注4.3  通过引理4.3, 可知来流Mach数$ M_{0} $趋于$ 1^{+} $时, 激波斜率趋于无穷, 激波极限位置垂直于来流, 波后Chaplygin气体静止.

5 主要结果

根据前面的讨论, 可以总结得到如下定理:

定理5.1  当来流Mach数$ M_{0}>1 $时, 描述Chaplygin气体绕流问题方程(1.2)(1.3)(1.5) 存在Radon测度解. 特别地

来流Mach数$ M_{0} $范围为$ 1<M_{0}<M^{\ast}_{0} $时, 此时$ \sigma <a = \tan\theta $, 方程(1.2)(1.3)(1.5) 存在定义2.1积分弱解意义下间断解, 且波后的Mach数恒大于1, 为超音速流. 进一步, 当$ M_{0}\rightarrow 1^{+} $时, 得到密度趋于无穷的静止气体.

来流Mach数$ M_{0}\geq M^{\ast}_{0} $时, 方程(1.2)(1.3)(1.5) 存在Radon测度解, 且当$ M_{0}\rightarrow M^{\ast-}_{0} $时, 通过定义2.1积分弱解取极限得到的结果与构造方法得到的Radon测度解结果相同, Radon测度解弱收敛到密度包含Dirac测度的奇异测度解, 其中Dirac测度的支撑在直楔表面. 进一步, 当$ M_{0}\rightarrow \infty $时, 得到极限流, 与文献[5]中多方气体结果相同.

参考文献

Chaplygin S .

On gas jets

Sci Men Moscow Univ Math Phys, 1904, 21, 1- 121

[本文引用: 2]

Serre D .

Multidimensional shock interaction for a Chaplygin gas

Arch Rational Mech Anal, 2009, 191, 539- 577

DOI:10.1007/s00205-008-0110-z      [本文引用: 1]

Setare M R .

Holographic Chaplygin gas model

Phys Lett B, 2007, 648, 329- 332

DOI:10.1016/j.physletb.2007.03.025      [本文引用: 1]

Qu A F , Yuan H R .

Measure solutions of one-dimensional piston problem for compressible Euler equations of Chaplygin gas

J Math Anal Appl, 2020, 481 (1): 123468

URL     [本文引用: 2]

Qu A F , Yuan H R , Zhao Q .

Hypersonic limit of two-dimensional steady compressible Euler flows passing a straight wedge

Z Angew Math Mech, 2020, 100 (3): e201800225

URL     [本文引用: 8]

Lax P . Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. Philadelphia: SIAM, 1973

[本文引用: 1]

Smoller J . Shock Waves and Reaction-Diffusion Equations. New York: Springer-Verlag, 1994

Bressan A . Hyperbolic Systems of Conservation Laws: The One-Dimensional Cauchy Problem. Oxford: Oxford University Press, 2000

[本文引用: 1]

Rudin W . Real and Complex Analysis. New York: McGraw-Hill, 1974

[本文引用: 1]

Folland G B . Real Analysis, Pure and Applied Mathematics. New York: John Wiley-Sons, 1999

[本文引用: 1]

Hormander L . The Analysis of Linear Partial Differential Operators. New York: Springer-Verlag, 1983

[本文引用: 1]

Evans L C . Partial Differential Equations. New York: American Mathematical Society, 2010

[本文引用: 1]

/