数学物理学报, 2021, 41(4): 978-988 doi:

论文

因子von Neumann代数上的非线性$\xi$-Jordan *-三重可导映射

张芳娟,1, 朱新宏2

Nonlinear $\xi$-Jordan *-Triple Derivable Mappings on Factor von Neumann Algebras

Zhang Fangjuan,1, Zhu Xinhong2

通讯作者: 张芳娟, E-mail: zhfj888@xupt.edu.cn

收稿日期: 2020-08-10  

基金资助: 国家自然科学基金.  11601420
陕西省自然科学基础研究计划资助项目.  2018JM1053

Received: 2020-08-10  

Fund supported: the NSFC.  11601420
the Natural Science Basic Research Plan in Shaanxi Province.  2018JM1053

Abstract

Let ${\cal A}$ be a factor von Neumann algebra and $\xi$ be a non-zero complex number. A nonlinear map $\phi:\mathcal A\rightarrow\mathcal A$ has been demonstrated to satisfy $\phi(A\diamond_{\xi}B\diamond_{\xi}C)=\phi(A)\diamond_{\xi}B\diamond_{\xi}C+A\diamond_{\xi}\phi(B)\diamond_{\xi}C+A\diamond_{\xi}B\diamond_{\xi}\phi(C)$ for all $A, B, C\in\mathcal A$ if and only if $\phi$ is an additive *-derivation and $\phi(\xi A)=\xi\phi(A)$ for all $A\in\mathcal A.$

Keywords: ξ-Jordan *-triple derivable mapping ; von Neumann algebra ; *-Derivation

PDF (267KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张芳娟, 朱新宏. 因子von Neumann代数上的非线性$\xi$-Jordan *-三重可导映射. 数学物理学报[J], 2021, 41(4): 978-988 doi:

Zhang Fangjuan, Zhu Xinhong. Nonlinear $\xi$-Jordan *-Triple Derivable Mappings on Factor von Neumann Algebras. Acta Mathematica Scientia[J], 2021, 41(4): 978-988 doi:

1 引言

$ {\cal A} $$ * $-代数, $ \xi $是非零复数, $ A, B\in{\cal A} $$ \xi $-Jordan $ * $-积定义为$ A\diamond_{\xi}B = AB+\xi BA^{*}, $$ 1 $-Jordan $ * $-积通常记为$ A\bullet B = AB+BA^{*}, $$ -1 $-Jordan $ * $- 积(斜Lie积)通常记为$ [A, B]_{*} = AB-BA^{*}. $近年来, 相关的研究吸引了许多作者的注意(参看文献[1-13]). 文献[1]中P. Šemrl在量子函数中首先引入并研究了$ -1 $-Jordan $ * $-积. 文献[2]研究了von Neumann代数(无中心交换投影)到$ {\cal B(H)} $上的非线性$ \xi $-Jordan $ * $-可导映射.

在以上文献研究的基础上, 下面将考虑更宽泛的结果: 设$ {\cal A} $$ * $-代数, 对任意$ A, B, C\in{\cal A}, $定义$ A\diamond_{\xi}B\diamond_{\xi}C: = (A\diamond_{\xi}B)\diamond_{\xi}C $$ \xi $-Jordan $ * $-三重积(其中$ \diamond_{\xi} $不具有结合性). $ \phi:{\cal A\rightarrow A} $是一个映射. 如果$ \phi(A\diamond_{\xi}B\diamond_{\xi}C) = \phi(A)\diamond_{\xi}B\diamond_{\xi}C+A\diamond_{\xi}\phi(B)\diamond_{\xi}C+A\diamond_{\xi}B\diamond_{\xi}\phi(C), $那么称$ \phi $$ \xi $-Jordan $ * $-三重可导映射. 文献[3]得到了因子von Neumann代数上非线性$ -1 $-Jordan $ * $-三重可导映射是可加的$ * $-导子. 本文将要研究因子von Neumann代数上非线性$ \xi $-Jordan $ * $-三重可导映射.

$ {\mathbb R} $$ {\mathbb C} $分别是实数域和复数域, $ \text{i} $是虚数单位. von Neumann代数$ {\cal A} $是定义在Hilbert空间$ {\cal H} $上的包含单位算子$ I $的弱闭的, 自伴的算子代数. 记$ {\cal Z(A)} $$ {\cal A} $的中心, 若$ {\cal Z(A)} = {\mathbb C}I, $$ {\cal A} $是因子von Neumann代数. 因子von Neumann代数$ {\cal A} $是素的是指对$ A, B\in{\cal A}, $如果有$ A{\cal A}B = 0, $那么$ A = 0 $$ B = 0. $

引理1.1[4]  设$ {\cal A} $是因子von Neumann代数且$ A\in{\cal A}. $若对所有$ B\in{\cal A}, $$ AB+BA^{*} = 0, $$ A\in\text{i}{\mathbb R}I. $

2 主要定理及其证明

定理2.1  设$ {\cal A} $是因子von Neumann代数, $ \xi $是非零复数. 非线性映射$ \phi:{\cal A\rightarrow A} $满足对所有$ A, B, C\in{\cal A}, $$ \phi(A\diamond_{\xi}B\diamond_{\xi}C) = \phi(A)\diamond_{\xi}B\diamond_{\xi}C+A\diamond_{\xi}\phi(B)\diamond_{\xi}C+A\diamond_{\xi}B\diamond_{\xi}\phi(C) $当且仅当$ \phi $是可加的$ * $-导子且对所有$ A\in{\cal A}, $$ \phi(\xi A) = \xi\phi(A). $

  设$ P_{1}\in{\cal A} $为非平凡投影, 令$ P_{2} = I-P_{1}, {\cal A}_{ij} = P_{i}{\cal A}P_{j}, i, j = 1, 2, $$ {\cal A} = \sum\limits_{i, j = 1}^{2}{\cal A}_{ij}. $所以对任意$ A\in{\cal A}, $$ A = \sum\limits_{i, j = 1}^{2}A_{ij}, $其中$ A_{ij}\in{\cal A}_{ij}. $

$ \xi = -1 $时, 文献[3]已证明并得到结论, 下面的证明中假设$ \xi\neq -1. $

断言1  $ \phi(0) = 0. $

$ A = B = C = 0 $

断言2  $ \phi(A_{11}+A_{22}) = \phi(A_{11})+\phi(A_{22}), \forall A_{11}\in{\cal A}_{11}, \forall A_{22}\in{\cal A}_{22}. $

$ T = \phi(A_{11}+A_{22})-\phi(A_{11})-\phi(A_{22}). $$ I\diamond_{\xi}\frac{P_{1}}{1+\xi}\diamond_{\xi}A_{22} = 0 $和断言1得

所以$ I\diamond_{\xi}\frac{P_{1}}{1+\xi}\diamond_{\xi}T = 0, $由此可得$ (1+\xi)T_{11}+T_{12}+\xi T_{21} = 0. $$ \xi\neq 0, -1 $$ T_{11} = T_{12} = T_{21} = 0. $类似可得$ T_{22} = 0. $因此$ \phi(A_{11}+A_{22}) = \phi(A_{11})+\phi(A_{22}). $

断言3  $ \phi(A_{12}+A_{21}) = \phi(A_{12})+\phi(A_{21}), \forall A_{12}\in{\cal A}_{12}, \forall A_{21}\in{\cal A}_{21}. $

$ T = \phi(A_{12}+A_{21})-\phi(A_{12})-\phi(A_{21}). $$ I\diamond_{\xi}\frac{P_{1}-\frac{1}{\overline{\xi}}P_{2}}{1+\xi}\diamond_{\xi}A_{12} = 0 $和断言1得

所以$ I\diamond_{\xi}\frac{P_{1}-\frac{1}{\overline{\xi}}P_{2}}{1+\xi}\diamond_{\xi}T = 0, $由此可得$ (1+\xi)T_{11}-(1+\frac{1}{\overline{\xi}})T_{22}+(\xi-\frac{1}{\overline{\xi}})T_{21} = 0. $$ \xi\neq 0, -1 $$ T_{11} = T_{22} = 0. $

又由$ A_{12}\diamond_{\xi}P_{1}\diamond_{\xi}I = 0 $

所以$ T\diamond_{\xi}P_{1}\diamond_{\xi}I = 0, $由此可得$ (1+|\xi|^{2})T_{21}+2\xi T_{21}^{*} = 0, $进而$ T_{21} = 0. $类似可得$ T_{12} = 0. $因此$ \phi(A_{12}+A_{21}) = \phi(A_{12})+\phi(A_{21}). $

断言4  设$ i, j, k\in\{1, 2\}, $$ A_{kk}\in {\cal A}_{kk}, A_{ij}\in {\cal A}_{ij}, i\neq j, $$ \phi(A_{kk}+A_{ij}) = \phi(A_{kk})+\phi(A_{ij}). $

下面只证明$ i = k = 1, j = 2, $其他情形同理可得. 令$ T = \phi(A_{11}+A_{12})-\phi(A_{11})-\phi(A_{12}). $$ I\diamond_{\xi}\frac{P_{2}}{1+\xi}\diamond_{\xi}A_{11} = 0 $和断言1得

所以$ I\diamond_{\xi}\frac{P_{2}}{1+\xi}\diamond_{\xi}T = 0, $由此可得$ T_{12} = T_{21} = T_{22} = 0. $

又由$ I\diamond_{\xi}\frac{P_{1}-\frac{1}{\overline{\xi}}P_{2}}{1+\xi}\diamond_{\xi}A_{12} = 0 $

所以$ I\diamond_{\xi}\frac{P_{1}-\frac{1}{\overline{\xi}}P_{2}}{1+\xi}\diamond_{\xi}T = 0, $由此可得$ T_{11} = 0. $因此$ \phi(A_{11}+A_{12}) = \phi(A_{11})+\phi(A_{12}). $

断言5  $ \phi(A_{11}+A_{12}+A_{21}) = \phi(A_{11})+\phi(A_{12})+\phi(A_{21}), \phi(A_{12}+A_{21}+A_{22}) = \phi(A_{12})+\phi(A_{21})+\phi(A_{22}), \forall A_{11}\in{\cal A}_{11}, \forall A_{12}\in{\cal A}_{12}, \forall A_{21}\in{\cal A}_{21}, \forall A_{22}\in{\cal A}_{22}. $

$ T = \phi(A_{11}+A_{12}+A_{21})-\phi(A_{11})-\phi(A_{12})-\phi(A_{21}). $由断言3得

所以$ I\diamond_{\xi}\frac{P_{2}}{1+\xi}\diamond_{\xi}T = 0, $由此可得$ T_{12} = T_{21} = T_{22} = 0. $

又由$ I\diamond_{\xi}\frac{-\frac{1}{\overline{\xi}}P_{1}+P_{2}}{1+\xi}\diamond_{\xi}A_{21} = 0 $和断言4得

所以$ I\diamond_{\xi}\frac{-\frac{1}{\overline{\xi}}P_{1}+P_{2}}{1+\xi}\diamond_{\xi}T = 0, $计算可得$ T_{11} = 0. $因此$ \phi(A_{11}+A_{12}+A_{21}) = \phi(A_{11})+\phi(A_{12})+\phi(A_{21}), $同理$ \phi(A_{12}+A_{21}+A_{22}) = \phi(A_{12})+\phi(A_{21})+\phi(A_{22}). $

断言6  $ \phi(A_{ij}+B_{ij}) = \phi(A_{ij})+\phi(B_{ij}), \forall A_{ij}, B_{ij}\in{\cal A}_{ij}, 1\leq i\neq j\leq 2. $

因为$ I\diamond_{\xi}\frac{P_{i}+A_{ij}}{1+\xi}\diamond_{\xi}(P_{j}+B_{ij}) = A_{ij}+B_{ij}+\xi A_{ij}^{*}+\xi B_{ij}A_{ij}^{*}, $由断言3, 断言4和断言5得

所以$ \phi(A_{ij}+B_{ij}) = \phi(A_{ij})+\phi(B_{ij}). $

断言7  $ \phi(X_{12}A_{21}+X_{12}B_{21}+\xi A_{12}X_{12}^{*}+\xi B_{12}X_{12}^{*}) = \phi(X_{12}A_{21})+\phi(X_{12}B_{21})+\phi(\xi A_{12}X_{12}^{*})+\phi(\xi B_{12}X_{12}^{*}), \forall X_{12}, A_{12}, B_{12}\in {\cal A}_{12}, \forall A_{21}, B_{21}\in {\cal A}_{21}. $

由断言3和断言6得

所以$ \phi(X_{12}A_{21}+X_{12}B_{21}+\xi A_{12}X_{12}^{*}+\xi B_{12}X_{12}^{*}) = \phi(X_{12}A_{21})+\phi(X_{12}B_{21})+\phi(\xi A_{12}X_{12}^{*})+\phi(\xi B_{12}X_{12}^{*}). $

断言8  $ \phi $是可加的.

$ A = \sum\limits_{i, i = 1}^{2}A_{ij}, B = \sum\limits_{i, i = 1}^{2}B_{ij}, T = \phi(A+B)-\phi(A)-\phi(B). $任取$ X_{12}\in {\cal A}_{12}, $由断言5, 断言6和断言7得

由此可得$ I\diamond_{\xi}\frac{X_{12}}{1+\xi}\diamond_{\xi}T = 0, $

$ \begin{equation} X_{12}T+\xi TX_{12}^{*} = 0 \end{equation} $

对所有$ X_{12}\in {\cal A}_{12} $成立. (2.1) 式中$ X_{12} $$ \text{i}X_{12} $代替得

$ \begin{equation} X_{12}T-\xi TX_{12}^{*} = 0. \end{equation} $

(2.1) 式和(2.2) 式相加得对所有$ X_{12}\in {\cal A}_{12}, $$ X_{12}T = 0 $成立, 由$ {\cal A} $是素的可知$ T = 0, $$ \phi $是可加的.

断言9  $ \phi $是可加的$ * $-导子且$ \phi(\xi A) = \xi\phi(A), \forall A\in{\cal A}. $

分以下三种情形讨论.

情形1  $ \xi = 1. $

任取$ \lambda\in{\mathbb R}, A\in{\cal A}, $由断言1得

所以任取$ B = B^{*}\in{\cal A} $$ \phi(\text{i}\lambda I)B+B\phi(\text{i}\lambda I)^{*} = 0. $$ B_{1} = \frac{B+B^{*}}{2}, B_{2} = \frac{B-B^{*}}{2\text{i}} $是自伴元, 则对所有$ B\in{\cal A} $$ B = B_{1}+\text{i}B_{2}, $因此$ \phi(\text{i}\lambda I)B+B\phi(\text{i}\lambda I)^{*} = 0. $由引理1.1得$ \phi(\text{i}\lambda I)\subseteq\text{i}{\mathbb R}I, $所以

$ \begin{equation} \phi(\text{i}{\mathbb R}I)\subseteq\text{i}{\mathbb R}I. \end{equation} $

对所有$ \lambda\in{\mathbb C}, A\in{\cal A}, $由(2.3) 式得

由此可得, 对所有$ B = B^{*}\in{\cal A}, $$ B\phi(\lambda I) = \phi(\lambda I)B. $$ B_{1} = \frac{B+B^{*}}{2}, B_{2} = \frac{B-B^{*}}{2\text{i}} $是自伴元, 则对所有$ B\in{\cal A}, $$ B = B_{1}+\text{i}B_{2}, $因此$ B\phi(\lambda I) = \phi(\lambda I)B. $$ \phi(\lambda I)\subseteq{\mathbb C}I. $所以

$ \begin{equation} \phi({\mathbb C}I)\subseteq{\mathbb C}I. \end{equation} $

由(2.4) 式可得, 存在$ \lambda\in{\mathbb C} $使得$ \phi(I) = \lambda I. $

$ \lambda+\overline{\lambda} = 0, $$ \lambda\in\text{i}{\mathbb R}I, $于是存在$ \lambda_{1}\in{\mathbb R}, $使得

$ \begin{equation} \phi(I) = \text{i}\lambda_{1}I. \end{equation} $

$ P_{i}\in{\cal A}, i = 1, 2 $为非平凡投影, 由(2.5) 式得

$ \begin{equation} \phi(P_{i})^{*} = \phi(P_{i})-2\text{i}\lambda_{1}P_{i}, i = 1, 2. \end{equation} $

$ i, j = 1, 2, i\neq j, $由(2.6) 式可得

$ \begin{eqnarray} 0& = &\phi(P_{i}\bullet P_{j}\bullet P_{i}){}\\ & = &\phi(P_{i})\bullet P_{j}\bullet P_{i}+P_{i}\bullet\phi(P_{j})\bullet P_{i}+P_{i}\bullet P_{j}\bullet \phi(P_{i}){}\\ & = &P_{j}\phi(P_{i})P_{i}+P_{i}\phi(P_{i})P_{j}+2P_{i}\phi(P_{j})P_{i}+\phi(P_{j})P_{i}+P_{i}\phi(P_{j}). \end{eqnarray} $

(2.7) 式两边同乘$ P_{i} $

$ \begin{equation} P_{i}\phi(P_{j})P_{i} = 0. \end{equation} $

(2.7) 式左乘$ P_{i} $右乘$ P_{j} $

$ \begin{equation} P_{i}\phi(P_{i})P_{j}+P_{i}\phi(P_{j})P_{j} = 0. \end{equation} $

(2.7) 式左乘$ P_{j} $右乘$ P_{i} $

$ \begin{equation} P_{j}\phi(P_{i})P_{i}+P_{j}\phi(P_{j})P_{i} = 0. \end{equation} $

对所有$ A_{ji}\in{\cal A}_{ji}, $由(2.5) 式和(2.6) 式得

上式左乘$ P_{j} $右乘$ P_{i} $$ P_{j}\phi(P_{j})A_{ji}+A_{ji}\phi(P_{j})P_{i} = 0. $结合(2.8) 式可得$ P_{j}\phi(P_{j})A_{ji} = 0. $由于$ {\cal A} $是素的, 所以

$ \begin{equation} P_{j}\phi(P_{j})P_{j} = 0. \end{equation} $

由(2.8)–(2.11) 式可得

$ \begin{equation} \phi(I) = \phi(P_{i})+\phi(P_{j}) = P_{i}\phi(P_{i})P_{j}+P_{j}\phi(P_{i})P_{i}+P_{i}\phi(P_{j})P_{j}+P_{j}\phi(P_{j})P_{i} = 0. \end{equation} $

对所有$ A, B\in{\cal A}, $由(2.12) 式得

由文献[6]的主要定理得, $ \phi $是可加的$ * $-导子.

情形2  $ |\xi| = 1 $$ \xi\neq 1, -1. $

因为

所以

$ \begin{equation} \phi(\text{i}I)^{*} = -\phi(\text{i}I). \end{equation} $

由(2.13) 式得

$ \begin{eqnarray} 2\phi(\text{i}(1-\xi)I)& = &\phi(\text{i}I\diamond_{\xi}I\diamond_{\xi}I){}\\ & = &\phi(\text{i}I)\diamond_{\xi}I\diamond_{\xi}I+\text{i}I\diamond_{\xi}\phi(I)\diamond_{\xi}I+\text{i}I\diamond_{\xi}I\diamond_{\xi}\phi(I){}\\ & = &2(1-\xi)\phi(\text{i}I)+\text{i}(1-\xi)\phi(I)+\text{i}(1-\xi)\phi(I)^{*}+2\text{i}(1-\xi)\phi(I). \end{eqnarray} $

另一方面

$ \begin{eqnarray} 2\phi(\text{i}(1+\xi)I)& = &\phi(I\diamond_{\xi}I\diamond_{\xi}\text{i}I){}\\ & = &\phi(I)\diamond_{\xi}I\diamond_{\xi}\text{i}I+I\diamond_{\xi}\phi(I)\diamond_{\xi}\text{i}I+I\diamond_{\xi}I\diamond_{\xi}\phi(\text{i}I){}\\ & = &\text{i}(3+\xi)\phi(I)+\text{i}(1+3\xi)\phi(I)^{*}+2(1+\xi)\phi(\text{i}I). \end{eqnarray} $

(2.14) 式加(2.15) 式得

$ \begin{equation} \phi(I)^{*} = \frac{\xi-3}{\xi+1}\phi(I). \end{equation} $

(2.16) 式两边取$ * $

$ \phi(I)\neq 0, $$ \xi = 1, $与题设矛盾, 所以

$ \begin{equation} \phi(I) = 0. \end{equation} $

任取$ A\in{\cal A}, $由(2.17) 式有

由此可得

$ \begin{equation} \phi((1+\xi)A) = (1+\xi)\phi(A), \forall A\in{\cal A}. \end{equation} $

任取$ A, B\in{\cal A}, $

结合(2.18) 式可得

由文献[6]的主要定理得, $ \phi $是可加的$ * $-导子. 再由(2.18) 式得$ \phi(\xi A) = \xi\phi(A), \forall A\in{\cal A}. $

情形3  $ |\xi|\neq 1. $

$ \phi(I\diamond_{\xi}\text{i}I\diamond_{\xi}\text{i}I) = \phi(\text{i}I\diamond_{\xi}\text{i}I\diamond_{\xi}I) $

所以$ 2\xi\text{i}(\phi(\text{i}I)+\phi(\text{i}I)^{*}) = 0. $由此可得

$ \begin{equation} \phi(\text{i}I)^{*} = -\phi(\text{i}I). \end{equation} $

另一方面, 由$ \phi(\text{i}I\diamond_{\xi}\text{i}I\diamond_{\xi}\text{i}I) = -\phi(I\diamond_{\xi}\text{i}I\diamond_{\xi}I) $和(2.19) 式得

由此可得

$ \begin{equation} \phi(\text{i}I) = \text{i}\phi(I). \end{equation} $

所以

$ \begin{equation} \phi(I)^{*} = \phi(I). \end{equation} $

由(2.19) 式和(2.21) 式可得

$ \begin{eqnarray} \phi(\text{i}(1-2\xi+|\xi|^{2})I) & = &\phi(\text{i}I\diamond_{\xi}I\diamond_{\xi}I){}\\ & = &\phi(\text{i}I)\diamond_{\xi}I\diamond_{\xi}I+\text{i}I\diamond_{\xi}\phi(I)\diamond_{\xi}I+\text{i}I\diamond_{\xi}I\diamond_{\xi}\phi(I){}\\ & = &\phi(\text{i}I)-2\xi\phi(\text{i}I)+|\xi|^{2}\phi(\text{i}I)+2\text{i}\phi(I)-4\text{i}\xi\phi(I)+2\text{i}|\xi|^{2}\phi(I). \end{eqnarray} $

另一方面

$ \begin{eqnarray} \phi(\text{i}(1+2\xi+|\xi|^{2})I)& = &\phi(I\diamond_{\xi}I\diamond_{\xi}\text{i}I){}\\ & = &\phi(I)\diamond_{\xi}I\diamond_{\xi}\text{i}I+I\diamond_{\xi}\phi(I)\diamond_{\xi}\text{i}I+I\diamond_{\xi}I\diamond_{\xi}\phi(\text{i}I){}\\ & = &2\text{i}\phi(I)+4\text{i}\xi\phi(I)+2\text{i}|\xi|^{2}\phi(I)+\phi(\text{i}I)+2\xi\phi(\text{i}I)+|\xi|^{2}\phi(\text{i}I). \end{eqnarray} $

(2.22) 式加(2.23) 式得

$ \begin{equation} \phi(\text{i}(1+|\xi|^{2})I) = \phi(\text{i}I)+2\text{i}\phi(I)+|\xi|^{2}\phi(\text{i}I)+2\text{i}|\xi|^{2}\phi(I). \end{equation} $

又由(2.19) 式和(2.21) 式得

$ \begin{eqnarray} \phi(\text{i}(1-|\xi|^{2})I)& = &\phi(I\diamond_{\xi}\text{i}I\diamond_{\xi}I){}\\ & = &\phi(I)\diamond_{\xi}\text{i}I\diamond_{\xi}I+I\diamond_{\xi}\phi(\text{i}I)\diamond_{\xi}I+I\diamond_{\xi}\text{i}I\diamond_{\xi}\phi(I){}\\ & = &\text{i}\phi(I)-\text{i}|\xi|^{2}\phi(I)+\phi(\text{i}I)-|\xi|^{2}\phi(\text{i}I)+\text{i}\phi(I)-\text{i}|\xi|^{2}\phi(I). \end{eqnarray} $

(2.24) 式加(2.25) 式得$ 4\text{i}\phi(I) = 0, $

$ \begin{equation} \phi(I) = 0. \end{equation} $

由(2.20) 式得

$ \begin{equation} \phi(\text{i}I) = 0. \end{equation} $

任取$ A\in{\cal A}, $由(2.27) 式得

计算可得

$ \begin{equation} \phi(|\xi|^{2}A) = |\xi|^{2}\phi(A). \end{equation} $

由(2.26) 式得$ \phi(A\diamond_{\xi}I\diamond_{\xi}I) = \phi(A)\diamond_{\xi}I\diamond_{\xi}I, $结合(2.28) 式得

$ \begin{equation} \phi(\xi A^{*}) = \xi\phi(A)^{*}. \end{equation} $

另一方面$ \phi(I\diamond_{\xi}I\diamond_{\xi}A^{*}) = I\diamond_{\xi}I\diamond_{\xi}\phi(A^{*}). $计算可得

$ \begin{equation} \phi(\xi A^{*}) = \xi\phi(A^{*}), \forall A\in{\cal A}. \end{equation} $

结合(2.29) 式和(2.30) 式得

$ \begin{equation} \phi(A^{*}) = \phi(A)^{*}, \forall A\in{\cal A}. \end{equation} $

任取$ A\in{\cal A}, $由(2.28) 式得

所以

$ \begin{equation} \phi(\text{i}A) = \text{i}\phi(A), \forall A\in{\cal A}. \end{equation} $

任取$ A, B\in{\cal A}, $

$ \begin{eqnarray} &&\phi(AB+\xi AB+\xi BA^{*}+|\xi|^{2}BA^{*}){}\\ & = &\phi(I\diamond_{\xi}A\diamond_{\xi}B){}\\ & = &I\diamond_{\xi}\phi(A)\diamond_{\xi}B+I\diamond_{\xi}A\diamond_{\xi}\phi(B){}\\ & = &\phi(A)B+\xi\phi(A)B+\xi B\phi(A)^{*}+|\xi|^{2}B\phi(A)^{*}{}\\ &&+A\phi(B)+\xi A\phi(B)+\xi\phi(B)A^{*}+|\xi|^{2}\phi(B)A^{*}. \end{eqnarray} $

另一方面, 由(2.32) 式得

$ \begin{eqnarray} &&\phi(AB+\xi AB-\xi BA^{*}-|\xi|^{2}BA^{*}){}\\ & = &\phi(I\diamond_{\xi}\text{i}A\diamond_{\xi}(-\text{i}B)){}\\ & = &I\diamond_{\xi}\phi(\text{i}A)\diamond_{\xi}(-\text{i}B)+I\diamond_{\xi}\text{i}A\diamond_{\xi}\phi(-\text{i}B){}\\ & = &\phi(A)B+\xi\phi(A)B-\xi B\phi(A)^{*}-|\xi|^{2}B\phi(A)^{*}{}\\ &&+A\phi(B)+\xi A\phi(B)-\xi\phi(B)A^{*}-|\xi|^{2}\phi(B)A^{*}. \end{eqnarray} $

结合(2.33) 式和(2.34) 式得

又由(2.30) 式得$ (1+\xi)\phi(AB) = (1+\xi)(\phi(A)B+A\phi(B)). $所以$ \phi(AB) = \phi(A)B+A\phi(B). $定理2.1证毕.

参考文献

Šemrl P .

Quadratic and quasi-quadratic functionals

Proc Amer Math Soc, 1993, 119 (4): 1105- 1113

DOI:10.1090/S0002-9939-1993-1158008-3      [本文引用: 2]

Li C J , Lu F Y , Fang X C .

Non-linear $\xi$-Jordan *-derivations on von Neumann algebras

Lin Multi Alg, 2014, 62 (4): 466- 473

DOI:10.1080/03081087.2013.780603      [本文引用: 1]

Li C J , Zhao F F , Chen Q Y .

Nonlinear skew Lie triple derivations between factors

Acta Math Sin, 2016, 32 (7): 821- 830

DOI:10.1007/s10114-016-5690-1      [本文引用: 2]

Zhao F F , Li C J .

Nonlinear maps preserving the Jordan triple *-product between factors

Indagat Math, 2018, 29 (2): 619- 627

DOI:10.1016/j.indag.2017.10.010      [本文引用: 1]

Huo D H , Zheng B D , Liu H Y .

Nonlinear maps preserving Jordan triple $\eta$-*-products

J Math Anal Appl, 2015, 430 (2): 830- 844

DOI:10.1016/j.jmaa.2015.05.021     

Zhang F J .

Nonlinear skew Jordan derivable maps on factor von Neumann algebras

Lin Multi Alg, 2016, 64 (10): 2090- 2103

DOI:10.1080/03081087.2016.1139035      [本文引用: 2]

Yu W Y , Zhang J H .

Nonlinear *-Lie derivations on factor von Neumann algebras

Lin Alg Appl, 2012, 437 (8): 1979- 1991

DOI:10.1016/j.laa.2012.05.032     

Zhang F J , Qi X F , Zhang J H .

Nonlinear *-Lie higher derivations on factor von Neumann algebras

B Iran Math Soc, 2016, 42 (3): 659- 678

URL    

张芳娟.

素*-环上非线性保$XY-\xi YX^{*}$

数学学报, 2014, 57 (4): 775- 784

URL    

Zhang F J .

Nonlinear preserving product $XY-\xi YX^{*}$ on prime *-ring

Acta Math Sin, 2014, 57 (4): 775- 784

URL    

Taghavi A , Nouri M , Razeghi M , Darvish V .

Non-linear $\lambda$-Jordan triple *-derivation on prime *-algebras

Rochy MT J Math, 2018, 48 (8): 2705- 2716

Zhao F F , Li C J .

Nonlinear *-Jordan triple derivations on von Neumann algebras

Math Slovaca, 2018, 68 (1): 163- 170

DOI:10.1515/ms-2017-0089     

杨丽春, 安润玲.

von Neumann代数上的Lie可导映射

数学物理学报, 2018, 38A (5): 864- 872

DOI:10.3969/j.issn.1003-3998.2018.05.004     

Yang L C , An R L .

Lie derivable maps on von Neumann algebras

Acta Math Sci, 2018, 38A (5): 864- 872

DOI:10.3969/j.issn.1003-3998.2018.05.004     

齐霄霏.

${\cal J}$-子空间格代数上中心化子和广义导子的刻画

数学物理学报, 2014, 34A (2): 463- 472

URL     [本文引用: 1]

QI X F .

Characterization of centralizers and generalized derivations on ${\cal J}$-subspace lattice algebras

Acta Math Sci, 2014, 34A (2): 463- 472

URL     [本文引用: 1]

/