Processing math: 36%

数学物理学报, 2021, 41(4): 978-988 doi:

论文

因子von Neumann代数上的非线性ξ-Jordan *-三重可导映射

张芳娟,1, 朱新宏2

Nonlinear ξ-Jordan *-Triple Derivable Mappings on Factor von Neumann Algebras

Zhang Fangjuan,1, Zhu Xinhong2

通讯作者: 张芳娟, E-mail: zhfj888@xupt.edu.cn

收稿日期: 2020-08-10  

基金资助: 国家自然科学基金.  11601420
陕西省自然科学基础研究计划资助项目.  2018JM1053

Received: 2020-08-10  

Fund supported: the NSFC.  11601420
the Natural Science Basic Research Plan in Shaanxi Province.  2018JM1053

Abstract

Let A be a factor von Neumann algebra and ξ be a non-zero complex number. A nonlinear map ϕ:AA has been demonstrated to satisfy ϕ(AξBξC)=ϕ(A)ξBξC+Aξϕ(B)ξC+AξBξϕ(C) for all A,B,CA if and only if ϕ is an additive *-derivation and ϕ(ξA)=ξϕ(A) for all AA.

Keywords: ξ-Jordan *-triple derivable mapping ; von Neumann algebra ; *-Derivation

PDF (267KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张芳娟, 朱新宏. 因子von Neumann代数上的非线性ξ-Jordan *-三重可导映射. 数学物理学报[J], 2021, 41(4): 978-988 doi:

Zhang Fangjuan, Zhu Xinhong. Nonlinear ξ-Jordan *-Triple Derivable Mappings on Factor von Neumann Algebras. Acta Mathematica Scientia[J], 2021, 41(4): 978-988 doi:

1 引言

A-代数, ξ是非零复数, A,BAξ-Jordan -积定义为AξB=AB+ξBA,1-Jordan -积通常记为AB=AB+BA,1-Jordan - 积(斜Lie积)通常记为[A,B]=ABBA.近年来, 相关的研究吸引了许多作者的注意(参看文献[1-13]). 文献[1]中P. Šemrl在量子函数中首先引入并研究了1-Jordan -积. 文献[2]研究了von Neumann代数(无中心交换投影)到B(H)上的非线性ξ-Jordan -可导映射.

在以上文献研究的基础上, 下面将考虑更宽泛的结果: 设A-代数, 对任意A,B,CA,定义AξBξC:=(AξB)ξCξ-Jordan -三重积(其中ξ不具有结合性). ϕ:AA是一个映射. 如果ϕ(AξBξC)=ϕ(A)ξBξC+Aξϕ(B)ξC+AξBξϕ(C),那么称ϕξ-Jordan -三重可导映射. 文献[3]得到了因子von Neumann代数上非线性1-Jordan -三重可导映射是可加的-导子. 本文将要研究因子von Neumann代数上非线性ξ-Jordan -三重可导映射.

RC分别是实数域和复数域, i是虚数单位. von Neumann代数A是定义在Hilbert空间H上的包含单位算子I的弱闭的, 自伴的算子代数. 记Z(A)A的中心, 若Z(A)=CI,A是因子von Neumann代数. 因子von Neumann代数A是素的是指对A,BA,如果有AAB=0,那么A=0B=0.

引理1.1[4]  设A是因子von Neumann代数且AA.若对所有BA,AB+BA=0,AiRI.

2 主要定理及其证明

定理2.1  设A是因子von Neumann代数, ξ是非零复数. 非线性映射ϕ:AA满足对所有A,B,CA,ϕ(AξBξC)=ϕ(A)ξBξC+Aξϕ(B)ξC+AξBξϕ(C)当且仅当ϕ是可加的-导子且对所有AA,ϕ(ξA)=ξϕ(A).

  设P1A为非平凡投影, 令P2=IP1,Aij=PiAPj,i,j=1,2,A=2i,j=1Aij.所以对任意AA,A=2i,j=1Aij,其中AijAij.

ξ=1时, 文献[3]已证明并得到结论, 下面的证明中假设ξ1.

断言1  ϕ(0)=0.

A=B=C=0

ϕ(0)=ϕ(0ξ0ξ0)=ϕ(0)ξ0ξ0+0ξϕ(0)ξ0+0ξ0ξϕ(0)=0.

断言2  ϕ(A11+A22)=ϕ(A11)+ϕ(A22),A11A11,A22A22.

T=ϕ(A11+A22)ϕ(A11)ϕ(A22).IξP11+ξξA22=0和断言1得

ϕ(I)ξP11+ξξ(A11+A22)+Iξϕ(P11+ξ)ξ(A11+A22)+IξP11+ξξϕ(A11+A22)=ϕ(IξP11+ξξ(A11+A22))=ϕ(IξP11+ξξA11)+ϕ(IξP11+ξξA22)=ϕ(I)ξP11+ξξ(A11+A22)+Iξϕ(P11+ξ)ξ(A11+A22)+IξP11+ξξ(ϕ(A11)+ϕ(A22)).

所以IξP11+ξξT=0,由此可得(1+ξ)T11+T12+ξT21=0.ξ0,1T11=T12=T21=0.类似可得T22=0.因此ϕ(A11+A22)=ϕ(A11)+ϕ(A22).

断言3  ϕ(A12+A21)=ϕ(A12)+ϕ(A21),A12A12,A21A21.

T=ϕ(A12+A21)ϕ(A12)ϕ(A21).IξP11¯ξP21+ξξA12=0和断言1得

ϕ(I)ξP11¯ξP21+ξξ(A12+A21)+Iξϕ(P11¯ξP21+ξ)ξ(A12+A21)+IξP11¯ξP21+ξξϕ(A12+A21)=ϕ(IξP11¯ξP21+ξξ(A12+A21))=ϕ(IξP11¯ξP21+ξξA12)+ϕ(IξP11¯ξP21+ξξA21)=ϕ(I)ξP11¯ξP21+ξξ(A12+A21)+Iξϕ(P11¯ξP21+ξ)ξ(A12+A21)+IξP11¯ξP21+ξξ(ϕ(A12)+ϕ(A21)).

所以IξP11¯ξP21+ξξT=0,由此可得(1+ξ)T11(1+1¯ξ)T22+(ξ1¯ξ)T21=0.ξ0,1T11=T22=0.

又由A12ξP1ξI=0

ϕ(A12+A21)ξP1ξI+(A12+A21)ξϕ(P1)ξI+(A12+A21)ξP1ξϕ(I)=ϕ((A12+A21)ξP1ξI)=ϕ(A12ξP1ξI)+ϕ(A21ξP1ξI)=(ϕ(A12)+ϕ(A21))ξP1ξI+(A12+A21)ξϕ(P1)ξI+(A12+A21)ξP1ξϕ(I).

所以TξP1ξI=0,由此可得(1+|ξ|2)T21+2ξT21=0,进而T21=0.类似可得T12=0.因此ϕ(A12+A21)=ϕ(A12)+ϕ(A21).

断言4  设i,j,k{1,2},AkkAkk,AijAij,ij,ϕ(Akk+Aij)=ϕ(Akk)+ϕ(Aij).

下面只证明i=k=1,j=2,其他情形同理可得. 令T=ϕ(A11+A12)ϕ(A11)ϕ(A12).IξP21+ξξA11=0和断言1得

ϕ(I)ξP21+ξξ(A11+A12)+Iξϕ(P21+ξ)ξ(A11+A12)+IξP21+ξξϕ(A11+A12)=ϕ(IξP21+ξξ(A11+A12))=ϕ(IξP21+ξξA11)+ϕ(IξP21+ξξA12)=ϕ(I)ξP21+ξξ(A11+A12)+Iξϕ(P21+ξ)ξ(A11+A12)+IξP21+ξξ(ϕ(A11)+ϕ(A12)).

所以IξP21+ξξT=0,由此可得T12=T21=T22=0.

又由IξP11¯ξP21+ξξA12=0

ϕ(I)ξP11¯ξP21+ξξ(A11+A12)+Iξϕ(P11¯ξP21+ξ)ξ(A11+A12)+IξP11¯ξP21+ξξϕ(A11+A12)=ϕ(IξP11¯ξP21+ξξ(A11+A12))=ϕ(IξP11¯ξP21+ξξA11)+ϕ(IξP11¯ξP21+ξξA12)=ϕ(I)ξP11¯ξP21+ξξ(A11+A12)+Iξϕ(P11¯ξP21+ξ)ξ(A11+A12)+IξP11¯ξP21+ξξ(ϕ(A11)+ϕ(A12)).

所以IξP11¯ξP21+ξξT=0,由此可得T11=0.因此ϕ(A11+A12)=ϕ(A11)+ϕ(A12).

断言5  ϕ(A11+A12+A21)=ϕ(A11)+ϕ(A12)+ϕ(A21),ϕ(A12+A21+A22)=ϕ(A12)+ϕ(A21)+ϕ(A22),A11A11,A12A12,A21A21,A22A22.

T=ϕ(A11+A12+A21)ϕ(A11)ϕ(A12)ϕ(A21).由断言3得

ϕ(I)ξP21+ξξ(A11+A12+A21)+Iξϕ(P21+ξ)ξ(A11+A12+A21)+IξP21+ξξϕ(A11+A12+A21)=ϕ(IξP21+ξξ(A11+A12+A21))=ϕ(IξP21+ξξA11)+ϕ(IξP21+ξξ(A12+A21))=ϕ(I)ξP21+ξξ(A11+A12+A21)+Iξϕ(P21+ξ)ξ(A11+A12+A21)+IξP21+ξξ(ϕ(A11)+ϕ(A12)+ϕ(A21)).

所以IξP21+ξξT=0,由此可得T12=T21=T22=0.

又由Iξ1¯ξP1+P21+ξξA21=0和断言4得

ϕ(I)ξ1¯ξP1+P21+ξξ(A11+A12+A21)+Iξϕ(1¯ξP1+P21+ξ)ξ(A11+A12+A21)+Iξ1¯ξP1+P21+ξξϕ(A11+A12+A21)=ϕ(Iξ1¯ξP1+P21+ξξ(A11+A12+A21))=ϕ(Iξ1¯ξP1+P21+ξξ(A11+A12))+ϕ(Iξ1¯ξP1+P21+ξξA21)=ϕ(I)ξ1¯ξP1+P21+ξξ(A11+A12+A21)+Iξϕ(1¯ξP1+P21+ξ)ξ(A11+A12+A21)+Iξ1¯ξP1+P21+ξξ(ϕ(A11)+ϕ(A12)+ϕ(A21)).

所以Iξ1¯ξP1+P21+ξξT=0,计算可得T11=0.因此ϕ(A11+A12+A21)=ϕ(A11)+ϕ(A12)+ϕ(A21),同理ϕ(A12+A21+A22)=ϕ(A12)+ϕ(A21)+ϕ(A22).

断言6  ϕ(Aij+Bij)=ϕ(Aij)+ϕ(Bij),Aij,BijAij,1ij2.

因为IξPi+Aij1+ξξ(Pj+Bij)=Aij+Bij+ξAij+ξBijAij,由断言3, 断言4和断言5得

ϕ(Aij+Bij)+ϕ(ξAij)+ϕ(ξBijAij)=ϕ(IξPi+Aij1+ξξ(Pj+Bij))=ϕ(I)ξPi+Aij1+ξξ(Pj+Bij)+Iξϕ(Pi+Aij1+ξ)ξ(Pj+Bij)+IξPi+Aij1+ξξϕ(Pj+Bij)=ϕ(I)ξPi+Aij1+ξξ(Pj+Bij)+Iξ(ϕ(Pi1+ξ)+ϕ(Aij1+ξ))ξ(Pj+Bij)+IξPi+Aij1+ξξ(ϕ(Pj)+ϕ(Bij))=ϕ(IξPi1+ξξPj)+ϕ(IξAij1+ξξPj)+ϕ(IξPi1+ξξBij)+ϕ(IξAij1+ξξBij)=ϕ(Aij+ξAij)+ϕ(Bij)+ϕ(ξBijAij)=ϕ(Aij)+ϕ(Bij)+ϕ(ξAij)+ϕ(ξBijAij).

所以ϕ(Aij+Bij)=ϕ(Aij)+ϕ(Bij).

断言7  ϕ(X12A21+X12B21+ξA12X12+ξB12X12)=ϕ(X12A21)+ϕ(X12B21)+ϕ(ξA12X12)+ϕ(ξB12X12),X12,A12,B12A12,A21,B21A21.

由断言3和断言6得

ϕ(X12A21+X12B21+ξA12X12+ξB12X12)=ϕ(IξX121+ξξ(A21+B21+A12+B12))=ϕ(I)ξX121+ξξ(A21+B21+A12+B12)+Iξϕ(X121+ξ)ξ(A21+B21+A12+B12)+IξX121+ξξϕ(A21+B21+A12+B12)=ϕ(I)ξX121+ξξ(A21+B21+A12+B12)+Iξϕ(X121+ξ)ξ(A21+B21+A12+B12)+IξX121+ξξ(ϕ(A21+B21)+ϕ(A12+B12))=ϕ(I)ξX121+ξξ(A21+B21+A12+B12)+Iξϕ(X121+ξ)ξ(A21+B21+A12+B12)+IξX121+ξξ(ϕ(A21)+ϕ(B21)+ϕ(A12)+ϕ(B12))=ϕ(IξX121+ξξA21)+ϕ(IξX121+ξξηB21)+ϕ(IξX121+ξξA12)+ϕ(IξX121+ξξB12)=ϕ(X12A21)+ϕ(X12B21)+ϕ(ξA12X12)+ϕ(ξB12X12).

所以 \phi(X_{12}A_{21}+X_{12}B_{21}+\xi A_{12}X_{12}^{*}+\xi B_{12}X_{12}^{*}) = \phi(X_{12}A_{21})+\phi(X_{12}B_{21})+\phi(\xi A_{12}X_{12}^{*})+\phi(\xi B_{12}X_{12}^{*}).

断言8   \phi 是可加的.

A = \sum\limits_{i, i = 1}^{2}A_{ij}, B = \sum\limits_{i, i = 1}^{2}B_{ij}, T = \phi(A+B)-\phi(A)-\phi(B). 任取 X_{12}\in {\cal A}_{12}, 由断言5, 断言6和断言7得

\begin{eqnarray*} &&\phi(I)\diamond_{\xi}\frac{X_{12}}{1+\xi}\diamond_{\xi}(A+B)+I\diamond_{\xi}\phi(\frac{X_{12}}{1+\xi})\diamond_{\xi}(A+B)+I\diamond_{\xi}\frac{X_{12}}{1+\xi}\diamond_{\xi}\phi(A+B)\\ & = &\phi(I\diamond_{\xi}\frac{X_{12}}{1+\xi}\diamond_{\xi}(A+B))\\ & = &\phi(X_{12}A_{22}+X_{12}B_{22}+X_{12}A_{21}+X_{12}B_{21}\\ &&+\xi A_{12}X_{12}^{*}+\xi B_{12}X_{12}^{*}+\xi A_{22}X_{12}^{*}+\xi B_{22}X_{12}^{*})\\ & = &\phi(X_{12}A_{22}+X_{12}B_{22})+\phi(X_{12}A_{21}+X_{12}B_{21}+\xi A_{12}X_{12}^{*}+\xi B_{12}X_{12}^{*})\\ &&+\phi(\xi A_{22}X_{12}^{*}+\xi B_{22}X_{12}^{*})\\ & = &\phi(X_{12}A_{22})+\phi(X_{12}B_{22})+\phi(X_{12}A_{21})+\phi(X_{12}B_{21})\\ &&+\phi(\xi A_{12}X_{12}^{*})+\phi(\xi B_{12}X_{12}^{*})+\phi(\xi A_{22}X_{12}^{*})+\phi(\xi B_{22}X_{12}^{*})\\ & = &\phi(X_{12}A_{22})+\phi(X_{12}A_{21}+\xi A_{12}X_{12}^{*})+\phi(\xi A_{22}X_{12}^{*})\\ &&+\phi(X_{12}B_{22})+\phi(X_{12}B_{21}+\xi B_{12}X_{12}^{*})+\phi(\xi B_{22}X_{12}^{*})\\ & = &\phi(X_{12}A_{22}+X_{12}A_{21}+\xi A_{12}X_{12}^{*}+\xi A_{22}X_{12}^{*})\\ &&+\phi(X_{12}B_{22}+X_{12}B_{21}+\xi B_{12}X_{12}^{*}+\xi B_{22}X_{12}^{*})\\ & = &\phi(I\diamond_{\xi}\frac{X_{12}}{1+\xi}\diamond_{\xi}A)+\phi(I\diamond_{\xi}\frac{X_{12}}{1+\xi}\diamond_{\xi}B)\\ & = &\phi(I)\diamond_{\xi}\frac{X_{12}}{1+\xi}\diamond_{\xi}(A+B)+I\diamond_{\xi}\phi(\frac{X_{12}}{1+\xi})\diamond_{\xi}(A+B) +I\diamond_{\xi}\frac{X_{12}}{1+\xi}\diamond_{\xi}(\phi(A)+\phi(B)). \end{eqnarray*}

由此可得 I\diamond_{\xi}\frac{X_{12}}{1+\xi}\diamond_{\xi}T = 0,

\begin{equation} X_{12}T+\xi TX_{12}^{*} = 0 \end{equation}
(2.1)

对所有 X_{12}\in {\cal A}_{12} 成立. (2.1) 式中 X_{12} \text{i}X_{12} 代替得

\begin{equation} X_{12}T-\xi TX_{12}^{*} = 0. \end{equation}
(2.2)

(2.1) 式和(2.2) 式相加得对所有 X_{12}\in {\cal A}_{12}, X_{12}T = 0 成立, 由 {\cal A} 是素的可知 T = 0, \phi 是可加的.

断言9   \phi 是可加的 * -导子且 \phi(\xi A) = \xi\phi(A), \forall A\in{\cal A}.

分以下三种情形讨论.

情形1   \xi = 1.

任取 \lambda\in{\mathbb R}, A\in{\cal A}, 由断言1得

\begin{eqnarray*} 0& = &\phi(\text{i}\lambda I\bullet A\bullet I) = \phi(\text{i}\lambda I)\bullet A\bullet I+\text{i}\lambda I\bullet \phi(A)\bullet I+\text{i}\lambda I\bullet A\bullet\phi(I)\\ & = &\phi(\text{i}\lambda I)(A+A^{*})+(A+A^{*})\phi(\text{i}\lambda I)^{*}. \end{eqnarray*}

所以任取 B = B^{*}\in{\cal A} \phi(\text{i}\lambda I)B+B\phi(\text{i}\lambda I)^{*} = 0. B_{1} = \frac{B+B^{*}}{2}, B_{2} = \frac{B-B^{*}}{2\text{i}} 是自伴元, 则对所有 B\in{\cal A} B = B_{1}+\text{i}B_{2}, 因此 \phi(\text{i}\lambda I)B+B\phi(\text{i}\lambda I)^{*} = 0. 由引理1.1得 \phi(\text{i}\lambda I)\subseteq\text{i}{\mathbb R}I, 所以

\begin{equation} \phi(\text{i}{\mathbb R}I)\subseteq\text{i}{\mathbb R}I. \end{equation}
(2.3)

对所有 \lambda\in{\mathbb C}, A\in{\cal A}, 由(2.3) 式得

\begin{eqnarray*} 0& = &\phi(A\bullet\text{i}I\bullet\lambda I) = \phi(A)\bullet\text{i}I\bullet\lambda I+A\bullet\phi(\text{i}I)\bullet\lambda I+A\bullet\text{i}I\bullet\phi(\lambda I)\\ & = &\text{i}(A+A^{*})\phi(\lambda I)-\text{i}\phi(\lambda I)(A+A^{*}). \end{eqnarray*}

由此可得, 对所有 B = B^{*}\in{\cal A}, B\phi(\lambda I) = \phi(\lambda I)B. B_{1} = \frac{B+B^{*}}{2}, B_{2} = \frac{B-B^{*}}{2\text{i}} 是自伴元, 则对所有 B\in{\cal A}, B = B_{1}+\text{i}B_{2}, 因此 B\phi(\lambda I) = \phi(\lambda I)B. \phi(\lambda I)\subseteq{\mathbb C}I. 所以

\begin{equation} \phi({\mathbb C}I)\subseteq{\mathbb C}I. \end{equation}
(2.4)

由(2.4) 式可得, 存在 \lambda\in{\mathbb C} 使得 \phi(I) = \lambda I.

\begin{eqnarray*} 4\lambda I& = &4\phi(I) = \phi(I\bullet I\bullet I) = \phi(I)\bullet I\bullet I+I\bullet \phi(I)\bullet I+I\bullet I\bullet \phi(I)\\ & = &4(\lambda+\overline{\lambda})I+4\lambda I \end{eqnarray*}

\lambda+\overline{\lambda} = 0, \lambda\in\text{i}{\mathbb R}I, 于是存在 \lambda_{1}\in{\mathbb R}, 使得

\begin{equation} \phi(I) = \text{i}\lambda_{1}I. \end{equation}
(2.5)

P_{i}\in{\cal A}, i = 1, 2 为非平凡投影, 由(2.5) 式得

\begin{eqnarray*} 4\phi(P_{i})& = &\phi(I\bullet P_{i}\bullet I) = \phi(I)\bullet P_{i}\bullet I+I\bullet\phi(P_{i})\bullet I+I\bullet P_{i}\bullet\phi(I) \\ & = &2(\phi(P_{i})+\phi(P_{i})^{*})+4\text{i}\lambda_{1}P_{i}. \end{eqnarray*}

\begin{equation} \phi(P_{i})^{*} = \phi(P_{i})-2\text{i}\lambda_{1}P_{i}, i = 1, 2. \end{equation}
(2.6)

i, j = 1, 2, i\neq j, 由(2.6) 式可得

\begin{eqnarray} 0& = &\phi(P_{i}\bullet P_{j}\bullet P_{i}){}\\ & = &\phi(P_{i})\bullet P_{j}\bullet P_{i}+P_{i}\bullet\phi(P_{j})\bullet P_{i}+P_{i}\bullet P_{j}\bullet \phi(P_{i}){}\\ & = &P_{j}\phi(P_{i})P_{i}+P_{i}\phi(P_{i})P_{j}+2P_{i}\phi(P_{j})P_{i}+\phi(P_{j})P_{i}+P_{i}\phi(P_{j}). \end{eqnarray}
(2.7)

(2.7) 式两边同乘 P_{i}

\begin{equation} P_{i}\phi(P_{j})P_{i} = 0. \end{equation}
(2.8)

(2.7) 式左乘 P_{i} 右乘 P_{j}

\begin{equation} P_{i}\phi(P_{i})P_{j}+P_{i}\phi(P_{j})P_{j} = 0. \end{equation}
(2.9)

(2.7) 式左乘 P_{j} 右乘 P_{i}

\begin{equation} P_{j}\phi(P_{i})P_{i}+P_{j}\phi(P_{j})P_{i} = 0. \end{equation}
(2.10)

对所有 A_{ji}\in{\cal A}_{ji}, 由(2.5) 式和(2.6) 式得

\begin{eqnarray*} 2\phi(A_{ji})& = &\phi(I\bullet P_{j}\bullet A_{ji})\\ & = &\phi(I)\bullet P_{j}\bullet A_{ji}+I\bullet\phi(P_{j})\bullet A_{ji}+I\bullet P_{j}\bullet\phi(A_{ji})\\ & = &2\phi(P_{j})A_{ji}+2A_{ji}\phi(P_{j})^{*}+2P_{j}\phi(A_{ji})+2\phi(A_{ji})P_{j}\\ & = &2\phi(P_{j})A_{ji}+2A_{ji}\phi(P_{j})+2P_{j}\phi(A_{ji})+2\phi(A_{ji})P_{j}. \end{eqnarray*}

上式左乘 P_{j} 右乘 P_{i} P_{j}\phi(P_{j})A_{ji}+A_{ji}\phi(P_{j})P_{i} = 0. 结合(2.8) 式可得 P_{j}\phi(P_{j})A_{ji} = 0. 由于 {\cal A} 是素的, 所以

\begin{equation} P_{j}\phi(P_{j})P_{j} = 0. \end{equation}
(2.11)

由(2.8)–(2.11) 式可得

\begin{equation} \phi(I) = \phi(P_{i})+\phi(P_{j}) = P_{i}\phi(P_{i})P_{j}+P_{j}\phi(P_{i})P_{i}+P_{i}\phi(P_{j})P_{j}+P_{j}\phi(P_{j})P_{i} = 0. \end{equation}
(2.12)

对所有 A, B\in{\cal A}, 由(2.12) 式得

\phi(A\bullet B) = \phi(\frac{I}{2}\bullet A\bullet B) = \phi(A)\bullet B+A\bullet\phi(B).

由文献[6]的主要定理得, \phi 是可加的 * -导子.

情形2   |\xi| = 1 \xi\neq 1, -1.

因为

\begin{eqnarray*} 0& = &\phi(I\diamond_{\xi}\text{i}I\diamond_{\xi}\text{i}I)\\ & = &\phi(I)\diamond_{\xi}\text{i}I\diamond_{\xi}\text{i}I+I\diamond_{\xi}\phi(\text{i}I)\diamond_{\xi}\text{i}I+I\diamond_{\xi}\text{i}I\diamond_{\xi}\phi(\text{i}I)\\ & = &\text{i}(1+\xi)(\phi(\text{i}I)+\phi(\text{i}I)^{*}). \end{eqnarray*}

所以

\begin{equation} \phi(\text{i}I)^{*} = -\phi(\text{i}I). \end{equation}
(2.13)

由(2.13) 式得

\begin{eqnarray} 2\phi(\text{i}(1-\xi)I)& = &\phi(\text{i}I\diamond_{\xi}I\diamond_{\xi}I){}\\ & = &\phi(\text{i}I)\diamond_{\xi}I\diamond_{\xi}I+\text{i}I\diamond_{\xi}\phi(I)\diamond_{\xi}I+\text{i}I\diamond_{\xi}I\diamond_{\xi}\phi(I){}\\ & = &2(1-\xi)\phi(\text{i}I)+\text{i}(1-\xi)\phi(I)+\text{i}(1-\xi)\phi(I)^{*}+2\text{i}(1-\xi)\phi(I). \end{eqnarray}
(2.14)

另一方面

\begin{eqnarray} 2\phi(\text{i}(1+\xi)I)& = &\phi(I\diamond_{\xi}I\diamond_{\xi}\text{i}I){}\\ & = &\phi(I)\diamond_{\xi}I\diamond_{\xi}\text{i}I+I\diamond_{\xi}\phi(I)\diamond_{\xi}\text{i}I+I\diamond_{\xi}I\diamond_{\xi}\phi(\text{i}I){}\\ & = &\text{i}(3+\xi)\phi(I)+\text{i}(1+3\xi)\phi(I)^{*}+2(1+\xi)\phi(\text{i}I). \end{eqnarray}
(2.15)

(2.14) 式加(2.15) 式得

\begin{equation} \phi(I)^{*} = \frac{\xi-3}{\xi+1}\phi(I). \end{equation}
(2.16)

(2.16) 式两边取 *

\phi(I) = \frac{\overline{\xi}-3}{\overline{\xi}+1}\phi(I)^{*} = \frac{\overline{\xi}-3}{\overline{\xi}+1}\cdot\frac{\xi-3}{\xi+1}\phi(I).

\phi(I)\neq 0, \xi = 1, 与题设矛盾, 所以

\begin{equation} \phi(I) = 0. \end{equation}
(2.17)

任取 A\in{\cal A}, 由(2.17) 式有

2\phi((1+\xi)A) = \phi(I\diamond_{\xi}I\diamond_{\xi}A) = I\diamond_{\xi}I\diamond_{\xi}\phi(A) = 2(1+\xi)\phi(A).

由此可得

\begin{equation} \phi((1+\xi)A) = (1+\xi)\phi(A), \forall A\in{\cal A}. \end{equation}
(2.18)

任取 A, B\in{\cal A},

\begin{eqnarray*} \phi((1+\xi)A\bullet B)& = &\phi(I\diamond_{\xi}A\diamond_{\xi}B)\\ & = &I\diamond_{\xi}\phi(A)\diamond_{\xi}B+I\diamond_{\xi}A\diamond_{\xi}\phi(B) \\ & = &(1+\xi)(\phi(A)\bullet B+A\bullet\phi(B)). \end{eqnarray*}

结合(2.18) 式可得

\phi(A\bullet B) = \phi(A)\bullet B+A\bullet\phi(B).

由文献[6]的主要定理得, \phi 是可加的 * -导子. 再由(2.18) 式得 \phi(\xi A) = \xi\phi(A), \forall A\in{\cal A}.

情形3   |\xi|\neq 1.

\phi(I\diamond_{\xi}\text{i}I\diamond_{\xi}\text{i}I) = \phi(\text{i}I\diamond_{\xi}\text{i}I\diamond_{\xi}I)

\begin{eqnarray*} &&2\text{i}\phi(\text{i}I)-|\xi|^{2}\text{i}\phi(\text{i}I)+|\xi|^{2}\text{i}\phi(\text{i}I)^{*}+\xi\text{i}\phi(\text{i}I)+\xi\text{i}\phi(\text{i}I)^{*}-\phi(I)+|\xi|^{2}\phi(I)\\ & = &-\phi(I)+|\xi|^{2}\phi(I)+2\text{i}\phi(\text{i}I)-\xi\text{i}\phi(\text{i}I)-\xi\text{i}\phi(\text{i}I)^{*}-|\xi|^{2}\text{i}\phi(\text{i}I)+|\xi|^{2}\text{i}\phi(\text{i}I)^{*}. \end{eqnarray*}

所以 2\xi\text{i}(\phi(\text{i}I)+\phi(\text{i}I)^{*}) = 0. 由此可得

\begin{equation} \phi(\text{i}I)^{*} = -\phi(\text{i}I). \end{equation}
(2.19)

另一方面, 由 \phi(\text{i}I\diamond_{\xi}\text{i}I\diamond_{\xi}\text{i}I) = -\phi(I\diamond_{\xi}\text{i}I\diamond_{\xi}I) 和(2.19) 式得

(1-|\xi|^{2})\phi(\text{i}I) = (1-|\xi|^{2})\text{i}\phi(I).

由此可得

\begin{equation} \phi(\text{i}I) = \text{i}\phi(I). \end{equation}
(2.20)

所以

\begin{equation} \phi(I)^{*} = \phi(I). \end{equation}
(2.21)

由(2.19) 式和(2.21) 式可得

\begin{eqnarray} \phi(\text{i}(1-2\xi+|\xi|^{2})I) & = &\phi(\text{i}I\diamond_{\xi}I\diamond_{\xi}I){}\\ & = &\phi(\text{i}I)\diamond_{\xi}I\diamond_{\xi}I+\text{i}I\diamond_{\xi}\phi(I)\diamond_{\xi}I+\text{i}I\diamond_{\xi}I\diamond_{\xi}\phi(I){}\\ & = &\phi(\text{i}I)-2\xi\phi(\text{i}I)+|\xi|^{2}\phi(\text{i}I)+2\text{i}\phi(I)-4\text{i}\xi\phi(I)+2\text{i}|\xi|^{2}\phi(I). \end{eqnarray}
(2.22)

另一方面

\begin{eqnarray} \phi(\text{i}(1+2\xi+|\xi|^{2})I)& = &\phi(I\diamond_{\xi}I\diamond_{\xi}\text{i}I){}\\ & = &\phi(I)\diamond_{\xi}I\diamond_{\xi}\text{i}I+I\diamond_{\xi}\phi(I)\diamond_{\xi}\text{i}I+I\diamond_{\xi}I\diamond_{\xi}\phi(\text{i}I){}\\ & = &2\text{i}\phi(I)+4\text{i}\xi\phi(I)+2\text{i}|\xi|^{2}\phi(I)+\phi(\text{i}I)+2\xi\phi(\text{i}I)+|\xi|^{2}\phi(\text{i}I). \end{eqnarray}
(2.23)

(2.22) 式加(2.23) 式得

\begin{equation} \phi(\text{i}(1+|\xi|^{2})I) = \phi(\text{i}I)+2\text{i}\phi(I)+|\xi|^{2}\phi(\text{i}I)+2\text{i}|\xi|^{2}\phi(I). \end{equation}
(2.24)

又由(2.19) 式和(2.21) 式得

\begin{eqnarray} \phi(\text{i}(1-|\xi|^{2})I)& = &\phi(I\diamond_{\xi}\text{i}I\diamond_{\xi}I){}\\ & = &\phi(I)\diamond_{\xi}\text{i}I\diamond_{\xi}I+I\diamond_{\xi}\phi(\text{i}I)\diamond_{\xi}I+I\diamond_{\xi}\text{i}I\diamond_{\xi}\phi(I){}\\ & = &\text{i}\phi(I)-\text{i}|\xi|^{2}\phi(I)+\phi(\text{i}I)-|\xi|^{2}\phi(\text{i}I)+\text{i}\phi(I)-\text{i}|\xi|^{2}\phi(I). \end{eqnarray}
(2.25)

(2.24) 式加(2.25) 式得 4\text{i}\phi(I) = 0,

\begin{equation} \phi(I) = 0. \end{equation}
(2.26)

由(2.20) 式得

\begin{equation} \phi(\text{i}I) = 0. \end{equation}
(2.27)

任取 A\in{\cal A}, 由(2.27) 式得

\phi(A\diamond_{\xi}\text{i}I\diamond_{\xi}\text{i}I) = \phi(A)\diamond_{\xi}\text{i}I\diamond_{\xi}\text{i}I.

计算可得

\begin{equation} \phi(|\xi|^{2}A) = |\xi|^{2}\phi(A). \end{equation}
(2.28)

由(2.26) 式得 \phi(A\diamond_{\xi}I\diamond_{\xi}I) = \phi(A)\diamond_{\xi}I\diamond_{\xi}I, 结合(2.28) 式得

\begin{equation} \phi(\xi A^{*}) = \xi\phi(A)^{*}. \end{equation}
(2.29)

另一方面 \phi(I\diamond_{\xi}I\diamond_{\xi}A^{*}) = I\diamond_{\xi}I\diamond_{\xi}\phi(A^{*}). 计算可得

\begin{equation} \phi(\xi A^{*}) = \xi\phi(A^{*}), \forall A\in{\cal A}. \end{equation}
(2.30)

结合(2.29) 式和(2.30) 式得

\begin{equation} \phi(A^{*}) = \phi(A)^{*}, \forall A\in{\cal A}. \end{equation}
(2.31)

任取 A\in{\cal A}, 由(2.28) 式得

\begin{eqnarray*} (1-|\xi|^{2})\phi(\text{i}A)& = &\phi((1-|\xi|^{2})\text{i}A) = \phi(I\diamond_{\xi}\text{i}I\diamond_{\xi}A)\\ & = &I\diamond_{\xi}\text{i}I\diamond_{\xi}\phi(A) = (1-|\xi|^{2})\text{i}\phi(A). \end{eqnarray*}

所以

\begin{equation} \phi(\text{i}A) = \text{i}\phi(A), \forall A\in{\cal A}. \end{equation}
(2.32)

任取 A, B\in{\cal A},

\begin{eqnarray} &&\phi(AB+\xi AB+\xi BA^{*}+|\xi|^{2}BA^{*}){}\\ & = &\phi(I\diamond_{\xi}A\diamond_{\xi}B){}\\ & = &I\diamond_{\xi}\phi(A)\diamond_{\xi}B+I\diamond_{\xi}A\diamond_{\xi}\phi(B){}\\ & = &\phi(A)B+\xi\phi(A)B+\xi B\phi(A)^{*}+|\xi|^{2}B\phi(A)^{*}{}\\ &&+A\phi(B)+\xi A\phi(B)+\xi\phi(B)A^{*}+|\xi|^{2}\phi(B)A^{*}. \end{eqnarray}
(2.33)

另一方面, 由(2.32) 式得

\begin{eqnarray} &&\phi(AB+\xi AB-\xi BA^{*}-|\xi|^{2}BA^{*}){}\\ & = &\phi(I\diamond_{\xi}\text{i}A\diamond_{\xi}(-\text{i}B)){}\\ & = &I\diamond_{\xi}\phi(\text{i}A)\diamond_{\xi}(-\text{i}B)+I\diamond_{\xi}\text{i}A\diamond_{\xi}\phi(-\text{i}B){}\\ & = &\phi(A)B+\xi\phi(A)B-\xi B\phi(A)^{*}-|\xi|^{2}B\phi(A)^{*}{}\\ &&+A\phi(B)+\xi A\phi(B)-\xi\phi(B)A^{*}-|\xi|^{2}\phi(B)A^{*}. \end{eqnarray}
(2.34)

结合(2.33) 式和(2.34) 式得

\phi((1+\xi)AB) = (1+\xi)\phi(A)B+(1+\xi)A\phi(B).

又由(2.30) 式得 (1+\xi)\phi(AB) = (1+\xi)(\phi(A)B+A\phi(B)). 所以 \phi(AB) = \phi(A)B+A\phi(B). 定理2.1证毕.

参考文献

Šemrl P .

Quadratic and quasi-quadratic functionals

Proc Amer Math Soc, 1993, 119 (4): 1105- 1113

DOI:10.1090/S0002-9939-1993-1158008-3      [本文引用: 2]

Li C J , Lu F Y , Fang X C .

Non-linear \xi-Jordan *-derivations on von Neumann algebras

Lin Multi Alg, 2014, 62 (4): 466- 473

DOI:10.1080/03081087.2013.780603      [本文引用: 1]

Li C J , Zhao F F , Chen Q Y .

Nonlinear skew Lie triple derivations between factors

Acta Math Sin, 2016, 32 (7): 821- 830

DOI:10.1007/s10114-016-5690-1      [本文引用: 2]

Zhao F F , Li C J .

Nonlinear maps preserving the Jordan triple *-product between factors

Indagat Math, 2018, 29 (2): 619- 627

DOI:10.1016/j.indag.2017.10.010      [本文引用: 1]

Huo D H , Zheng B D , Liu H Y .

Nonlinear maps preserving Jordan triple \eta-*-products

J Math Anal Appl, 2015, 430 (2): 830- 844

DOI:10.1016/j.jmaa.2015.05.021     

Zhang F J .

Nonlinear skew Jordan derivable maps on factor von Neumann algebras

Lin Multi Alg, 2016, 64 (10): 2090- 2103

DOI:10.1080/03081087.2016.1139035      [本文引用: 2]

Yu W Y , Zhang J H .

Nonlinear *-Lie derivations on factor von Neumann algebras

Lin Alg Appl, 2012, 437 (8): 1979- 1991

DOI:10.1016/j.laa.2012.05.032     

Zhang F J , Qi X F , Zhang J H .

Nonlinear *-Lie higher derivations on factor von Neumann algebras

B Iran Math Soc, 2016, 42 (3): 659- 678

URL    

张芳娟.

素*-环上非线性保XY-\xi YX^{*}

数学学报, 2014, 57 (4): 775- 784

URL    

Zhang F J .

Nonlinear preserving product XY-\xi YX^{*} on prime *-ring

Acta Math Sin, 2014, 57 (4): 775- 784

URL    

Taghavi A , Nouri M , Razeghi M , Darvish V .

Non-linear \lambda-Jordan triple *-derivation on prime *-algebras

Rochy MT J Math, 2018, 48 (8): 2705- 2716

Zhao F F , Li C J .

Nonlinear *-Jordan triple derivations on von Neumann algebras

Math Slovaca, 2018, 68 (1): 163- 170

DOI:10.1515/ms-2017-0089     

杨丽春, 安润玲.

von Neumann代数上的Lie可导映射

数学物理学报, 2018, 38A (5): 864- 872

DOI:10.3969/j.issn.1003-3998.2018.05.004     

Yang L C , An R L .

Lie derivable maps on von Neumann algebras

Acta Math Sci, 2018, 38A (5): 864- 872

DOI:10.3969/j.issn.1003-3998.2018.05.004     

齐霄霏.

{\cal J}-子空间格代数上中心化子和广义导子的刻画

数学物理学报, 2014, 34A (2): 463- 472

URL     [本文引用: 1]

QI X F .

Characterization of centralizers and generalized derivations on {\cal J}-subspace lattice algebras

Acta Math Sci, 2014, 34A (2): 463- 472

URL     [本文引用: 1]

/