Processing math: 5%

数学物理学报, 2021, 41(4): 954-967 doi:

论文

具有广义核的多线性平方算子与交换子的加权估计

陈晓莉,, 陈冬香,, 朱红燕

Weighted Estimates for Some Multilinear Square Operator and Commutator with Generalized Kernel

Chen Xiaoli,, Chen Dongxiang,, Zhu Hongyan

收稿日期: 2020-03-27  

基金资助: 国家自然科学基金.  11971209
国家自然科学基金.  11961032
江西省自然科学基金.  20192BAB201003

Received: 2020-03-27  

Fund supported: the NSFC.  11971209
the NSFC.  11961032
the NSF of Jiangxi Province.  20192BAB201003

作者简介 About authors

陈晓莉,E-mail:littleli_chen@163.com , E-mail:littleli_chen@163.com

陈冬香,E-mail:chendx020@163.com , E-mail:chendx020@163.com

Abstract

In this paper, the authors investigate some multilinear square operator with generalized kernel. They prove that the multilinear square operator T is bounded from (Lp1(ω1)××Lpm(ωm)) into Lp(νω), where 1p1++1pm=1p,νω=mi=1ωpipi, the authors proved the commutator Tb, generalized by multilinear square operator T and BMO function, is also bounded from(Lp1(ω1)××Lpm(ωm)) into Lp(νω)上. Finally, the authors also prove the multilinear square operator T is bounded from L××L into BMO. Some known results are improved.

Keywords: Generalized integral kernel ; Multilinear square operator ; Sharp maximal function ; Commutator ; Weight

PDF (354KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陈晓莉, 陈冬香, 朱红燕. 具有广义核的多线性平方算子与交换子的加权估计. 数学物理学报[J], 2021, 41(4): 954-967 doi:

Chen Xiaoli, Chen Dongxiang, Zhu Hongyan. Weighted Estimates for Some Multilinear Square Operator and Commutator with Generalized Kernel. Acta Mathematica Scientia[J], 2021, 41(4): 954-967 doi:

1 引言和主要结果

众所周知, 经典的多线性Calderón-Zygmund理论始于Coifman和Meyer的工作[1-3]. 自Lacey和Thiele[12-13]在双线性Hilbert变换取得突破性进展后, Grafakos和Torres在文献[9]和[10]中系统的研究了多线性Calderón-Zygmund理论.Kenig和Stein[11]研究了多线性分数次积分算子. 此后, 越来越多的数学家投身于这一领域的研究并取得了丰硕的成果.

m是自然数, K(y0,y1,,ym)是定义在(Rn)m+1上远离对角线y0=y1==ym的函数, 定义多线性算子T

T(f1,,fm)(x)=RmnK(x,y1,,ym)mj=1fj(yj)dy1dym,
(1.1)

其中fj,j=1,,m是具有紧支撑集的函数且xmj=1suppfj.

特别地, 称K(x,y1,,ym)m -线性Calderón-Zygmund核, 如果它满足如下条件.

(ⅰ) 尺寸条件: 对于所有的(Rn)m+1中远离对角线的点(y0,y1,,ym), 存在C>0使得

|K(y0,y1,,ym)|C(mk,=0|yky|)mn;
(1.2)

(ⅱ) 光滑条件: 存在ε>0, 当0jm|yjyj|12max, 有

\begin{eqnarray} |K(y_0, y_1, \cdots, y_j, \cdots, y_m)-K(y_0, y_1, \cdots, y'_j, \cdots, y_m)|\le\frac{C|y_j-y'_j|^\varepsilon}{(\sum\limits_{k, \ell = 0}^m|y_k-y_{\ell}|)^{mn+\varepsilon}}. \end{eqnarray}
(1.3)

称与 m -线性Calderón-Zygmund核 K 相关的多线性算子 T 为多线性Calderón-Zygmund算子, 如果 T 满足下列条件中之一

(ⅰ) 当 r>1 时, T L^{r_1, 1}\times\cdots\times L^{r_m, 1} L^{r, \infty} 上的有界算子;

(ⅱ) 当 r = 1 时, T L^{r_1, 1}\times\cdots\times L^{r_m, 1} L^{1} 上的有界算子.

近来, Lu和Zhang[18]引进了 \omega 型多线性Calderón-Zygmund核且得到了这类多线性奇异积分算子的有界性. 设 \omega(t) 是定义在 {{\Bbb R}} _+ 上的非负非减的函数.称定义在 ({{\Bbb R}} ^n)^{m+1} 上远离对角线 y_0 = y_1 = \cdots = y_m 的局部可积函数 K(y_0, y_1, \cdots, y_m) \omega m -线性Calderón-Zygmund核, 如果它满足尺寸条件(1.2)和

\begin{eqnarray} &&|K(y_0, \cdots, y_j, \cdots, y_m)-K(y_0, \cdots, y'_j, \cdots, y_m)|\\ &\le& \frac{C}{(|y_0-y_1|+\cdots+|y_0-y_m|)^{mn}}\omega\bigg(\frac{|y_j-y'_j|}{|y_0-y_1|+\cdots+|y_0-y_m|}\bigg), \end{eqnarray}
(1.4)

其中 1\le j\le m |y_j-y'_j|\le \frac12\max\limits_{1\le j\le m}\{|y_0-y_j|\} . 显然当 \omega(t) = t^\varepsilon 时, \omega -型 m -线性算子 T 就是标准的多线性Calderón-Zygmund算子.

K(y_0, \cdots, y_m) m -线性广义核, 如果 K(y_0, \cdots, y_m) 满足条件(1.2)和如下积分条件: 对任意 k_1, \cdots, k_m\in{\mathbb N}_{+} , 存在 C_{k_i}, i = 1, \cdots, m , 使得

\begin{eqnarray} &&\bigg(\int_{2^{k_m}|x-x'|\le|y_m-x|<2^{k_m+1}|x-x'|}\cdots\int_{2^{k_1}|x-x'|\le|y_1-x|<2^{k_1+1}|x-x'|}\\ &&|K(x, y_1, \cdots, y_m)-K(x', y_1, \cdots, y_m)|^q{\rm d}y_1\cdots {\rm d}y_m\bigg)^{\frac{1}{q}}\\ &\le& C|x-x'|^{-\frac{mn}{q'}}\prod\limits_{i = 1}^m C_{k_i}2^{-\frac{nk_i}{q'}}, \end{eqnarray}
(1.5)

其中 1/q+1/q' = 1 1<q<\infty . 称核函数满足条件(1.2)和(1.5)的多线奇异积分算子 T 为具有广义核的多线性Calderón-Zygmund算子. Lin在文献[14]得到了具有广义核的多线性Calderón-Zygmund算子在乘积加权Lebesgue空间上的有界性, 同时Lin在文献[14]中也指出当 C_{k_i} = \omega(2^{-k_i})^{\frac1{m}} 时, (1.5)式就是(1.4)式.

设局部可积函数 \vec{b} = (b_1, \cdots, b_m) , 由多线性Calderón-Zygmund算子 T 和函数 \vec{b} 生成的 m -线性交换子 T_{\Sigma\vec{b}}

\begin{equation} T_{\Sigma\vec{b}}(f_1, \cdots , f_m)(x) = \sum\limits_{j = 1}^mT_{b_j}^j(f_1, \cdots , f_m)(x), \end{equation}
(1.6)

其中

T_{b_j}^j(f_1, \cdots , f_m)(x) = b_j(x)T(f_1, \cdots , f_m)(x)-T(f_1, \cdots , b_jf_j, \cdots , f_m)(x).

Pérez和Torres在文献[19]中证明了当 \vec{b}\in BMO^m 时, m -线性交换子 T_{\Sigma\vec{b}} L^{p_1}(\omega)\times\cdots\times L^{p_m}(\omega) L^{p}(\omega) 上有界的, 其中 1<p_1, \cdots , p_m<\infty 1/p = 1/p_1+\cdots+1/p_m .后来, Lerner等在文献[16]证明了当 \vec{\omega}\in A_{\vec{P}} 时, m -线性交换子 T_{\Sigma\vec{b}} L^{p_1}(\omega_1)\times\cdots\times L^{p_m}(\omega_m) L^p(\nu_{\vec{\omega}}) 上有界的, 其中 1<p_1, \cdots, p_m<\infty 1/p = 1/p_1+\cdots+1/p_m . 2017年, Lin和Xiao证明了具有广义核的 m -线性Calderón-Zygmund算子也是 L^{p_1}(\omega_1)\times\cdots\times L^{p_m}(\omega_m) L^p(\nu_{\vec{\omega}}) 上有界的, 推广了文献[19]和[16]的结果.

20世纪80年代, Fabes, Jerison和Kenig研究了多线性Littlewood-Paley g 函数且发现多线性Littlewood-Paley型估计在偏微分和其他领域中具有重要的应用[5-7]. 此后涌现了越来越多的有关多线性Littlewood-Paley型算子的有界性结果[17, 21-22]. Xue和Yan[21]给出了如下的核定义.

定义1.1  CZ I -型积分光滑条件

(ⅰ) 设 K_t(x, y_1, \cdot, y_m) = t^{-mn}K(\frac{x}{t}, \frac{y_1}{t}, \cdots, \frac{y_m}{t}) 是定义在 ({{\Bbb R}} ^{n})^{m+1} 上远离对角线 x = y_1 = \cdots = y_m 的局部可积函数, 存在常数 C>0 使得

\begin{equation} \bigg(\int_0^\infty|K_t(x, y_1, \cdots, y_m)|^2\frac{{\rm d}t}{\rm t}\bigg)^{\frac{1}{2}} \le\frac{A}{(\sum\limits_{k = 1}^m|x-y_k|)^{mn}}, \end{equation}
(1.7)

\begin{equation} \bigg(\int_0^\infty|K_t(x, y_1, \cdots, y_m)-K_t(z, y_1, \cdots, y_m)|^2\frac{{\rm d}t}{\rm t}\bigg)^{\frac{1}{2}} \le\frac{A|x-z|^{\varepsilon}}{(\sum\limits_{k = 1}^m|x-y_k|)^{mn+\varepsilon}}, \end{equation}
(1.8)

其中 |x-z|\le\frac12\max\limits_{j = 1}^m\{|x-y_j|\} ;

(ⅱ)

\begin{equation} \bigg(\int_0^\infty|K_t(x, y_1, \cdots, y_m)-K_t(z, y_1, \cdots, y_m)|^2\frac{{\rm d}t}{\rm t}\bigg)^{\frac{1}{2}} \le\frac{A|y_j-y'_j|^{\varepsilon}}{(\sum\limits_{k = 1}^m|x-y_k|)^{mn+\varepsilon}}, \end{equation}
(1.9)

其中 |y_j-y'_j|\le\frac12\max\limits_{j = 1}^m\{|x-y_j|\} .

定义与 K 相关的多线性平方算子 T

\begin{equation} T(\vec{f})(x) = \bigg(\int_0^\infty|\int_{{{\Bbb R}} ^{nm}}K_t(x, y_1, \cdots, y_m)f_1(y_1)\cdots f_m(y_m){\rm d}\vec{y}|^2\frac{{\rm d}t}{\rm t}\bigg)^{\frac12}, \end{equation}
(1.10)

其中 \vec{f} = (f_1, \cdots, f_m)\in (S({{\Bbb R}} ^n))^m x\not\in\bigcap\limits_{j = 1}^m{\rm supp} f_j . Xue和Yan证明了多线性平方算子 T L^{p_1}(\omega_1)\times\cdots\times L^{p_m}(\omega_m) L^{p}(\nu_{\omega}) 上有界, 其中 \nu_{\omega} = \prod\limits_{i = 1}^m\omega_i^{\frac{p}{p_i}} \frac{1}{p_1}+\cdots+\frac{1}{p_m} = \frac1{p} . 随后, Si和薛[20]改进了文献[21]中的结果, 他们多形性平方算子 T 的核函数的由CZ I -型积分光滑条件核降低为一类 \omega - 型积分核.

定义1.2   \omega -型积分条件

(ⅰ) 设 K_t(x, y_1, \cdot, y_m) = t^{-mn}K(\frac{x}{t}, \frac{y_1}{t}, \cdots, \frac{y_m}{t}) 是定义在 ({{\Bbb R}} ^{n})^{m+1} 上远离对角线 x = y_1 = \cdots = y_m 的局部可积函数, 存在常数 C>0 使得

\begin{equation} \bigg(\int_0^\infty|K_t(x, y_1, \cdots, y_m)|^2\frac{{\rm d}t}{\rm t}\bigg)^{\frac{1}{2}} \le\frac{A}{(\sum\limits_{k = 1}^m|x-y_k|)^{mn}}, \end{equation}
(1.11)

\begin{equation} \bigg(\int_0^\infty|K_t(x, y_1, \cdots, y_m)-K_t(z, y_1, \cdots, y_m)|^2\frac{{\rm d}t}{\rm t}\bigg)^{\frac{1}{2}} \le \frac{A}{(\sum\limits_{k = 1}^m|x-y_k|)^{mn}}\omega\bigg(\frac{|x-z|}{(\sum\limits_{k = 1}^m|x-y_k|)}\bigg), \end{equation}
(1.12)

其中 |x-z|\le\frac12\max\limits_{j = 1}^m\{|x-y_j|\} ;

(ⅱ)

\begin{equation} \bigg(\int_0^\infty|K_t(x, y_1, \cdots, y_m)-K_t(z, y_1, \cdots, y_m)|^2\frac{{\rm d}t}{\rm t}\bigg)^{\frac{1}{2}} \le\frac{A}{(\sum\limits_{k = 1}^m|x-y_k|)^{mn}}\omega\bigg(\frac{|y_j-y'_j|}{(\sum\limits_{k = 1}^m|x-y_k|)}\bigg), \end{equation}
(1.13)

其中 |y_j-y'_j|\le\frac12\max\limits_{j = 1}^m\{|x-y_j|\} .

Si和xue证明了当 \omega(t)\in Dini(1) 时, 具有 \omega(t) -型积分核的多线性平方算子也是 L^{p_1}(\omega_1)\times\cdots\times L^{p_m}(\omega_m) L^{p}(\nu_{\omega}) 上有界.下面我们介绍一类广义积分核条件:

定义1.3  (H _1) : 设 K_t(x, y_1, \cdot, y_m) = t^{-mn}K(\frac{x}{t}, \frac{y_1}{t}, \cdots, \frac{y_m}{t}) 是定义在 (R^{n})^{m+1} 上远离对角线 x = y_1 = \cdots = y_m 的局部可积函数, 存在常数 C>0 使得

\begin{eqnarray} \bigg(\int_0^\infty|K_t(x, y_1, \cdots, y_m)|^2\frac{{\rm d}t}{\rm t}\bigg)^{\frac{1}{2}} \le\frac{A}{(\sum\limits_{k = 1}^m|x-y_k|)^{mn}}, \end{eqnarray}
(1.14)

(H _2): k_1, \cdots, k_m\in{\mathbb N}_{+} , 存在 C_{k_i}(i = 1, \cdots, m) , 使得

\begin{eqnarray} &&\bigg(\int_{2^{k_m}|x-x'|\le|y_m-x|<2^{k_m+1}|x-x'|}\cdots\int_{2^{k_1}|x-x'|\le|y_1-x|<2^{k_1+1}|x-x'|}\\ &&\bigg(\int_0^\infty|K_t(x, y_1, \cdots, y_m)-K_t(x', y_1, \cdots, y_m)|^2\frac{{\rm d}t}{\rm t}\bigg)^{\frac{q}{2}}{\rm d}y_1\cdots {\rm d}y_m\bigg)^{\frac{1}{q}}\\ &\le & C|x-x'|^{-\frac{mn}{q'}}\prod\limits_{i = 1}^mC_{k_i}2^{-\frac{nk_i}{q'}}, \end{eqnarray}
(1.15)

其中 1/q+1/q' = 1 1<q<\infty .称满足条件(H _1) 和(H _2) K_t 为广义积分核.称广义积分核 K_t 相关的多线性平方算子 T 为具有广义核的多线性平方算子.

显然, 当 C_{k_i} = \omega(2^{k_i})^{\frac1{m}} , 广义积分核函数满足Si和Xue定义的 \omega 型积分条件.受文献[15, 21]和[20]的启发, 我们将研究具有广义积分核的多线性平方算子在乘积Lebesgue空间上的加权有界性及其交换子的加权有界性.

我们首先得到了多线性平方算子的加权Lebesgue空间上的乘积估计.

定理1.1  设 m\geq2, T 是定义(1.10)式中的多线性平方算子.对于 i = 1, \cdots, m , 核满足条件(H _{1}) 和(H _{2}) \sum\limits_{k_i = 1}^\infty C_{k_i}<\infty .假设 1\le r_1, \cdots, r_m\le q' \frac{1}{r} = \frac{1}{r_1}+\cdots+\frac{1}{r_m} T 是从 L^{r_1}\times \cdots\times L^{r_m} 连续映射到 L^{r, \infty} .则对于任意 q'<p_1, \cdots, p_m<\infty \frac{1}{p} = \frac{1}{p_1}+\cdots+\frac{1}{p_m} , 则 T L^{p_1}(\omega_1)\times\cdots\times L^{p_m}(\omega_m) 连续映射到 L^{p}(\omega) . 其中 (\omega_1, \cdots, \omega_m)\in (A_{p_1/q'}, \cdots, A_{p_m/q'}) , \omega = \prod\limits_{j = 1}^m\omega_j^{\frac{p}{p_j}} .

接下来研究的是多线性平方算子 T (L^\infty\times\cdots\times L^\infty, BMO) 有界性.

定理1.2  设 m\geq2, T 是(1.10)式中的多线性平方算子.对于 i = 1, \cdots, m , 核满足条件(H _{1}) 和(H _{2}) \sum\limits_{k_i = 1}^\infty C_{k_i}<\infty . 假设 1\le r_1, \cdots, r_m\le q' \frac{1}{r} = \frac{1}{r_1}+\cdots+\frac{1}{r_m} T 是从 L^{r_1}\times \cdots\times L^{r_m} 连续映射到 L^{r, \infty} . T 是从 L^{\infty}\times\cdots\times L^{\infty} 连续映射到 BMO .

下面定理讨论的是平方算子的交换子的加权范数不等式.

定理1.3  设 m\geq2, T 是(1.6)式中的多线性平方算子的交换子.对于 i = 1, \cdots, m , 核满足条件(H _{1}) 和(H _{2}) \sum\limits_{k_i = 1}^\infty C_{k_i}<\infty .假设 1\le r_1, \cdots, r_m\le q' \frac{1}{r} = \frac{1}{r_1}+\cdots+\frac{1}{r_m} T 是从 L^{r_1}\times \cdots\times L^{r_m} 连续映射到 L^{r, \infty} . \vec{b}\in BMO^m , 对于任意 q'<p_1, \cdots, p_m<\infty \frac{1}{p} = \frac{1}{p_1}+\cdots+\frac{1}{p_m} , T_{\sum \vec{b}} L^{p_1}(\omega_1)\times\cdots\times L^{p_m}(\omega_m) 连续映射到 L^{p}(\omega) .其中 (\omega_1, \cdots, \omega_m)\in (A_{p_1/q'}, \cdots, A_{p_m/q'}) , \omega = \prod\limits_{j = 1}^m\omega_j^{\frac{p}{p_j}} .

注1.1   根据前面核函数的讨论, 定理1.1改进了文献[21]和[20]中的强型加权估计.事实上, 定理1.3也改进核函数条件为CZ I -型积分光滑条件的多线性平方函数的 m -线性交换子在乘积Lebesgue空间的加权估计结论.

2 预备知识与主要引理

首先介绍一簇Muckenhoupt权 \omega\in A_p 1<p<\infty . 1<p<\infty , 如果对任意 B\subset {{\Bbb R}} ^n , 存在常数 C 使得

\left(\frac{1}{|Q|}\int_Q\omega(x){\rm d}x\right)\left(\frac{1}{|Q|}\int_Q\omega(x)^{1-p^{\prime}}{\rm d}x\right)^{p-1}\leq C<\infty,

则称权函数 \omega\in A_p ; 如果存在常数 C , 使得

\frac{1}{|Q|}\int_Q\omega(x){\rm d}x\leq C\omega(x), \ \ {\rm a.e.}\ x\in {{\Bbb R}} ^n,

则称权函数 \omega\in A_1 ; 并且定义 A_\infty = \bigcup\limits_{1\leq p<\infty}A_p. 更多权函数的性质参见文献[8].

现在回顾经典的Hardy-Littlewood中心极大函数 M 和sharp极大函数 M^{\sharp} 的定义

M(f)(x) = \sup\limits_{Q\ni x}\frac{1}{|Q|}\int_Q|f(y)|{\rm d}y

M^\sharp f(x) = \sup\limits_{Q\ni x}\inf\limits_c\frac{1}{|Q|}\int_Q|f(y)-C|{\rm d}y = \sup\limits_{Q\ni x}\frac{1}{|Q|}\int_Q|f(y)-f_Q|{\rm d}y,

其中 f_Q = \frac{1}{|Q|}\int_Q f(y){\rm d}y , Q {{\Bbb R}} ^n 中的球.

接下给出另一些极大算子的定义, 对 \delta>0 , 定义

{\cal M}_\delta(f)(x) = \left(M(|f|^\delta)\right)^{1/\delta}(x) = \bigg(\sup\limits_{B\ni x}\frac{1}{|B|}\int_B|f(y)|^r{\rm d}y\bigg) ^{1/\delta}

M_r^\sharp(f)(x) = \left(M^\sharp(|f|^r)\right)^{1/r}(x).

根据文献[8]可知, M L^p(\omega) 有界当且仅当 \omega\in A_p. {\cal M}_r L^p(\omega) 有界当且仅当 \omega\in A_p.

引理2.1(Kolmogorov不等式)[8]  设 0<p<q<\infty, 存在常数 C = C_{p, q} , 使得对任意的可测函数 f , 有

\big\|f\big\|_{L^p(B, \frac{{\rm d}x}{|B|})}\leq C\big\|f\big\|_{L^{q, \infty}(B, \frac{{\rm d}x}{|B|})}.

引理2.2[8]  (ⅰ) 对 1\leq p<q\leq\infty, A_p\subset A_q;

(ⅱ) 若 \omega\in A_1, 0\leq\theta\leq1, \omega^\theta\in A_1;

(ⅲ) 对 1<p<\infty, \omega\in A_p 当且仅当 \omega^{1-p^{\prime}}\in A_{p^{\prime}}.

下面的引理是由Fefferman和Stein在文献[4]所得到的.

引理2.3[4]  设 0<p, \delta<\infty \omega\in A_\infty({{\Bbb R}} ^n). 则存在常数 C>0, 使得

\int_{{{\Bbb R}} ^n}M_\delta f(x)^p\omega(x){\rm d}x\leq C\int_{{{\Bbb R}} ^n}M_\delta^\sharp f(x)^p\omega(x){\rm d}x,

对任意的光滑函数 f , 不等式左边部分是有限的.

引理2.4[8]  对 (\omega_1, \cdots, \omega_m)\in (A_{p_1}, \cdots, A_{p_m}) , 1\le p_1, \cdots, p_m<\infty 0<\theta_1, \cdots, \theta_m<1 , 使得 \theta_1+\cdots+\theta_m = 1 , 有 \omega_1^{\theta_1}\cdots\omega_m^{\theta_m}\in A_{\max\{p_1, \cdots, p_m\}} .

3 带广义核的多线性平方算子在加权Lebesgue空间上的有界性

在证明带广义核的多线性平方算子在加权Lebesgue空间上的有界性之前,下面先介绍多线性平方算子的sharp极大函数的估计.

引理3.1  设 m\geq2, T 是定义(1.10)中的多线性平方算子.对于 i = 1, \cdots, m , 核满足条件(H _1) 和(H _2) \sum\limits_{k_i = 1}^\infty C_{k_i}<\infty .假设 1\le r_1, \cdots, r_m\le q' \frac{1}{r} = \frac{1}{r_1}+\cdots+\frac{1}{r_m} T 是从 L^{r_1}\times \cdots\times L^{r_m} L^{r, \infty} 的连续映射.若 0< \delta < \min \{1, \frac{q}{m}\} , 有

\begin{eqnarray*} M_{\delta}^\sharp(T(\vec{f}))(x)\le C\prod\limits_{j = 1}^mM_{q'}(f_j)(x). \end{eqnarray*}

  取以 x_Q 为中心和边长为 r_{Q} 的方体 Q = Q(x_Q, r_{Q}) . \lambda_i = (b_i)_{Q^*}, i = 1, 2 . f_i 做如下分解

f_i = f_i\chi_{Q^*}+f_i\chi_{{{\Bbb R}} ^n\backslash Q^*} = f_i^0+f_i^\infty,

其中 Q^\ast = 16Q. 对于 0 <\delta< \frac{q}m ,选取 z_0\in 3Q\backslash 2Q , 有

\begin{eqnarray*} &&\bigg(\frac1{|Q|}\int_{Q}\big||T(\vec{f})(z)|^{\delta}-|T(f_1^\infty, \cdots, f_m^\infty)(z_0)|^{\delta}|{\rm d}z\bigg)^{\frac1{\delta}}\\ &\le& C\left(\frac1{|Q|}\int_{Q}\big|T(\vec{f})(z)-T(f_1^\infty, \cdots, f_m^\infty)(z_0)\big|^{\delta}{\rm d}z\right)^{\frac1{\delta}}\\ &\le& C\left(\frac1{|Q|}\int_{Q}|T(f_1^0, \cdots, f_m^0)(z)|{\rm d}z\right)+C\sum\limits_{\vec{\alpha}\ne 0}\left(\frac1{|Q|}\int_{Q}|T(f_1^{\alpha_1}, f_2^{\alpha_2}, \cdots, f_m^{\alpha_m})(z)|^{\delta}{\rm d}z\right)^{\frac1{\delta}}\\ & &+C\left(\frac1{|Q|}\int_{Q}|T(f_1^\infty, f_2^\infty, \cdots, f_m^\infty)(z)-T(f_1^\infty, \cdots, f_m^\infty)(z_0)|^{\delta}{\rm d}z\right)^{\frac1{\delta}}\\ & = &I+II+III, \end{eqnarray*}

其中 \vec{\alpha} = (\alpha_1, \cdots, \alpha_m) (\alpha_1, \cdots, \alpha_m)\ne (\infty, \cdots, \infty) .

由引理2.1和多线性平方算子 T (L^{r_1}\times\cdots\times L^{r_m}, L^{r, \infty}) 上的有界性, 可得

\begin{eqnarray*} I\le C\|T(f_1^0, \cdots, f_m^0)\|_{L^{r, \infty}}\le C\prod\limits_{j = 1}^m\bigg(\frac{1}{|16Q|}\int_{16Q}|f_j(y_j)|^{r_j}{\rm d}y_j\bigg)^{\frac{1}{r_{j}}}\le C\prod\limits_{j = 1}^mM_{q'}(f_j)(x). \end{eqnarray*}

先估计 II .假设 \alpha_1 = \cdots = \alpha_l = \infty \alpha_{l+1} = \cdots = \alpha_{\infty} = 0 . 根据Hölder不等式, Minkowski不等式得

\begin{eqnarray*} II&\le& C\sum\limits_{\vec{\alpha}\ne 0}\frac{1}{|Q|}\int_{Q}|T(f_1^{\alpha_1}, f_2^{\alpha_2}, \cdots, f_m^{\alpha_m})(z)|{\rm d}z\\ &\le &C\sum\limits_{\vec{\alpha}\ne 0}\frac{1}{|Q|}\int_{Q}\int_{{{\Bbb R}} ^{nm}}\bigg(\int_0^\infty|K_v(z, y_1, \cdots, y_m)|^2\frac{dv}{v}\bigg)^{\frac{1}{2}}\prod\limits_{j = 1}^m|f_j^{\alpha_j}(y_j)|{\rm d}y_1\cdots {\rm d}y_m{\rm d}z\\ &\le &C\frac{1}{|Q|}\int_{Q}\bigg(\int_{(16Q)^{m-l}}\prod\limits_{j = l+1}^m|f_j(y_j)|{\rm d}y_{l+1}\cdots {\rm d}y_m\int_{({{\Bbb R}} ^n\backslash 16Q)^{l}} \frac{\prod\limits_{j = 1}^l|f_j(y_j)|}{|z-y_j|^{mn}}{\rm d}y_1\cdots {\rm d}y_l\bigg){\rm d}z\\ &\le &C\prod\limits_{i = l+1}^{m}\bigg(\frac{1}{|16Q|}\int_{16Q}|f_i(y_i)|{\rm d}y_i\bigg)\prod\limits_{j = 1}^l\bigg(\sum\limits_{k = 4}^\infty 2^{-kn}\frac{1}{|2^kQ|} \int_{2^{k+1}Q\backslash 2^kQ}|f_j(y_j)|{\rm d}y_j\bigg)\\ &\le& C\prod\limits_{j = 1}^{m}M(f_i)(x)\le C\prod\limits_{j = 1}^{m}M_{q'}(f_i)(x). \end{eqnarray*}

对于 z\in Q y_1, \cdots, y_m\in (16Q)^c , 有 |y_j-z_0|\ge 2|z-z_0| r_B\le|z-z_0|\le 4r_B .运用Hölder不等式, Minkowski不等式得

\begin{eqnarray*} III&\le &C\left(\frac{1}{|Q|}\int_{Q}|T(f_1^\infty, f_2^\infty, \cdots, f_m^\infty)(z)-T(f_1^\infty, f_2^\infty, \cdots, f_m^\infty)(z_0)|{\rm d}z\right)\\ &\le&\frac{C}{|Q|}\int_{Q}\bigg(\sum\limits_{k_1 = 1}^{\infty}\cdots\sum\limits_{k_m = 1}^{\infty}\int_{2^{k_m}|z-z_0|\le|y_1-z_0|<2^{k_m+1}|z-z_0|}\cdots\int_{2^{k_1}|z-z_0|\le|y_1-z_0|<2^{k_1+1}|z-z_0|}\\ &&\bigg(\int_0^\infty|K_v(z, y_1, \cdots, y_m)-K_v(z_0, y_1, \cdots, y_m)|^2\frac{{\rm d}v}{v}\bigg)^{\frac{1}{2}}\prod\limits_{j = 1}^m|f_j(y_j)|{\rm d}y_1\cdots {\rm d}y_m\bigg){\rm d}z\\ &\le&\frac{C}{|Q|}\int_{Q}\bigg(\sum\limits_{k_1 = 1}^{\infty}\cdots\sum\limits_{k_m = 1}^{\infty}\int_{2^{k_m}|z-z_0|\le|y_1-z_0|<2^{k_m+1}|z-z_0|}\cdots\int_{2^{k_2}|z-z_0|\le|y_1-z_0|<2^{k_2+1}|z-z_0|}\\ &&\bigg(\int_{2^{k_1}|z-z_0|\le|y_1-z_0|<2^{k_1+1}|z-z_0|}\bigg(\int_0^\infty|K_v(z, y_1, \cdots, y_m)\\ & &-K_v(z_0, y_1, \cdots, y_m)|^2\frac{{\rm d}v}{v}\bigg)^{\frac{q}{2}}{\rm d}y_1\bigg)^{\frac{1}{q}}\bigg(\int_{2^{k_1+4}Q} |f_1(y_1)|^{q'}{\rm d}y_1\bigg)^{\frac{1}{q'}}\prod\limits_{j = 2}^m|f_j(y_j)|{\rm d}y_2\cdots {\rm d}y_m\bigg){\rm d}z\\ &\le&\frac{C}{|Q|}\int_{Q}\bigg(\sum\limits_{k_1 = 1}^{\infty}\cdots\sum\limits_{k_m = 1}^{\infty}\bigg(\int_{2^{k_m}|z-z_0|\le|y_1-z_0|<2^{k_m+1}|z-z_0|}\cdots\int_{2^{k_2}|z-z_0|\le|y_1-z_0|<2^{k_2+1}|z-z_0|}\\ &&\int_{2^{k_1}|z-z_0|\le|y_1-z_0|<2^{k_1+1}|z-z_0|}\bigg(\int_0^\infty|K_v(z, y_1, \cdots, y_m)\\ &&-K_v(z_0, y_1, \cdots, y_m)|^2\frac{{\rm d}v}{v}\bigg)^{\frac{q}{2}}{\rm d}y_1 {\rm d}y_2\cdots {\rm d}y_m\bigg)^{\frac{1}{q}} \prod\limits_{j = 1}^m\bigg(\int_{2^{k_j+4}Q}|f_j(y_j)|^{q'}{\rm d}y_j\bigg)^{\frac{1}{q'}}\bigg){\rm d}z\\ &\le&\frac{C}{|Q|}\int_{Q}\bigg(\sum\limits_{k_1 = 1}^{\infty}\cdots\sum\limits_{k_m = 1}^{\infty} \prod\limits_{j = 1}^m\bigg(\frac{1}{|2^{k_j+4}Q|}\int_{2^{k_j+4}Q}|f_j(y_j)|^{q'}{\rm d}y_j\bigg)^{\frac{1}{q'}}\\ &&\prod\limits_{j = 1}^m|2^{k_j+4}Q|^{\frac{1}{q'}}|z-z_0|^{-\frac{mn}{q'}}\prod\limits_{j = 1}^mC_{k_j}2^{-\frac{k_jn}{q'}}\bigg){\rm d}z\\ &\le& C\prod\limits_{j = 1}^mM_{q'}(f_j)(x)(\sum\limits_{k_1 = 1}^\infty C_{k_1})\times\cdots\times(\sum\limits_{k_m = 1}^\infty C_{k_m})\le C\prod\limits_{j = 1}^mM_{q'}(f_j)(x). \end{eqnarray*}

最后结合 I, II III 的估计, 则引理证毕.

下面利用多线性平方算子的sharp极大函数估计证明定理1.1.

定理1.1的证明  由引理2.4知 \omega\in A_{\max\{p_1/q, \cdots, p_m/q\}}\subset A_{\infty} . 选取 0<\delta<\frac1{m} , 利用引理2.3和引理3.1得

\begin{eqnarray*} \|T(\vec{f})\|_{L^p(\omega)}&\le &\|M_{\delta}(T(\vec{f}))\|_{L^p(\omega)}\le \|M_{\delta}^{\sharp}(T(\vec{f}))\|_{L^p(\omega)}\\ &\le &C\|\prod\limits_{j = 1}^mM_{q'}(f_j)(x)\|_{L^{p}(\omega)}\le C\prod\limits_{j = 1}^m\|M_{q'}(f_j)(x)\|_{L^{p_j}(\omega_j)}\le C\|f_j\|_{L^{p_j}(\omega_j)}. \end{eqnarray*}

证明完毕.

4 带广义核的多线性平方算子在 (L^\infty\times\cdots\times L^\infty, BMO) 空间上的有界性

定理1.2的证明  设 f_1, \cdots, f_m\in L^\infty .对任意球 B(x_0, r) , 将 f_j 分解为

\begin{eqnarray*} f_j = f_j\chi_{2B}+f_j\chi_{{{\Bbb R}} ^n\backslash 2Q} = f_j^0+f_j^\infty, \quad j = 1, 2, \cdots, m, \end{eqnarray*}

则可得

\begin{eqnarray*} &&\frac{1}{|B|}\int_{B}|T(f_1, \cdots, f_m)(z)-T(f_1^\infty, \cdots, f_m^\infty)(z_0)|{\rm d}z\\ &\le& \frac{1}{|B|}\int_{B}|T(f_1^0, \cdots, f_m^0)(z)|{\rm d}z+\sum\limits_{\vec{\alpha}\ne 0, \vec{\alpha}\ne (\infty, \cdots, \infty)} \frac{1}{|B|}\int_{B}|T(f_1^{\alpha_1}, \cdots, f_m^{\alpha_m})(z)|{\rm d}z\\ &&+\frac{1}{|B|}\int_{B}|T(f_1^\infty, \cdots, f_m^\infty)(z)-T(f_1^\infty, \cdots, f_m^\infty)(z_0)|{\rm d}z\\ &: = &D_1+D_2+D_3. \end{eqnarray*}

利用Hölder不等式和多线性平方算子 T (L^{p_1}\times \cdots\times L^{p_m}, L^p) 上的有界性得

\begin{eqnarray*} D_1&\le &\bigg(\frac{1}{|B|}\int_B|T(f_1^0, \cdots, f_m^0)(z)|^p{\rm d}z\bigg)^{\frac{1}{p}}\le C |B|^{-\frac{1}{p}}\|f_1^0\|_{L^{p_1}}\|f_2^0\|_{L^{p_2}}\cdots\|f_m^0\|_{L^{p_m}}\\ &\le &C\prod\limits_{j = 1}^m\|f_j\|_{L^\infty}|B|^{-\frac{1}{p}}|2B|^{\frac{1}{p_1}+\cdots+\frac{1}{p_m}}\le C\prod\limits_{j = 1}^m\|f_j\|_{L^\infty}. \end{eqnarray*}

现在估计 D_2 . 假设 \alpha_1 = \cdots = \alpha_l = \infty \alpha_{l+1} = \cdots = \alpha_{\infty} = 0 .利用Hölder不等式, Minkowski不等式得

\begin{eqnarray*} D_2&\le &C\sum\limits_{\vec{\alpha}\ne 0}\frac{1}{|B|}\int_{B}|T(f_1^{\alpha_1}, f_2^{\alpha_2}, \cdots, f_m^{\alpha_m})(z)|{\rm d}z\\ &\le& C\sum\limits_{\vec{\alpha}\ne 0}\frac{1}{|B|}\int_{Q}\int_{{{\Bbb R}} ^{nm}}\bigg(\int_0^\infty|K_v(z, y_1, \cdots, y_m)|^2\frac{{\rm d}v}{v}\bigg)^{\frac{1}{2}}\prod\limits_{j = 1}^m|f_j^{\alpha_j}(y_j)|{\rm d}y_1\cdots {\rm d}y_m{\rm d}z\\ &\le &C\frac{1}{|B|}\int_{B}\bigg(\int_{(2B)^{m-l}}\prod\limits_{j = l+1}^m|f_j(y_j)|{\rm d}y_{l+1}\cdots {\rm d}y_m\int_{({{\Bbb R}} ^n\backslash 2B)^{l}} \frac{\prod\limits_{j = 1}^l|f_j(y_j)|}{|z-y_j|^{mn}}{\rm d}y_1\cdots {\rm d}y_l\bigg){\rm d}z\\ &\le &C\prod\limits_{j = 1}^m\|f_j\|_{L^\infty}\frac{1}{|Q|}\int_{Q}\bigg(\int_{(2B)^{m-l}}{\rm d}y_{l+1}\cdots {\rm d}y_m\int_{({{\Bbb R}} ^n\backslash 2B)^{l}} \frac{1}{|z-y_j|^{mn}}{\rm d}y_1\cdots {\rm d}y_l\bigg){\rm d}z\\ &\le &C\prod\limits_{j = 1}^m\|f_j\|_{L^\infty}. \end{eqnarray*}

对于 z\in B y_1, \cdots, y_m\in (2Q)^c , 有 |y_j-z_0|\ge 2|z-z_0| . 根据Minkowski不等式, 则有

\begin{eqnarray*} D_3&\le &C\left(\frac{1}{|Q|}\int_{Q}|T(f_1^\infty, f_2^\infty, \cdots, f_m^\infty)(z)-T(f_1^\infty, f_2^\infty, \cdots, f_m^\infty)(z_0)|{\rm d}z\right)\\ &\le&\frac{C}{|Q|}\int_{Q}\bigg(\sum\limits_{k_1 = 1}^{\infty}\cdots\sum\limits_{k_m = 1}^{\infty}\int_{2^{k_m}|z-z_0|\le|y_1-z_0|<2^{k_m+1}|z-z_0|}\cdots\int_{2^{k_1}|z-z_0|\le|y_1-z_0|<2^{k_1+1}|z-z_0|}\\ &&\bigg(\int_0^\infty|K_v(z, y_1, \cdots, y_m)-K_v(z_0, y_1, \cdots, y_m)|^2\frac{{\rm d}v}{v}\bigg)^{\frac{1}{2}}\prod\limits_{j = 1}^m|f_j(y_j)|{\rm d}y_1\cdots {\rm d}y_m\bigg){\rm d}z\\ &\le&\frac{C}{|Q|}\int_{Q}\bigg(\sum\limits_{k_1 = 1}^{\infty}\cdots\sum\limits_{k_m = 1}^{\infty}\int_{2^{k_m}|z-z_0|\le|y_1-z_0|<2^{k_m+1}|z-z_0|}\cdots\int_{2^{k_2}|z-z_0|\le|y_1-z_0|<2^{k_2+1}|z-z_0|}\\ &&\bigg(\int_{2^{k_1}|z-z_0|\le|y_1-z_0|<2^{k_1+1}|z-z_0|}\bigg(\int_0^\infty|K_v(z, y_1, \cdots, y_m)\\ &&-K_v(z_0, y_1, \cdots, y_m)|^2\frac{{\rm d}v}{v}\bigg)^{\frac{q}{2}}{\rm d}y_1\bigg)^{\frac{1}{q}} \bigg(\int_{2^{k_1+4}Q}|f_1(y_1)|^{q'}{\rm d}y_1\bigg)^{\frac{1}{q'}}\prod\limits_{j = 2}^m|f_j(y_j)|{\rm d}y_2\cdots {\rm d}y_m\bigg){\rm d}z\\ &\le&\frac{C}{|Q|}\int_{Q}\bigg(\sum\limits_{k_1 = 1}^{\infty}\cdots\sum\limits_{k_m = 1}^{\infty}\bigg(\int_{2^{k_m}|z-z_0|\le|y_1-z_0|<2^{k_m+1}|z-z_0|}\cdots\int_{2^{k_2}|z-z_0|\le|y_1-z_0|<2^{k_2+1}|z-z_0|}\\ &&\int_{2^{k_1}|z-z_0|\le|y_1-z_0|<2^{k_1+1}|z-z_0|}\bigg(\int_0^\infty|K_v(z, y_1, \cdots, y_m)\\ &&-K_v(z_0, y_1, \cdots, y_m)|^2\frac{{\rm d}v}{v}\bigg)^{\frac{q}{2}}{\rm d}y_1 {\rm d}y_2\cdots {\rm d}y_m\bigg)^{\frac{1}{q}} \prod\limits_{j = 1}^m\bigg(\int_{2^{k_j+4}Q}|f_j(y_j)|^{q'}{\rm d}y_j\bigg)^{\frac{1}{q'}}\bigg){\rm d}z\\ &\le&\frac{C}{|Q|}\int_{Q}\bigg(\sum\limits_{k_1 = 1}^{\infty}\cdots\sum\limits_{k_m = 1}^{\infty} \prod\limits_{j = 1}^m\bigg(\frac{1}{|2^{k_j+4}Q|}\int_{2^{k_j+4}Q}|f_j(y_j)|^{q'}{\rm d}y_j\bigg)^{\frac{1}{q'}}\\ &&\prod\limits_{j = 1}^m|2^{k_j+4}Q|^{\frac{1}{q'}}|z-z_0|^{-\frac{mn}{q'}}\prod\limits_{j = 1}^mC_{k_j}2^{-\frac{k_jn}{q'}}\bigg){\rm d}z\\ &\le& C\prod\limits_{j = 1}^m\|f_j\|_{L^\infty}(\sum\limits_{k_1 = 1}^\infty C_{k_1})\times\cdots\times(\sum\limits_{k_m = 1}^\infty C_{k_m})\le C\prod\limits_{j = 1}^m\|f_j\|_{L^\infty}. \end{eqnarray*}

定理1.2证明完毕.

5 多线性平方算子的m-次线性交换子在加权Lebesgue空间上的有界性

在证明定理1.3之前, 下面先介绍多线性平方算子交换子的中心极大函数的估计.

引理5.1  设 m\geq2, T 是定义(1.10)中的多线性平方算子.对于 i = 1, \cdots, m , 核满足条件(H _1) 和(H _2) \sum\limits_{k_i = 1}^\infty C_{k_i}<\infty . 假设 1\le r_1, \cdots, r_m\le q' \frac{1}{r} = \frac{1}{r_1}+\cdots+\frac{1}{r_m} T 是从 L^{r_1}\times \cdots\times L^{r_m} 连续映射到 L^{r, \infty} . 0<\delta<\min\{1, \frac{q}{m}\}, \delta<\epsilon<\infty, \vec{b}\in BMO^m q'<s<\infty , 则对所有紧支集可测函数 \vec{f} = (f_1, \cdots, f_m) , 有

\begin{eqnarray*} M_{\delta}^\sharp(T_{\sum \vec{b}}(\vec{f}))(x)\le C\|\vec{b}\|_{BMO}\bigg(M_\epsilon(T(\vec{f}))(x)+\prod\limits_{j = 1}^mM_{s}(f_j)(x)\bigg). \end{eqnarray*}

  固定 x_Q 为中心和边长为 r_{Q} 的方体 Q = Q(x_Q, r_{Q}) .为了简化计算, 仅考虑 m = 2 的情形.令 \lambda_i = (b_i)_{Q^*} , 将 f_i 分解成为

f_i = f_i\chi_{Q^*}+f_i\chi_{{{\Bbb R}} ^n\backslash Q^*} = f_i^0+f_i^\infty,

其中 Q^\ast = 16Q. 选取 z_0\in 3Q\backslash 2Q , 有

\begin{eqnarray*} T_{b}(\vec{f})(z)& = &(b(z)-b_{16Q})T(\vec{f})(z)-T((b-b_{16Q}f_1, \cdots, f_m))(z)\\ & = &(b(z)-b_{16Q})T(\vec{f})(z)-T((b-b_{16Q})f_1^0, \cdots, f_m^0))(z)\\ &&-\sum\limits_{\vec{\alpha}\ne 0, \vec{\alpha}\ne(\infty, \cdots, \infty)}T((b-b_{16Q})f_1^{\alpha_1}, f_2^{\alpha_2}, \cdots, f_m^{\alpha_m})) -T((b-b_{16Q})f_1^\infty, \cdots, f_m^\infty))(z). \end{eqnarray*}

\begin{eqnarray*} &&\bigg(\frac{1}{|Q|}\int_{Q}\big|T_{b}(\vec{f})(z)-T((b-b_{16Q})f_1^\infty, \cdots, f_m^\infty))(z_0)\big|^{\delta}{\rm d}z\bigg)^{\frac{1}{\delta}}\\ &\le& C\left(\frac{1}{|Q|}\int_{Q}|(b(z)-b_{16Q})T(\vec{f})(z)|^{\delta}{\rm d}z\right)^{\frac{1}{\delta}}\\ &&+C\left(\frac{1}{|Q|}\int_{Q}|T((b-b_{16Q})f_1^0, \cdots, f_m^0))(z)|^{\delta}{\rm d}z\right)^{\frac{1}{\delta}}\\ &&+C\sum\limits_{\vec{\alpha}\ne 0, \vec{\alpha}\ne(\infty, \cdots, \infty)}\left(\frac{1}{|Q|}\int_{Q}|T((b-b_{16Q})f_1^{\alpha_1}, f_2^{\alpha_2}, \cdots, f_m^{\alpha_m})(z)|^{\delta}{\rm d}z\right)^{\frac{1}{\delta}}\\ &&+C\left(\frac{1}{|Q|}\int_{Q}|T(f_1^\infty, f_2^\infty, \cdots, f_m^\infty)(z)-T((b-b_{16Q})f_1^\infty, \cdots, f_m^\infty)(z_0)|^{\delta}{\rm d}z\right)^{\frac{1}{\delta}}\\ & = &I+II+III+IV, \end{eqnarray*}

其中 \vec{\alpha} = (\alpha_1, \cdots, \alpha_m) .由于 0<\delta<\frac{1}{m} \delta<\epsilon<\infty , 存在 1<t<\min\{\frac{\epsilon}{\delta}, \frac{\delta}{1-\delta}\} .则有 \delta t<\epsilon \delta t'>1 .利用Hölder不等式可得

\begin{eqnarray*} I&\le& C\bigg(\frac{1}{|Q|}\int_{Q}|(b(z)-b_{16Q})|^{\delta t'}{\rm d}z\bigg)^{\frac{1}{\delta t'}}\bigg(\frac{1}{|Q|}\int_{Q}|T(\vec{f})(z)|^{\delta t}{\rm d}z\bigg)^{\frac{1}{\delta t}}\\ &\le& C\|b\|_{BMO}\bigg(\frac{1}{|Q|}\int_{Q}|T(\vec{f})(z)|^{\epsilon}{\rm d}z\bigg)^{\frac{1}{\epsilon}}\\ &\le& C\|b\|_{BMO}M_{\epsilon}(T(\vec{f}))(x). \end{eqnarray*}

由于 q'<s<\infty , 记 u = \frac{s}{q'} , 则 1<t<\infty . 根据 0<\delta<r<\infty 和引理 得

\begin{eqnarray*} II&\le& C\|T((b-b_{16Q})f_1^0, \cdots, f_m^0)(z)\|_{L^\delta(Q, \frac{{\rm d}z}{|Q|})}\le C\|T((b-b_{16Q})f_1^0, \cdots, f_m^0)(z)\|_{L^{r, \infty}(Q, \frac{{\rm d}z}{|Q|})}\\ &\le& C\bigg(\frac{1}{|Q|}\int_{16Q}|b(y_1)-b_{16Q}|^{r_1}|f_1(y_1)|^{r_1}{\rm d}y_1\bigg)^{\frac{1}{r_1}}\prod\limits_{j = 2}^m\bigg(\frac{1}{|Q|}\int_{16Q}|f_j(y_j)|^{r_j}{\rm d}y_1\bigg)^{\frac{1}{r_j}}\\ &\le &C\bigg(\frac{1}{|Q|}\int_{16Q}|b(y_1)-b_{16Q}|^{u'r_1}{\rm d}y_1\bigg)^{\frac{1}{u'r_1}}\bigg(\frac{1}{|Q|}\int_{16Q}|f_1(y_1)|^{ur_1}{\rm d}y_1\bigg)^{\frac{1}{ur_1}}\prod\limits_{j = 2}^mM_{r_j}(f_j)(x)\\ &\le &C\|b\|_{BMO}\prod\limits_{j = 1}^mM_{s}(f_j)(x). \end{eqnarray*}

先估计 II , 假设 \alpha_1 = \cdots = \alpha_l = \infty \alpha_{l+1} = \cdots = \alpha_{\infty} = 0 .运用Hölder不等式, Minkowski不等式得

\begin{eqnarray*} II&\le& C\sum\limits_{\vec{\alpha}\ne 0}\frac{1}{|Q|}\int_{Q}|T((b-b_{16Q})f_1^{\alpha_1}, f_2^{\alpha_2}, \cdots, f_m^{\alpha_m})(z)|{\rm d}z\\ &\le& C\sum\limits_{\vec{\alpha}\ne 0}\frac{1}{|Q|}\int_{Q}\int_{{{\Bbb R}} ^{nm}}\bigg(\int_0^\infty|K_v(z, y_1, \cdots, y_m)|^2\frac{{\rm d}v}{v}\bigg)^{\frac{1}{2}}\\ &&\times|(b-b_{16Q})f_1^{\alpha_1}|\prod\limits_{j = 2}^m|f_j^{\alpha_j}(y_j)|{\rm d}y_1\cdots {\rm d}y_m{\rm d}z\\ &\le& C\frac{1}{|Q|}\int_{Q}\bigg(\int_{(16Q)^{m-l}}\prod\limits_{j = l+1}^m|f_j(y_j)|{\rm d}y_{l+1}\cdots {\rm d}y_m\\ &&\times\int_{({{\Bbb R}} ^n\backslash 16Q)^{l}} \frac{|(b-b_{16Q})f_1^{\alpha_1}|\prod\limits_{j = 2}^l|f_j(y_j)|}{|z-y_j|^{mn}}{\rm d}y_1\cdots {\rm d}y_l\bigg){\rm d}z\\ &\le& C\prod\limits_{i = l+1}^{m}\bigg(\frac{1}{|16Q|}\int_{16Q}|f_i(y_i)|{\rm d}y_i\bigg)\bigg(\sum\limits_{k = 4}^\infty 2^{-kn}\frac{1}{|2^kQ|} \int_{2^{k+1}Q\backslash 2^kQ}|b(y_1)-b_{16Q}||f_1(y_1)|{\rm d}y_1\bigg)\\ &&\times\prod\limits_{j = 2}^l\bigg(\sum\limits_{k = 4}^\infty 2^{-kn}\frac{1}{|2^kQ|} \int_{2^{k+1}Q\backslash 2^kQ}|f_j(y_j)|{\rm d}y_j\bigg)\\ &\le& C\|b\|_{BMO}M_s(f_1)(x)\prod\limits_{j = 1}^{m}M(f_i)(x)\le C\|b\|_{BMO}\prod\limits_{j = 1}^{m}M_{s}(f_i)(x). \end{eqnarray*}

对于 z\in Q y_1, \cdots, y_m\in (16Q)^c , 则有 |y_j-z_0|\ge 2|z-z_0| r_Q\le|z-z_0|\le 4r_Q . \frac{1}{q}+\frac{1}{uq'}+\frac{1}{u'q'} = 1 , 利用Hölder不等式, Minkowski不等式可得

\begin{eqnarray*} III&\le& C\bigg\{\frac{1}{|Q|}\int_{Q}|T((b-b_{16Q})f_1^\infty, f_2^\infty, \cdots, f_m^\infty)(z)-T((b-b_{16Q})f_1^\infty, f_2^\infty, \cdots, f_m^\infty)(z_0)|{\rm d}z\bigg\}\\ &\le&\frac{C}{|Q|}\int_{Q}\bigg(\sum\limits_{k_1 = 1}^{\infty}\cdots\sum\limits_{k_m = 1}^{\infty}\int_{2^{k_m}|z-z_0|\le|y_1-z_0|<2^{k_m+1}|z-z_0|}\cdots\int_{2^{k_1}|z-z_0|\le|y_1-z_0|<2^{k_1+1}|z-z_0|} \\ &&\bigg(\int_0^\infty|K_v(z, y_1, \cdots, y_m)-K_v(z_0, y_1, \cdots, y_m)|^2\frac{{\rm d}v}{v}\bigg)^{\frac{1}{2}}\\ &&\times|(b(y_1)-b_{16Q})||f_1(y_1)|\prod\limits_{j = 2}^m|f_j(y_j)|{\rm d}y_1\cdots {\rm d}y_m\bigg){\rm d}z\\ &\le&\frac{C}{|Q|}\int_{Q}\bigg(\sum\limits_{k_1 = 1}^{\infty}\cdots\sum\limits_{k_m = 1}^{\infty}\int_{2^{k_m}|z-z_0|\le|y_1-z_0|<2^{k_m+1}|z-z_0|}\cdots\int_{2^{k_2}|z-z_0|\le|y_1-z_0|<2^{k_2+1}|z-z_0|}\\ &&\bigg(\int_{2^{k_1}|z-z_0|\le|y_1-z_0|<2^{k_1+1}|z-z_0|}\bigg(\int_0^\infty|K_v(z, y_1, \cdots, y_m)\\ &&-K_v(z_0, y_1, \cdots, y_m)|^2\frac{{\rm d}v}{v}\bigg)^{\frac{q}{2}}{\rm d}y_1\bigg)^{\frac{1}{q}}\bigg(\int_{2^{k_1+4}Q}|b(y_1)-b_{16Q}|^{uq'}{\rm d}y_1\bigg)^{\frac{1}{uq'}}\\ & &\bigg(\int_{2^{k_1+4}Q}|f_1(y_1)|^{u'q'}{\rm d}y_1\bigg)^{\frac{1}{u'q'}}\prod\limits_{j = 2}^m|f_j(y_j)|{\rm d}y_2\cdots {\rm d}y_m\bigg){\rm d}z\\ &\le&\frac{C}{|Q|}\int_{Q}\bigg(\sum\limits_{k_1 = 1}^{\infty}\cdots\sum\limits_{k_m = 1}^{\infty}\bigg(\int_{2^{k_m}|z-z_0|\le|y_1-z_0|<2^{k_m+1}|z-z_0|}\cdots\int_{2^{k_2}|z-z_0|\le|y_1-z_0|<2^{k_2+1}|z-z_0|}\\ & &\int_{2^{k_1}|z-z_0|\le|y_1-z_0|<2^{k_1+1}|z-z_0|}\bigg(\int_0^\infty|K_v(z, y_1, \cdots, y_m)\\ &&-K_v(z_0, y_1, \cdots, y_m)|^2\frac{{\rm d}v}{v}\bigg)^{\frac{q}{2}}{\rm d}\vec{y}\bigg)^{\frac{1}{q}} \bigg(\int_{2^{k_1+4}Q}|b(y_1)-b_{16Q}|^{uq'}{\rm d}y_1\bigg)^{\frac{1}{uq'}}\\ &&\bigg(\int_{2^{k_1+4}Q}|f_1(y_1)|^{u'q'}{\rm d}y_1\bigg)^{\frac{1}{u'q'}}\prod\limits_{j = 2}^m\bigg(\int_{2^{k_j+4}Q}|f_j(y_j)|^{q'}{\rm d}y_j\bigg)^{\frac{1}{q'}}\bigg){\rm d}z\\ &\le&\frac{C}{|Q|}\int_{Q}\bigg(\sum\limits_{k_1 = 1}^{\infty}\cdots\sum\limits_{k_m = 1}^{\infty}\bigg(\frac{1}{|2^{k_1+4}Q|}\int_{2^{k_1+4}Q}|b(y_1)-b_{16Q}|^{uq'}{\rm d}y_1\bigg)^{\frac{1}{uq'}}\\ &&\bigg(\frac{1}{|2^{k_1+4}Q|}\int_{2^{k_1+4}Q}|f_1(y_1)|^{u'q'}{\rm d}y_1\bigg)^{\frac{1}{u'q'}} \prod\limits_{j = 2}^m\bigg(\frac{1}{|2^{k_j+4}Q|}\int_{2^{k_j+4}Q}|f_j(y_j)|^{q'}{\rm d}y_j\bigg)^{\frac{1}{q'}}\\ &&\prod\limits_{j = 1}^m|2^{k_j+4}Q|^{\frac1{q'}}|z-z_0|^{-\frac{mn}{q'}}\prod\limits_{j = 1}^mC_{k_j}2^{-\frac{k_jn}{q'}}\bigg){\rm d}z\\ &\le & C\|b\|_{BMO}\prod\limits_{j = 1}^mM_{q'}(f_j)(x)(\sum\limits_{k_1 = 1}^\infty k_1C_{k_1})\times\cdots\times(\sum\limits_{k_m = 1}^\infty C_{k_m})\\ &\le& C\prod\limits_{j = 1}^mM_{q'}(f_j)(x). \end{eqnarray*}

结合 I, II III 的估计, 引理证毕.

最后可以利用多线性平方算子交换子的sharp极大函数的点态估计证明定理1.3.

定理1.3的证明  选取 \delta \epsilon 满足 0<\delta<\epsilon<\frac{1}{m} . 利用引理5.1和引理2.3, 可得

\begin{eqnarray*} \|T_{\sum b}(\vec{f})\|_{L^p(\omega)}&\le& \|M_{\delta}(T_{\sum b}(\vec{f}))\|_{L^p(\omega)}\le \|M_{\delta}^{\sharp}(T_{\sum b}(\vec{f}))\|_{L^p(\omega)}\\ &\le& C\|\vec{b}\|_{BMO^m}\bigg(\|M_\epsilon(T(\vec{f}))\|_{L^p(\omega)}+\|\prod\limits_{j = 1}^mM_s(f_j)(x)\|_{L^p(\omega)}\bigg)\\ &\le &C\|\vec{b}\|_{BMO^m}\bigg(\|M(T(\vec{f}))\|_{L^p(\omega)}+\|\prod\limits_{j = 1}^mM_s(f_j)(x)\|_{L^p(\omega)}\bigg)\\ &\le &C\|\vec{b}\|_{BMO^m}\bigg(\|T(\vec{f})\|_{L^p(\omega)}+\|\prod\limits_{j = 1}^mM_s(f_j)(x)\|_{L^p(\omega)}\bigg)\\ &\le &C\|\vec{b}\|_{BMO^m}\bigg(\prod\limits_{j = 1}^m\|f_j\|_{L^{p_j}(\omega_j)}+\prod\limits_{j = 1}^m\|M_s(f_j)\|_{L^{p_j}(\omega_j)}\bigg)\\ &\le &C\|\vec{b}\|_{BMO^m}\prod\limits_{j = 1}^m\|f_j\|_{L^{p_j}(\omega_j)}, \end{eqnarray*}

证明完毕.

参考文献

Coifman R R , Meyer Y .

Au-delá des opérateurs pseudo-différentiels

Asterisque, 1978, 57, 1- 185

[本文引用: 1]

Coifman R R , Meyer Y .

Commutateurs díntégrales singuliéres et opérateurs multilinéaires

Ann Inst Fourier Grenoble, 1978, 28, 177- 202

DOI:10.5802/aif.708     

Coifman R R , Meyer Y .

On commutators of singular integrals and bilinear singular integrals

Trans Amer Math Soc, 1975, 212, 315- 331

DOI:10.1090/S0002-9947-1975-0380244-8      [本文引用: 1]

Fefferman C , Stein E .

Some maximal inequalities

Amer J Math, 1971, 93, 107- 115

DOI:10.2307/2373450      [本文引用: 2]

Fabes E B , Jerison D , Kenig C .

Multilinear Littlewood-Paley estimates with applications to partial differential equations

Proc Natl Acad Sci, 1982, 79, 5746- 5750

DOI:10.1073/pnas.79.18.5746      [本文引用: 1]

Fabes E B , Jerison D , Kenig C .

Necessary and sufficient conditions for absolute continuity of elliptic harmonic measure

Ann Math, 1984, 119, 121- 141

DOI:10.2307/2006966     

Fabes E B , Jerison D , Kenig C .

Multilinear square functions and partial differential equations

Amer J Math, 1985, 107, 1325- 1368

DOI:10.2307/2374409      [本文引用: 1]

Garía-Cuerva J, Rubio de Francia J L. Weighted Norm Inequalities and Related Topics. Amsterdam: North-Holland, 1985

[本文引用: 5]

Grafakos L , Torres R .

Multilinear Calderón-Zygmund theory

Adv Math, 2002, 165, 124- 164

DOI:10.1006/aima.2001.2028      [本文引用: 1]

Grafakos L , Torres R .

Maximal operator and weighted norm inequalities for multilinear singular integrals

Indiana Univ Math J, 2002, 51 (5): 1261- 1276

DOI:10.1512/iumj.2002.51.2114      [本文引用: 1]

Kenig C , Stein E M .

Multilinear estimates and fractional integration

Math Res Lett, 1999, 6, 1- 15

DOI:10.4310/MRL.1999.v6.n1.a1      [本文引用: 1]

Lacey M , Thiele C .

L^p estimates on the bilinear Hilbert transform for 2\le p<\infty

Ann Math, 1997, 146, 693- 724

DOI:10.2307/2952458      [本文引用: 1]

Lacey M , Thiele C .

On Calderón's conjecture

Ann Math, 1999, 149, 475- 496

DOI:10.2307/120971      [本文引用: 1]

Lin Y .

Endpoint estimates for multilinear singular integral operators

Georgian Math J, 2016, 23, 559- 570

DOI:10.1515/gmj-2016-0038      [本文引用: 2]

Lin Y , Xiao Y .

Multilinear singular integral operators with generalized kernels and their multilinear commutators

Acta Mathematica Sinica, 2017, 33, 1443- 1462

DOI:10.1007/s10114-017-7051-0      [本文引用: 1]

Lerner A K , Ombrosi S , Pérez C , et al.

New maximal functions and multiple weight for the multilinear Caldeón-Zygmund theory

Advances in Math, 2009, 220, 1222- 1264

DOI:10.1016/j.aim.2008.10.014      [本文引用: 2]

Li W , Xue Q , Yabuta K .

Weighted version of Carleson measure and multilinear Fourier multiplier

Forum Math, 2015, 27 (2): 787- 805

URL     [本文引用: 1]

Lu G , Zhang P .

Multilinear Calderón-Zygmund operator with kernels of Dinis type and applications

Nonlinear Anal TMA, 2014, 107, 92- 117

DOI:10.1016/j.na.2014.05.005      [本文引用: 1]

Pérez C , Torres R H .

Sharp maximal function estimates for multilinear singular integrals

Contemp Math, 2003, 320, 323- 331

URL     [本文引用: 2]

Si Z, Xue Q. Multilinear Square Functions with Kernels of Diniś Type. Journal Function Space, 2016, Article ID: 4876146

[本文引用: 3]

Xue Q , Yan J .

On multilinear square function and its applications to multilinear Littlewood-Paley operators with non-convolution type kernels

J Math Anal Appl, 2015, 422, 1342- 1362

DOI:10.1016/j.jmaa.2014.09.039      [本文引用: 5]

Yabuta K .

A multilinearization of Littlewood-Paley's g-function and Carleson measures

Tohoku Math J, 1982, 34, 251- 275

URL     [本文引用: 1]

/