Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

数学物理学报, 2021, 41(4): 1181-1191 doi:

论文

带时滞的尺度等级结构种群系统的最优初始控制

何泽荣,, 韩梦杰

Optimal Control of Initial Distributions in a Hierarchical Size-Structured Population System with Delay

He Zerong,, Han Mengjie

收稿日期: 2020-06-8  

基金资助: 国家自然科学基金.  11871185
浙江省自然科学基金.  LY18A010010

Received: 2020-06-8  

Fund supported: the NSFC.  11871185
the NSF of Zhejiang Province.  LY18A010010

作者简介 About authors

何泽荣,E-mail:zrhe@hdu.edu.cn , E-mail:zrhe@hdu.edu.cn

Abstract

This article is concerned with an optimal control problem for a hierarchical size-dependent population model with delay, the control function is the initial distribution. It is expected that the difference between the terminal state and the given target can be minimized in a least costs. The uniform continuity of states in controls is established by the method of characteristic lines and priori estimates, the minimal principle is derived by the construction of a normal cone and an adjoint system, and the existence of unique optimal strategy is proved by means of the Ekeland variational theorem and fixed-point approach. These results pave the way to applications.

Keywords: Hierarchy of size ; Integro-partial differential equations ; Optimal control ; Normal cones ; Variational principle

PDF (403KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

何泽荣, 韩梦杰. 带时滞的尺度等级结构种群系统的最优初始控制. 数学物理学报[J], 2021, 41(4): 1181-1191 doi:

He Zerong, Han Mengjie. Optimal Control of Initial Distributions in a Hierarchical Size-Structured Population System with Delay. Acta Mathematica Scientia[J], 2021, 41(4): 1181-1191 doi:

1 引言

生物种群内部个体之间的等级差异对群体演化有些什么样的影响?这个问题可以用数学建模与分析给予部分回答. 为此, 国内外学者已经建立了一些数学模型, 并给出了相应的理论和数值分析, 参见文献[1-16]及其参考文献. 这些研究工作主要关注系统的动力学行为, 比如解的存在唯一性, 平衡态的存在性与(全局)稳定性, 种群的持续生存, 种群内部抢夺竞争(Scramble competition)与对抗竞争(Contest competition)的比较, 以及密度函数的数值算法, 等. 毫无疑问, 这些成果对理解等级结构种群的演化具有积极意义. 关于种群研究的另一个重要侧面是调控问题, 包括出于生态保护的种群分布优化, 以及可再生资源开发的最优收获等问题, 还很少被研究, 参见文献[17-19]. 这类调控问题的生态学与经济学意义不言而喻, 并且作为一类新的无穷维系统控制问题, 也有其数学和控制科学价值.

本文探讨一类带有个体孕育期时滞的种群系统控制问题, 主要新意体现在: 一是个体等级由其生理尺度(如动物体重与体积、植物高度与茎杆直径)决定; 二是调控手段为种群初始分布. 由于考虑了孕期时滞, 初始分布成为尺度与时间的二元函数, 而不是通常仅含时间的一元函数. 以初始分布为控制变量的实际意义很直观: 通过精心调节当前分布, 期望种群在一段时间之后达到或者接近理想状态. 但这种调控方法极少获得关注. 本文在此方面做出一点初步努力.

2 模型与问题

本文提出下列种群控制系统模型

{pt+(g(s)p)s=[μ0(s)+μ1(E(p)(s,t))]p(s,t),(s,t)QT,g(0)p(0,t)=S0β(s,E(p)(s,tτ))p(s,tτ)ds,t(0,T),p(s,t)=u(s,t),(s,t)[0,S]×[τ,0],E(p)(s,t)=αs0p(r,t)dr+Ssp(r,t)dr,(s,t)QT,
(2.1)

其中p(s,t)表示t时刻种群的个体尺度s分布, g(s)=dsdt为尺度增长率; μ0(s)>0为自然死亡率, μ1代表因内部竞争引起的附加死亡率, 控制变量u(s,t)表示初始分布, β表示个体的平均繁殖率; E(p)表示种群内部环境, α为加权系数, 0α<1;QT=(0,S)×(0,T), S为个体最大尺度, T为终端时间; τ>0为新生个体孕育期时长.

基本假设如下

(A1)gC1([0,S]), 当s[0,S)时有g(s)<0,g(S)=0. 定义Γ(s)=s0dxg(x), Γ(S)<+;

(A2)μ0(s)>0,S0μ0(s)ds=+. μ1(x)非负有界, 关于x严格单增且满足Lipschitz条件;

(A3)0β(s,x)ˉβ,(s,x)[0,S]×R+, β(,x)关于x非增, 且满足Lipschitz条件;

(A4) 容许控制集为

U={uL([0,S]×[τ,0]):0u(s,t)ˉua.e.(s,t)[0,S]×[τ,0]},

其中ˉu为正常数.

本文主题是分析以下最优控制问题

minuUJ(u)Δ=S0[pu(s,T)ˉp(s)]2ds+σS00τu2(s,t)dsdt,
(2.2)

其中非负有界函数¯p(s)表示某种理想分布(例如平衡态), σ>0为单位控制成本因子. 因此J(u)表示种群终态分布与理想分布之间的均方差以及控制总成本之和.

文献[20] 对系统(2.1) 做了初步分析, 获得下列结果.

定理2.1  在假设(A1)-(A4)下, 系统(2.1) 存在唯一的非负有界解p(s,t).

3 最小值原理

首先证明状态系统的解关于控制变量的连续依赖性.

引理3.1  系统(2.1) 的解puL(QT)关于uU一致连续.

  将系统演变时域[0,T]划分为区间[0,τ],[τ,2τ],,[kτ,T], 逐段进行处理.

t[0,τ]时, tτ[τ,0],p(s,tτ)=u(s,tτ). 状态系统(2.1) 关于尺度的边界条件变为已知, 记为b(t)=g(0)p(0,t). 利用定理2.1可得

p(s,t)={b(tΓ(s))g(s)exp{s0μ(r,tΓ(s)+Γ(r))g(r)dr},t>Γ(s);u(Γ1(Γ(s)t),0)exp{t0[μ(Γ1(r+Γ(s)t),r)+g(Γ1(r+Γ(s)t))]dr},tΓ(s),
(3.1)

其中μ(s,t)=μ0(s)+μ1(E(p)(s,t)).

下面估计puu的变差. 令pi为系统(2.1) 相应于ui的解, i=1,2. 由此得相应函数bi,μi.b(t)的上界为B; μ1以及β(s,x)关于x的Lipschitz常数为L.

t>Γ(s)时, s<Γ1(t)Γ1(τ). 由(3.1) 式知

|p1(s,t)p2(s,t)|=1g(s)|b1(tΓ(s))exp{s0μ1(r,tΓ(s)+Γ(r))g(r)dr}b2(tΓ(s))exp{s0μ2(r,tΓ(s)+Γ(r))g(r)dr}|1g(s)[b1(tΓ(s))|exp{s0μ1(r,tΓ(s)+Γ(r))g(r)dr}exp{s0μ2(r,tΓ(s)+Γ(r))g(r)dr}|+|b1(tΓ(s))b2(tΓ(s))|]1g(s)[Bs0|μ1E(p1)(r,tΓ(s)+Γ(r))μ1E(p2)(r,tΓ(s)+Γ(r))|g(r)dr+|S0β(r,E(u1)(r,tΓ(s)τ))u1(r,tΓ(s)τ)drS0β(r,E(u2)(r,tΓ(s)τ))u2(r,tΓ(s)τ)dr|]1g(s)[BLs0|E(p1)(r,tΓ(s)+Γ(r))E(p2)(r,tΓ(s)+Γ(r))|g(r)dr+ˉβS0|u1(r,tΓ(s)τ)u2(r,tΓ(s)τ)|dr+ˉuS0|β(r,E(u1)(r,tΓ(s)τ))β(r,E(u2)(r,tΓ(s)τ))|dr]1g(Γ1(τ)){BLs0
(3.2)

其中 C_1, C_2 为正常数, \|\cdot\| 均为空间 L^{\infty} 中的标准范数.

t\leq\Gamma(s) 时, 注意函数 \mu_0, g u 无关, 由(3.1) 可得:

\begin{eqnarray} && |p^1(s, t)-p^2(s, t) |\\ &\leq &\left| u_1(\Gamma^{-1}(\Gamma(s)-t), 0)\exp\left\{-\int_0^t \mu_1(E(p^1)(\Gamma^{-1}(r+\Gamma(s)-t), r)){\rm d}r \right\}\right.\\ &&\left. -u_2(\Gamma^{-1}(\Gamma(s)-t), 0)\exp\left\{-\int_0^t \mu_1(E(p^2)(\Gamma^{-1}(r+\Gamma(s)-t), r)){\rm d}r \right\}\right|\\ &\leq & \bar{u}\int_0^t |\mu_1(E(p^1)(\Gamma^{-1}(r+\Gamma(s)-t), r))-\mu_1(E(p^2)(\Gamma^{-1}(r+\Gamma(s)-t), r))|{\rm d}r\\ &&+|u_1(\Gamma^{-1}(\Gamma(s)-t), 0)-u_2(\Gamma^{-1}(\Gamma(s)-t), 0)|\\ &\leq & \|u_1 -u_2\|+C_3 \int_0^t \|p^1(\cdot, \theta)-p^2(\cdot, \theta)\|{\rm d}\theta, \end{eqnarray}
(3.3)

其中 C_3 为正常数.

利用不等式(3.2)-(3.3) 和Bellmann引理, 可知存在正的常数 C_4 使得

\|p^1 -p^2\|_{L^{\infty}([0, S]\times [0, \tau])}\leq C_4 \|u_1 -u_2\|_{L^{\infty}([0, S]\times [-\tau, 0])}.

t\in [\tau, T] 时, 重复以上过程可得类似的估计结果. 引理证毕.

其次给出最优控制策略的精确刻画.

定理3.1  控制问题(2.1)-(2.2) 的任一最优对 (u^*, p^*) 都有如下结构

\begin{eqnarray} \begin{array}{l} {u^*}\left( {s, t} \right) = {\cal F}(\sigma^{-1}q(0, t+\tau)\tilde{E}(s, t)), ( s, t)\in [0, S]\times [-\tau, 0], \end{array} \end{eqnarray}
(3.4)

其中 {\cal F} 为0和 \bar{u} 之间的截断函数,

\tilde{E}(s, t) = \int_0^s \beta_{x}(r, E(p^*)(r, t))p^*(r, t){\rm d}r+\alpha \int_s^S \beta_{x}(r, E(p^*)(r, t))p^*(r, t){\rm d}r,

q\left( {s, t} \right) 为下列共轭系统的解

\begin{eqnarray} \begin{array}{l} \left\{ \begin{array}{l} \frac{{\partial q}}{{\partial t}}{\rm{ + }}g\left( s \right)\frac{{\partial q}}{{\partial s}} = \alpha \int_s^S {\left[ {{\mu' _1}\left( {{E}(p^*)} \right)q\left( {r, t} \right) - {\beta _x}(r, {E}(p^*))q(0, t + \tau )} \right]{p^*}\left( {r, t} \right){\rm d}r} \\ + \int_0^s {\left[ {{\mu' _1}\left( {{E}(p^*)} \right)q\left( {r, t} \right) - {\beta _x}(r, {E}(p^*))q(0, t + \tau )} \right]{p^*}\left( {r, t} \right){\rm d}r} \\ + \left[ {{\mu _0}\left( s \right) + {\mu _1}\left( {{E}(p^*)} \right)} \right]q\left( {s, t} \right)- \beta (s, {E}(p^*))q(0, t + \tau ), \left( {s, t} \right) \in {Q_T}, \\ q\left( {s, T} \right) = \bar p\left( s \right) - {p^*}\left( {s, T} \right), s \in [0, S], \\ q\left( {s, t} \right) = 0, (s, t) \in [0, S] \times [T, T+\tau]. \end{array} \right. \end{array} \end{eqnarray}
(3.5)

 令 \left( {{u^*}, {p^*}} \right) 为问题(2.1)-(2.2) 的最优对. 系统(3.5) 解的存在唯一性可用时间变换和类似于文献[20] 的方法得到. 对任意 v \in {\cal T}_U\left( u^*\right) (表示集 U {{u^*}} 处的切锥) 满足 v(s, 0) = 0 , 当 \varepsilon > 0 足够小时, {u^\varepsilon }: = {u^*} + \varepsilon v \in U (参见文献[21, p21]).

{p^\varepsilon } 为系统(2.1) 相应于 u = u^\varepsilon 的解. 由 u^* 的最优性知

\begin{eqnarray*} && \int_0^S {{{\left[ {{p^*}\left( {s, T} \right) - \bar p\left( s \right)} \right]}^2}{\rm d}s} + \sigma \int_0^S {\int_{ - \tau }^0 {{{\left( {{u^*}\left( {s, t} \right)} \right)}^2}{\rm d}s{\rm d}t} } \\ &\le & \int_0^S [ p^\varepsilon ( s, T) - \bar p( s) ]^2 {\rm d}s + \sigma \int_0^S \int_{ - \tau }^0 [ u^*(s, t) +\varepsilon v(s, t)]^2{\rm d}s{\rm d}t. \end{eqnarray*}

将上式变形, 并令 \varepsilon \to {0^ + } , 可得

\begin{eqnarray} \int_0^S {\left[ {{p^*}\left( {s, T} \right) - \bar p\left( s \right)} \right]z\left( {s, T} \right){\rm d}s} + \sigma \int_0^S {\int_{ - \tau }^0 {{u^*}\left( {s, t} \right)v\left( {s, t} \right){\rm d}s{\rm d}t} } \ge 0, \end{eqnarray}
(3.6)

其中 z\left( {s, t} \right) = \mathop {\lim }\limits_{\varepsilon \to {0^ + }} {\varepsilon ^{ - 1}}\left[ {{p^\varepsilon }\left( {s, t} \right) - {p^*}\left( {s, t} \right)} \right].

上列极限的存在性由后面的引理3.2给出. 先假定该极限存在, 推导 z\left( {s, t} \right) 所满足的条件.

因为 {{p^\varepsilon }\left( {s, t} \right)} 是系统(2.1) 相应于 u = {u^\varepsilon } 的解, 它满足

\begin{eqnarray} \left\{ \begin{array}{l} \frac{{\partial {p^\varepsilon }}}{{\partial t}} + \frac{{\partial (g(s){p^\varepsilon })}}{{\partial s}} = - \left[ {{\mu _{\rm{0}}}\left( s \right) + {\mu _1}(E({p^\varepsilon })(s, t))} \right]{p^\varepsilon }(s, t), \\ g(0){p^\varepsilon }(0, t) = \int_0^S {\beta (s, E({p^\varepsilon })(s, t - \tau )){p^\varepsilon }(s, t - \tau ){\rm d}s}, \\ {p^\varepsilon }(s, t) = {u^\varepsilon }\left( {s, t} \right), (s, t) \in [0, S] \times [ - \tau, 0]; \\ \end{array} \right. \end{eqnarray}
(3.7)

同理, {{p^* }\left( {s, t} \right)} 是系统(2.1) 相应于 u = {u^* } 的解, 它满足

\begin{eqnarray} \left\{ \begin{array}{l} \frac{{\partial {p^*}}}{{\partial t}} + \frac{{\partial (g(s){p^*})}}{{\partial s}} = - \left[ {{\mu _{\rm{0}}}\left( s \right) + {\mu _1}(E({p^*})(s, t))} \right]{p^*}(s, t), \\ g(0){p^*}(0, t) = \int_0^S {\beta (s, E({p^*})(s, t - \tau )){p^*}(s, t - \tau ){\rm d}s}, \\ {p^*}(s, t) = {u^*}\left( {s, t} \right), (s, t) \in [0, S] \times [ - \tau, 0]; \\ \end{array} \right. \end{eqnarray}
(3.8)

利用(3.7) 与(3.8) 式取极限, 可知 z\left( {s, t} \right) 满足

\begin{eqnarray} \left\{ \begin{array}{l} \frac{{\partial z}}{{\partial t}} + \frac{{\partial (gz)}}{{\partial s}} = - {\mu'_1}\left( {{E}(p^*)(s, t)} \right){p^*}\left( {s, t} \right)E(z)\left( {s, t} \right) \\ - \left[ {{\mu _0}\left( s \right) + {\mu _1}\left( {{E}(p^*)(s, t)} \right)} \right]z\left( {s, t} \right), \left( {s, t} \right) \in {Q_T}, \\ g(0)z(0, t) = \int_0^S {\left[ {{\beta _x}(s, {E}(p^*)(s, t - \tau )){p^*}(s, t - \tau )E\left( z \right)\left( {s, t - \tau } \right)} \right.} \\ \left. { + \beta (s, {E}(p^*)(s, t - \tau ))z(s, t - \tau )} \right]{\rm d}s, t \in (0, T), \\ z\left( {s, t} \right) = v\left( {s, t} \right), \left( {s, t} \right) \in [0, S] \times \left[ { - \tau, 0} \right]. \end{array} \right. \end{eqnarray}
(3.9)

线性系统(3.9) 解的存在唯一性可由不动点原理确立. 将系统(3.9) 的第一式乘以 q\left( {s, t} \right) , 并在 {{Q_T}} 上积分, 可得

\begin{eqnarray} &&\int_0^S {\int_0^T {\left( {\frac{{\partial z}}{{\partial t}} + \frac{{\partial (gz)}}{{\partial s}}} \right)q\left( {s, t} \right){\rm d}s{\rm d}t} } \\ & = & - \int_0^S {\int_0^T {\left\{ {{\mu' _1}\left( {{E}(p^*)} \right)E(z)\left( {s, t} \right){p^*}\left( {s, t} \right) + \left[ {{\mu _0}\left( s \right) + {\mu _1}\left( {{E}(p^*)} \right)} \right]z\left( {s, t} \right)} \right\}q\left( {s, t} \right){\rm d}s{\rm d}t} }. \end{eqnarray}
(3.10)

注意到

\begin{eqnarray} &&\int_0^S \int_0^T \frac{\partial z}{\partial t}q(s, t){\rm d}s{\rm d}t = \int_0^S q(s, T)z(s, T){\rm d}s - \int_0^S \int_0^T z(s, t)\frac{\partial q}{\partial t}{\rm d}s{\rm d}t; \\ &&\int_0^S {\int_0^T {\frac{{\partial \left( {gz} \right)}}{{\partial s}}q\left( {s, t} \right){\rm d}s{\rm d}t} } \\ & = & - \int_0^T {g(0)z(0, t)q(0, t){\rm d}t} - \int_0^S {\int_0^T z\left( {s, t} \right){g\left( s \right)\frac{{\partial q}}{{\partial s}}{\rm d}s{\rm d}t} } \\ & = & - \int_0^T {q(0, t)\int_0^S {\left[ {{\beta _x}(s, E({p^*})(s, t - \tau ))E\left( z \right)\left( {s, t - \tau } \right){p^*}(s, t - \tau )} \right.} } \\ && \left. { + \beta (s, E({p^*})(s, t - \tau ))z(s, t - \tau )} \right]{\rm d}s{\rm d}t - \int_0^S {\int_0^T z\left( {s, t} \right){g\left( s \right)\frac{{\partial q}}{{\partial s}}{\rm d}s{\rm d}t} }, \end{eqnarray}
(3.11)

应用系统(3.5) 中的第2式和第3式, 以及(3.10)-(3.11)式, 可以导出

\begin{eqnarray*} && \int_0^S {\left[ {{p^*}\left( {s, T} \right) - \bar p\left( s \right)} \right]z\left( {s, T} \right){\rm d}s} \\ & = & - \int_0^S {\int_0^T {\left( {\frac{{\partial z}}{{\partial t}} + \frac{{\partial (gz)}}{{\partial s}}} \right)q\left( {s, t} \right){\rm d}s{\rm d}t} } + \int_0^S {\int_0^T {\frac{{\partial z}}{{\partial t}}q\left( {s, t} \right){\rm d}s{\rm d}t} } \\ & &+ \int_0^S \int_0^T \frac{\partial \left( gz \right)}{\partial s}q\left( {s, t} \right){\rm d}s{\rm d}t \\ & = &\int_0^S {\int_0^T {\left\{ {{\mu' _1}\left( {{E}(p^*)} \right)E(z)\left( {s, t} \right){p^*}\left( {s, t} \right) + \left[ {{\mu _0}\left( s \right) + {\mu _1}\left( {{E}(p^*)} \right)} \right]z\left( {s, t} \right)} \right\}q\left( {s, t} \right){\rm d}s{\rm d}t} } \\ && - \int_0^T {q(0, t)\int_0^S {\left[ {{\beta _x}(s, E({p^*})(s, t - \tau ))E\left( z \right)\left( {s, t - \tau } \right){p^*}(s, t - \tau )} \right.} } \\ && \left. { + \beta (s, E({p^*})(s, t - \tau ))z(s, t - \tau )} \right]{\rm d}s{\rm d}t - \int_0^S {\int_0^T {\left( {\frac{{\partial q}}{{\partial t}}{\rm{ + }}g\left( s \right)\frac{{\partial q}}{{\partial s}}} \right)z\left( {s, t} \right){\rm d}s{\rm d}t} } \\ & = & \int_0^S {\int_0^T {\alpha \int_s^S {\left[ {{\mu' _1}\left( {{E}(p^*)} \right)q\left( {r, t} \right) - {\beta _x}(r, {E}(p^*))q(0, t + \tau )} \right]{p^*}\left( {r, t} \right){\rm d}r} z\left( {s, t} \right)} {\rm d}s{\rm d}t} \\ & & + \int_0^S {\int_0^T {\int_0^s {\left[ {{\mu' _1}\left( {{E}(p^*)} \right)q\left( {r, t} \right) - {\beta _x}(r, {E}(p^*))q(0, t + \tau )} \right]{p^*}\left( {r, t} \right){\rm d}r} z\left( {s, t} \right)} {\rm d}s{\rm d}t} \\ & & + \int_0^S {\int_0^T {\left\{ {\left[ {{\mu _0}\left( s \right) + {\mu _1}\left( {{E}(p^*)} \right)} \right]q\left( {s, t} \right) - \beta (s, {E}(p^*))q(0, t + \tau )} \right\}z\left( {s, t} \right){\rm d}s{\rm d}t} }\\ && - \int_0^S {\int_0^T {\left( {\frac{{\partial q}}{{\partial t}}{\rm{ + }}g\left( s \right)\frac{{\partial q}}{{\partial s}}} \right)z\left( {s, t} \right){\rm d}s{\rm d}t} } -\int_0^S \int_{-\tau}^0 q(0, t+\tau)\tilde{E}(s, t)v(s, t){\rm d}s{\rm d}t. \end{eqnarray*}

由共轭系统(3.5)的第一式可知

\begin{eqnarray} \int_0^S {\left[ {{p^*}\left( {s, T} \right) - \bar p\left( s \right)} \right]z\left( {s, T} \right){\rm d}s} = -\int_0^S \int_{-\tau}^0 q(0, t+\tau)\tilde{E}(s, t)v(s, t){\rm d}s{\rm d}t. \end{eqnarray}
(3.12)

将(3.12)式代入(3.6)式中可知: 对任意 v \in {\cal T} _U\left( {{u^*}} \right)

\int_0^S {\int_{ - \tau }^0 {[q(0, t + \tau )\tilde E(s, t) - \sigma {u^*}(s, t)]v(s, t){\rm d}s{\rm d}t} } \le 0.

根据法锥的定义[21, p20]

q(0, \tau +\cdot)\tilde{E}-\sigma {u^*} \in {\cal N}_U\left( {{u^*}} \right),

其中 {\cal N}_U\left( {{u^*}} \right) 表示集 U u^* 处的法锥. 利用法锥元素的特征[21, p13]可得定理3.1的结论.

以下证明下列极限的存在性以保证定理3.1证明的严格性.

引理3.2 极限 \mathop {\lim }\limits_{\varepsilon \to {0^ + }} {\varepsilon ^{ - 1}}\left[ {{p^\varepsilon }\left( {s, t} \right) - {p^*}\left( {s, t} \right)} \right] 存在.

 记

{w_\varepsilon } = {\varepsilon ^{ - 1}}\left[ {{p^\varepsilon }\left( {s, t} \right) - {p^*}\left( {s, t} \right)} \right] - z\left( {s, t} \right),

根据模型方程(2.1), 有

\begin{eqnarray} &&\frac{{\partial \left\{ {\frac{1}{\varepsilon }\left[ {{p^\varepsilon }\left( {s, t} \right) - {p^*}\left( {s, t} \right)} \right]} \right\}}}{{\partial t}} + \frac{{\partial \left\{ {\frac{1}{\varepsilon }g\left( s \right)\left[ {{p^\varepsilon }\left( {s, t} \right) - {p^*}\left( {s, t} \right)} \right]} \right\}}}{{\partial s}}\\ & = & \frac{1}{\varepsilon }\left\{ {\frac{{\partial {p^\varepsilon }\left( {s, t} \right)}}{{\partial t}} + \frac{{\partial \left[ {g\left( s \right){p^\varepsilon }\left( {s, t} \right)} \right]}}{{\partial s}}} \right\} - \frac{1}{\varepsilon }\left\{ {\frac{{\partial {p^*}\left( {s, t} \right)}}{{\partial t}} + \frac{{\partial \left[ {g\left( s \right){p^*}\left( {s, t} \right)} \right]}}{{\partial s}}} \right\}\\ & = & - {\mu' _{1}}\left( {E\left( {{p^*}} \right)} \right)E\left( {\frac{1}{\varepsilon }\left[ {{p^\varepsilon } - {p^*}} \right]} \right)\left( {s, t} \right){p^\varepsilon }\left( {s, t} \right)\\ && - {\mu _1}\left( {E\left( {{p^*}} \right)\left( {s, t} \right)} \right)\frac{1}{\varepsilon }\left[ {{p^\varepsilon } - {p^*}} \right]\left( {s, t} \right) - {\mu _0}\left( s \right)\frac{1}{\varepsilon }\left[ {{p^\varepsilon } - {p^*}} \right]\left( {s, t} \right), \end{eqnarray}
(3.13)

以及

\begin{eqnarray} &&\frac{1}{\varepsilon }g\left( 0 \right)\left[ {{p^\varepsilon }\left( {0, t} \right) - {p^*}\left( {0, t} \right)} \right]\\ & = &\int_0^S {{\beta _x}\left( {s, {E}\left( p^* \right)\left( {s, t - \tau } \right)} \right){p^\varepsilon }(s, t - \tau )E\left( {\frac{1}{\varepsilon }\left[ {{p^\varepsilon } - {p^*}} \right]} \right)\left( {s, t - \tau } \right){\rm d}s} \\ && + \int_0^S {\beta \left( {s, {E}\left( p^* \right)\left( {s, t - \tau } \right)} \right)\frac{1}{\varepsilon }\left[ {{p^\varepsilon } - {p^*}} \right]\left( {s, t - \tau } \right){\rm d}s} +{b_0}\left( \varepsilon \right), \end{eqnarray}
(3.14)

其中 \mathop {\lim }\limits_{\varepsilon \to 0} {b_0}\left( \varepsilon \right) = 0 .

由系统(3.9) 中的第一式与(3.13)式, 有

\begin{eqnarray*} &&\frac{{\partial {w_\varepsilon }}}{{\partial t}} + \frac{{\partial \left( {g\left( s \right){w_\varepsilon }} \right)}}{{\partial s}}\\ & = & \frac{{\partial \left\{ {\frac{1}{\varepsilon }\left[ {{p^\varepsilon }\left( {s, t} \right) - {p^*}\left( {s, t} \right)} \right]} \right\}}}{{\partial t}} - \frac{{\partial z}}{{\partial t}} + \frac{{\partial \left\{ {\frac{1}{\varepsilon }g\left( s \right)\left[ {{p^\varepsilon }\left( {s, t} \right) - {p^*}\left( {s, t} \right)} \right]} \right\}}}{{\partial s}} - \frac{{\partial \left( {g\left( s \right)z} \right)}}{{\partial s}}\\ & = & - \left[ {{\mu _0}\left( s \right) + {\mu_1}\left( {E({p^*})} \right)\left( {s, t} \right)} \right]{w_\varepsilon } - {\mu'_1}\left( {E\left( {{p^*}} \right)} \right)E\left( {{w_\varepsilon }} \right)\left( {s, t} \right){p^\varepsilon }\left( {s, t} \right) \\ && - {\mu'_1}\left( {E({p^*})} \right)E(z)\left( {s, t} \right)\left( {{p^\varepsilon }\left( {s, t} \right) - {p^*}\left( {s, t} \right)} \right). \end{eqnarray*}

由系统(3.9) 中的第二式与(3.14)式, 可得

\begin{eqnarray*} &&g\left( 0 \right){w_\varepsilon }\left( {0, t} \right) \\ & = & \frac{1}{\varepsilon }g\left( 0 \right)\left[ {{p^\varepsilon }\left( {0, t} \right) - {p^*}\left( {0, t} \right)} \right] - g\left( 0 \right)z\left( {0, t} \right)\\ & = & \int_0^S {\beta \left( {s, {E}\left( p^* \right)\left( {s, t - \tau } \right)} \right){w_\varepsilon }\left( {s, t - \tau } \right){\rm d}s} \\ && +\int_0^S {{\beta _x}\left( {s, {E}\left( p^* \right)\left( {s, t - \tau } \right)} \right){p^\varepsilon }(s, t - \tau )E\left( {{w_\varepsilon }} \right)\left( {s, t - \tau } \right){\rm d}s} \\ &&+ \int_0^S {{\beta _x}(s, E({p^*})(s, t - \tau ))\left( {{p^\varepsilon }(s, t - \tau ) - {p^*}(s, t - \tau )} \right)E\left( z \right)\left( {s, t - \tau } \right){\rm d}s} + {b_0}\left( \varepsilon \right). \end{eqnarray*}

综上, 变量 w_\varepsilon 所满足的系统方程为

\begin{eqnarray} \left\{ \begin{array}{l} \frac{{\partial {w_\varepsilon }}}{{\partial t}} + \frac{{\partial \left( {g\left( s \right){w_\varepsilon }} \right)}}{{\partial s}} = - \left[ {{\mu _0}\left( s \right) + {\mu_1}\left( {E({p^*})} \right)\left( {s, t} \right)} \right]{w_\varepsilon }\\ - {\mu'_1}\left( {E\left( {{p^*}} \right)} \right)E\left( {{w_\varepsilon }} \right)\left( {s, t} \right){p^\varepsilon }\left( {s, t} \right) \\ - {\mu'_1}\left( {E({p^*})} \right)E(z)\left( {s, t} \right)\left( {{p^\varepsilon }\left( {s, t} \right) - {p^*}\left( {s, t} \right)} \right), \left( {s, t} \right) \in {Q_{T, }}\\ g\left( 0 \right){w_\varepsilon }\left( {0, t} \right) = \int_0^S {\beta \left( {s, {E}\left( p^* \right)\left( {s, t - \tau } \right)} \right){w_\varepsilon }\left( {s, t - \tau } \right){\rm d}s} \\ + \int_0^S {{\beta _x}\left( {s, {E}\left( p^* \right)\left( {s, t - \tau } \right)} \right){p^\varepsilon }(s, t - \tau )E\left( {{w_\varepsilon }} \right)\left( {s, t - \tau } \right){\rm d}s} \\ + \int_0^S {{\beta _x}(s, E({p^*})(s, t - \tau ))\left( {{p^\varepsilon }(s, t - \tau )} \right.} \\ \left. { - {p^*}(s, t - \tau )} \right)E\left( z \right)\left( {s, t - \tau } \right){\rm d}s+ {b_0}\left( \varepsilon \right), t \in \left[ {0, T} \right], \\ {w_\varepsilon }\left( {s, t} \right) = 0, \left( {s, t} \right) \in [0, S] \times \left[ { - \tau, 0} \right]. \\ \end{array} \right. \end{eqnarray}
(3.15)

对系统(3.15) 中的前两式右端除首项外的其余部分取极限 {\varepsilon \to {0^ + }} , 可得极限系统如下

\begin{eqnarray} \left\{ \begin{array}{l} \frac{{\partial w}}{{\partial t}} + \frac{{\partial \left( {g\left( s \right)w} \right)}}{{\partial s}} = { - \left[ {{\mu _0}\left( s \right) + {\mu _1}\left( {E({p^*})} \right)\left( {s, t} \right)} \right]w\left( {s, t} \right)} \\ -{{\mu'_1}\left( {E({p^*})} \right)E(w)\left( {s, t} \right){p^*}\left( {s, t} \right)}\\ g\left( 0 \right)w\left( {0, t} \right) = {\int_0^S {\beta \left( {s, {E}\left( p^* \right)\left( {s, t - \tau } \right)} \right)w\left( {s, t - \tau } \right){\rm d}s} } \\ + \int_0^S {{\beta _x}\left( {s, {E}\left( p^* \right)\left( {s, t - \tau } \right)} \right){{p^*}(s, t - \tau )}E\left( w \right)\left( {s, t - \tau } \right){\rm d}s}, t \in \left[ {0, T} \right], \\ {w}\left( {s, t} \right) = 0, \left( {s, t} \right) \in [0, S] \times \left[ { - \tau, 0} \right], \end{array} \right. \end{eqnarray}
(3.16)

其中用到了 E\left( {\frac{1}{\varepsilon }\left[ {{p^\varepsilon } - {p^*}} \right]} \right)\left( {s, t} \right)\left[ {{p^\varepsilon } - {p^*}} \right]\left( {s, t} \right) \to 0, \varepsilon \to {0^ + }.

注意(3.16) 式是一个初始条件为零的齐次线性系统, 由其解的唯一性知 \mathop {\lim }\limits_{\varepsilon \to {0^ + }} {w_\varepsilon } = 0 , 这意味着

\mathop {\lim }\limits_{\varepsilon \to {0^ + }} {\varepsilon ^{ - 1}}\left[ {{p^\varepsilon }\left( {s, t} \right) - {p^*}\left( {s, t} \right)} \right] = z\left( {s, t} \right),

z(s, t) 为系统(3.9) 的唯一解. 引理证毕.

4 最优控制的存在唯一性

定义泛函 \varphi :{L^{\rm{1}}} ([0, S] \times [ - \tau, 0]) \to \left( { - \infty, + \infty } \right],

\varphi \left( u \right){\rm{ = }}\left\{ \begin{array}{ll} \int_0^S {{{\left[ {{p^u}\left( {s, T} \right) - \bar p\left( s \right)} \right]}^2}{\rm d}s} + \sigma \int_0^S {\int_{ - \tau }^0 {{u^2}\left( {s, t} \right){\rm d}s{\rm d}t} }, & u \in U, \\ + \infty, & u \notin U. \end{array} \right.

引理4.1  泛函 \varphi 下半连续.

 设 \left\{ {{u_n}} \right\} {L^{\rm{1}}}([0, S] \times [ - \tau, 0]) 中的任一序列, 当 n \to \infty 时, {{u_n} \to u} . 不失一般性, 可以假定 {{u_n} \in U} , \forall n \ge 1 . 据定理2.1可知, 对任意 s \in \left( {0, S} \right) , 当 n\rightarrow \infty 时有

{p^{{u_n}}}\left( { s, \cdot} \right) \to {p^u}\left( { s, \cdot} \right).

Riesz定理告诉我们, 存在一个子序列(仍记为 \left\{ {{u_n}} \right\} ), 使得

{u_n}\left( {s, t} \right) \to u\left( {s, t} \right), {p^{{u_n}}}\left( {s, t} \right) \to {p^u}\left( {s, t} \right)

\left( {0, S} \right) \times \left( { - \tau, 0} \right) 上几乎处处成立.从而

\begin{eqnarray*} &&\int_0^S {{{\left[ {{p^{{u_n}}}\left( {s, T} \right) - \bar p\left( s \right)} \right]}^2}{\rm d}s} + \sigma \int_0^S {\int_{ - \tau }^0 {{{\left( {{u_n}\left( {s, t} \right)} \right)}^2}{\rm d}s{\rm d}t} } \\ &\to &\int_0^S {{{\left[ {{p^u}\left( {s, T} \right) - \bar p\left( s \right)} \right]}^2}{\rm d}s} + \sigma \int_0^S {\int_{ - \tau }^0 {{u^2}\left( {s, t} \right){\rm d}s{\rm d}t} } . \end{eqnarray*}

应用Fatou定理, 即得

\mathop {\lim }\limits_{n \to \infty } \inf \varphi \left( {{u_n}} \right) \ge \varphi \left( u \right).

因此知 \varphi 下半连续, 引理证毕.

利用特征线法可得下列结果(略去证明).

引理4.2  记共轭系统(3.5) 相应于初始控制 u, v 的解为 q^u, q^v , 则对任意 \left( {s, t} \right) \in \left( {0, S} \right) \times \left( { 0, T} \right) , 都有

|q^v (s, t)| + | q^u (0, t) - q^v (0, t)| \le C(\bar{u}, T)\| u - v \|_{L^{\infty }( [0, S] \times [ - \tau, 0])},

其中 C\left( {\bar{u}, T} \right) \bar{u} T 所构成的正的常数.

定理4.1  如果 \sigma^{-1}{C}\left( {\bar{u}, T} \right) 充分小, 那么控制问题(2.1)-(2.2) 存在唯一的解.

  根据Ekeland变分原理[21, p29, Th3.2]知, 对任意 \varepsilon > 0 , 存在 {u_\varepsilon } \in U , 使得

\begin{equation} \varphi \left( {{u_\varepsilon }} \right) \le \inf \varphi + \varepsilon, \end{equation}
(4.1)

\begin{equation} \varphi (u_{\varepsilon }) \le \inf \left\{\varphi( u) + \sqrt{\varepsilon} \| u - u_{\varepsilon}\|_{L^1 ([0, S] \times [- \tau, 0])}: u \in U \right\}. \end{equation}
(4.2)

由(4.2) 式知: u_{\varepsilon} 必为泛函 \varphi(u)+\sqrt{\varepsilon}\|u-u_{\varepsilon}\|_{L^1} 的最小值点.

利用定理3.1的证明方法可知: 对任一 v \in {\cal T}_U(u_{\varepsilon}) , 都有

\int_0^S {\int_{ - \tau }^0 {\left[ {\sigma {u_\varepsilon }(s, t) - {q^{{u_\varepsilon }}}(0, t + \tau )\tilde E_{\varepsilon}(s, t)} \right]v\left( {s, t} \right){\rm d}s{\rm d}t} } + \sqrt \varepsilon \int_0^S {\int_{ - \tau }^0 {\left| {v\left( {s, t} \right)} \right|{\rm d}s{\rm d}t} } \ge 0,

其中 q^{\varepsilon} 表示系统(3.5) 相应于 u^* = u_{\varepsilon} 的解, \tilde{E}_{\varepsilon}(s, t) 表示 \tilde{E}(s, t) 定义中的 p^* 应理解为系统(2.1) 相应于 u^* = u_{\varepsilon} 的解. 利用文献[22] 的结果知: 存在函数

f_{\varepsilon} \in L^{\infty }( [0, S] \times [- \tau, 0]), \|f_{\varepsilon } \| \le 1,

使得

- \sigma {u_\varepsilon } + {q^{{u_\varepsilon }}}\left( {0, \tau + \cdot} \right)\tilde E_{\varepsilon} + \sqrt \varepsilon {f_\varepsilon } \in {\cal N}_U\left( {{u_\varepsilon }} \right),

因此

\begin{equation} {u_\varepsilon }\left( {s, t} \right) = {\cal F}\left[ {{\sigma ^{ - 1}}{q^{{u_\varepsilon }}}\left( {0, t + \tau } \right)\tilde E_{\varepsilon}(s, t) + {\sigma ^{ - 1}}\sqrt \varepsilon {f_\varepsilon }\left( {s, t} \right)} \right]. \end{equation}
(4.3)

首先证明最优控制的唯一性. 定义映射 \psi : U \to U , 有

\begin{equation} \left( {\psi u} \right)\left(s, t \right) = {\cal F}\left[ {{\sigma ^{ - 1}}q^u (0, t + \tau )\tilde E_u (s, t)} \right], \ {\rm a.e.}\ \left( {s, t} \right) \in \left( {0, S} \right) \times \left( { - \tau, 0} \right), \end{equation}
(4.4)

其中 q^u 表示系统(3.5)相应于 u^* = u 的解, \tilde{E}_u (s, t) 表示 \tilde{E}(s, t) 定义中的 p^* 应理解为系统(2.1) 相应于 u^* = u 的解. 结合(4.4) 式与引理4.2可得

\begin{eqnarray*} & &|(\psi u)(s, t) - (\psi v)(s, t) |\\ & = &| {\cal F}(\sigma ^{ - 1}q^u (0, t + \tau )\tilde{E}_u (s, t)) -{\cal F}(\sigma ^{ - 1}q^v (0, t + \tau)\tilde{E}_v(s, t) ) |\\ &\le & \sigma ^{ - 1}\left\{ |\tilde E_u(s, t) |\cdot |q^u (0, t+\tau) - q^v (0, t+\tau)|+|q^u (0, t+\tau)|\cdot |\tilde E_u(s, t)-\tilde E_v(s, t) |\right\}\\ & \le & \sigma ^{ - 1}C(\bar{u}, T)\| u - v\|_{L^{\infty }([0, S] \times [- \tau, 0])}. \end{eqnarray*}

显然, 由定理的条件可知 \psi 是压缩的, 从而 \psi 存在唯一不动点 {u_0} \in U . 定理4.1意味着问题(2.1)-(2.2) 的任一解都是 \psi 的不动点. 所以该问题至多有一个最优解.

再证 {u_0} 是该问题的解. 利用(4.3)-(4.4)式, 可得

\begin{eqnarray*} &&\left| {{u_\varepsilon }\left( {s, t} \right) - \left( {\psi {u_\varepsilon }} \right)\left( {s, t} \right)} \right|\\ & = & \left| {{\cal F}\left[ {{\sigma ^{ - 1}}{q^{{u_\varepsilon }}}\left( {0, t + \tau } \right)\tilde E_{\varepsilon}(s, t) + {\sigma ^{ - 1}}\sqrt \varepsilon {f_\varepsilon }\left( {s, t} \right)} \right] - {\cal F}\left[ {{\sigma ^{ - 1}}{q^{{u_\varepsilon }}}(0, t + \tau )\tilde E_{\varepsilon}(s, t)} \right]} \right|\\ &\le & {\sigma ^{ - 1}}\sqrt \varepsilon \left| {{f_\varepsilon }\left( {s, t} \right)} \right| \le {\sigma ^{ - 1}}\sqrt \varepsilon . \end{eqnarray*}

因此

\begin{eqnarray*} & &\| u_{\varepsilon} - u_0 \|_{L^{\infty }([0, S] \times [ -\tau, 0])} = \|u_{\varepsilon} - \psi u_0 \|_{L^{\infty }([0, S] \times [ - \tau, 0])}\\ &\le& \|u_{\varepsilon } - \psi u_{\varepsilon } \|_{L^{\infty }([0, S] \times [ - \tau, 0])} + \| \psi u_{\varepsilon } - \psi u_0\|_{L^{\infty }([0, S] \times [ - \tau, 0])}\\ &\le& \sigma ^{ - 1}C(\bar{u}, T)\| u_{\varepsilon } - u_0\|_{L^{\infty }([0, S] \times [ - \tau, 0])} + \sigma ^{ - 1}\sqrt{\varepsilon}. \end{eqnarray*}

从而当 \varepsilon \to {{\rm{0}}^{\rm{ + }}} 时, {{u_\varepsilon } \to {u_0}} .

对不等式(3.1) 取极限 \varepsilon\rightarrow 0^+ 并利用引理3.1, 得到

\varphi ({u_{\rm{0}}}) \le \mathop {\lim }\limits_{\varepsilon \to {0^ + }} \inf \varphi \left( {{u^\varepsilon }} \right) \le \inf \varphi,

从而 \varphi ({u_{\rm{0}}}) = \inf \{ \varphi (u):u \in U\}. 定理4.1证毕.

参考文献

Lomnicki A .

Individual differences between animals and the natural regulation of their numbers

Journal of Animal Ecology, 1978, 47 (2): 461- 475

DOI:10.2307/3794      [本文引用: 1]

Dewsbury D A .

Dominance rank, copulatory behavior, and differential reproduction

The Quarterly Review of Biology, 1982, 57 (2): 135- 159

DOI:10.1086/412672     

Gurney W S , Nisbet R M .

Ecological stability and social hierarchy

Theoretical Population Biology, 1979, 16, 48- 80

DOI:10.1016/0040-5809(79)90006-6     

Cushing J M .

The dynamics of hierarchical age-structured populations

J Math Biol, 1994, 32, 705- 729

DOI:10.1007/BF00163023     

Henson S M , Cushing J M .

Hierarchical models of intra-specific competition: scramble versus contest

J Math Biol, 1996, 34, 755- 772

DOI:10.1007/BF00161518     

Ackleh A S , Deng K .

Monotone approximation for a hierarchical age-structured population model

Dynamics of Continuous, Discrete and Impulsive Systems, 2005, 12, 203- 214

Cushing J M , Li J .

Oscilations caused by cannibalism in a size-structured population model

Canadian Applied Mathematics Quarterly, 1995, 3 (2): 155- 172

URL    

Calsina À , Saldaña J .

Asymptotic behaviour of a model of hierarchically structured population dynamics

J Math Biol, 1997, 35, 967- 987

DOI:10.1007/s002850050085     

Kraev E A .

Existence and uniqueness for height structured hierarchical population models

Natural Resources Modeling, 2001, 14 (1): 45- 70

DOI:10.1111/j.1939-7445.2001.tb00050.x     

Ackleh A S , Hu S .

A quasilinear hierarchical size-structured model: Well-posedness and approximation

Appl Math Optim, 2005, 51, 35- 59

DOI:10.1007/s00245-004-0806-2     

Calsina À , Saldaña J .

Basic theory for a class of models of hierarchically structured population dynamics with distributed states in the recruitment

Mathematical Models and Methods in Applied Sciences, 2006, 16 (10): 1695- 1722

DOI:10.1142/S0218202506001686     

Ackleh A S , Deng K , Thibodeaux J J .

A monotone approximation for a size-structured population model with a generalized environment

Journal of Biological Systems, 2007, 1 (4): 305- 319

URL    

Shen J , Shu C-W , Zhang M .

A high order WENO scheme for a hierarchical size-structured population model

J Sci Comput, 2007, 33, 279- 291

DOI:10.1007/s10915-007-9152-x     

Farkas J Z , Hagen T .

Asymptotic analysis of a size-structured cannibalism modfel with infinite dimensional environmental feedback

Communications on Pure and Applied Analysis, 2009, 8 (6): 1825- 1839

DOI:10.3934/cpaa.2009.8.1825     

Jang S R-J , Cushing J M .

A discrete hierarchical model of intra-specific competition

J Math Anal Appl, 2003, 280, 102- 122

DOI:10.1016/S0022-247X(03)00050-7     

何泽荣, 张智强, 裘哲勇.

一类非线性年龄等级结构种群模型的数值解法

数学物理学报, 2020, 40A (2): 515- 526

DOI:10.3969/j.issn.1003-3998.2020.02.022      [本文引用: 1]

He Z , Zhang Z , Qiu Z .

Numerical method of a nonlinear hierarchical age-structured population model

Acta Mathematica Scientia, 2020, 40A (2): 515- 526

DOI:10.3969/j.issn.1003-3998.2020.02.022      [本文引用: 1]

He Z-R , Ni D , Wang S-P .

Optimal harvesting of a hierarchical age-structured population system

International Journal of Biomathematics, 2019, 12 (8): 1950091

DOI:10.1142/S1793524519500918      [本文引用: 1]

何泽荣, 周楠, 韩梦杰.

一类非线性年龄等级结构种群系统模型的可控性

高校应用数学学报, 2020, 35 (2): 191- 198

URL    

He Z , Zhou N , Han M .

Controllability of a hierarchical age-structured population system model

Appl Math J Chinese Univ, 2020, 35 (2): 191- 198

URL    

何泽荣, 陈怀, 谢强军.

带有离散个体等级结构的种群系统的控制问题

系统科学与数学, 2020, 40 (3): 410- 422

URL     [本文引用: 1]

He Z , Chen H , Xie Q .

Control problems of a discrete hierarchical population system

J Sys Math Scis, 2020, 40 (3): 410- 422

URL     [本文引用: 1]

韩梦杰, 何泽荣, 周楠.

具有时滞的尺度等级结构种群模型

应用泛函分析学报, 2019, 21 (4): 319- 324

URL     [本文引用: 2]

Han M , He Z , Zhou N .

A Hierarchical size-structured population model with delay

J Appl Funct Anal, 2019, 21 (4): 319- 324

URL     [本文引用: 2]

Barbu V. Mathematical Methods in Optimization of Differential Systems. Dordrecht: Kluwer Academic Publishers, 1994

[本文引用: 4]

Barbu V , Iannelli M .

Optimal control of population dynamics

J Optim Theo Appl, 1999, 102, 1- 14

DOI:10.1023/A:1021865709529      [本文引用: 1]

/