数学物理学报, 2021, 41(4): 1033-1041 doi:

论文

带Neumann边界条件的耗散半线性波动方程外问题的生命跨度估计

赵菁蕾,1, 兰家诚,1, 杨姗姗,2

Lifespan Estimate of Damped Semilinear Wave Equation in Exterior Domain with Neumann Boundary Condition

Zhao Jinglei,1, Lan Jiacheng,1, Yang Shanshan,2

通讯作者: 兰家诚, E-mail: jiachenglan@163.com

收稿日期: 2020-05-7  

Received: 2020-05-7  

作者简介 About authors

赵菁蕾,E-mail:zjl750309@163.com , E-mail:zjl750309@163.com

杨姗姗,E-mail:yss960501@163.com , E-mail:yss960501@163.com

Abstract

This paper concerns about the upper bound of lifespan estimate to damped semilinear wave equations in exterior domain with vanishing Neumann boundary condition. We find that the initial boundary value problem with Neumann boundary condition admits the same upper bound of lifespan as that of the Cauchy problem in $\mathbb{R}^n (n\ge 1)$. This fact is different from the zero Dirichlet boundary value problem in 2-D exterior domain for lifespan estimate, compared to the corresponding result in [6], and is also different from the zero Dirichlet boundary value problem on half line for critical power, compared to the result in [16].

Keywords: Lifespan ; Damped semilinear wave equations ; Neumann boundary condition ; Exterior problem

PDF (339KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

赵菁蕾, 兰家诚, 杨姗姗. 带Neumann边界条件的耗散半线性波动方程外问题的生命跨度估计. 数学物理学报[J], 2021, 41(4): 1033-1041 doi:

Zhao Jinglei, Lan Jiacheng, Yang Shanshan. Lifespan Estimate of Damped Semilinear Wave Equation in Exterior Domain with Neumann Boundary Condition. Acta Mathematica Scientia[J], 2021, 41(4): 1033-1041 doi:

1 引言

研究了外区域上带Neumann边界条件的耗散半线性波动方程初边值问题

$ \begin{equation} \left\{ \begin{array}{ll} u_{tt} - \Delta u +u_t = |u_t|^p, \quad (t, x)\in[0, T)\times B_1^c, \\ u(0, x) = \varepsilon f(x), \quad u_t(0, x) = \varepsilon g(x), \quad x\in B_1^c, \\ \partial_ru(t, x)|_{\partial B_1^c} = 0, \\ \end{array} \right. \end{equation} $

其中$ B_1 $$ {{\Bbb R}} ^n(n\ge 1) $中以原始点为中心的单位球, $ B_1^c $为其补集, 初值$ f(x), g(x) $具有紧支集

不失一般性, 假设

$ \begin{equation} {\rm supp}\ f(x), g(x)\in \{x: x\in B_1^c\cap |x|\le 2\}. \end{equation} $

耗散波动方程由于能够描述带阻尼的波的传播而越来越受到人们的关注. 对于非线性方程, 人们通常研究带指数型非线性项的半线性方程, 即

$ {{\Bbb R}} ^n(n\ge 1) $中, 有关上述小初值问题的文献很多, 这些结果表明其柯西问题存在Fujita临界指标[2]

读者可以参考文献[4-5, 11-13, 15, 18].

随着对小初值半线性波动方程柯西问题的研究逐步完善, 外区域上相应初边值问题也引起了人们的兴趣. 根据文献[6-8, 10, 14, 17] 的结果可知当$ n\ge2 $时, 具有零Dirichlet边界条件的外问题具有与柯西问题相同的临界指标. 在一维情况下, 初值外问题变成了相应的半直线上的问题[3], 若带零Dirichlet边界条件, 则临界指标变为$ 2 $, 这与$ {{\Bbb R}} ^2 $中的柯西问题是一致的. 该结果由Nishihara和Zhao得到[16]. Dirichlet外问题和柯西问题的另外一个不同之处是当$ n = 2 $时临界指标相同, 但次临界和临界情形的生命跨度上界估计似乎都比相应柯西问题更大, 但这一点仍有待于通过建立生命跨度下界估计来证实.

据作者所知, 关于半线性耗散波动方程带Neumann边界条件的外问题结果很少. Ogawa和Takeda[17]提到他们可以用处理Dirichlet外问题类似的方法得到$ 1<p\le 1+ \frac{2}{n} (n\ge 1) $时的破裂结果. 然而, 对于破裂情形的生命跨度估计还没有结果. 这也是本文主要关注的问题. 通过构造一个类似于文献[6]中的试探函数, 建立了问题(1.1)在$ 1<p\le 1+ \frac2n(n\ge 1) $情形的生命跨度上界估计, 该估计与相应柯西问题的结果相同. 这一事实表明, 带零Neumann边界条件的半线性耗散波动方程外问题与柯西问题具有相似的渐近性质, 而零Dirichlet初边值外问题与柯西问题相比, 在二维情况下有不同的生命跨度上界估计, 在半直线上则有不同的临界指标.

2 主要结果

定义 2.1    定义问题(1.1)的生命跨度(上界)为

定义 2.2    根据文献[9]中的定义, 若

$ \begin{equation} u\in C([0, T), H^1(B_1^c))\cap C^1([0, T), L^2(B_1^c))\cap L_{\rm loc} ^p(B_1^c\times[0, T)) \end{equation} $

满足

$ \begin{eqnarray} &&\int_{B_1^c}u_t(t, x)\phi(t, x){\rm d}x-\int_{B_1^c}u_t(x, 0)\phi(0, x){\rm d}x{}\\ &&+\int_0^t\int_{B_1^c}\left\{-u_t(s, x)\phi_t(s, x)+\nabla u(s, x)\cdot\nabla\phi(s, x)\right\}{\rm d}x{\rm d}s{}\\ & = &\int_0^t\int_{B_1^c}|u(s, x)|^p\phi(s, x){\rm d}x{\rm d}s, \end{eqnarray} $

其中$ \phi_r\in C_0^{\infty}(B_1^c\times[0, T)) $$ t\in[0, T) $, 则称$ u $是问题(1.1)在$ [0, T) $上的一个能量解.

本文主要结果如下.

定理 2.1    设$ n\ge 1 $$ 1<p \le 1+\frac2n $. 假设初值$ f, g $非负的且不恒等于$ 0 $, 且假设(1.2)式成立. 则问题(1.1)的生命跨度上界估计满足

$ \begin{equation} T_{\varepsilon}\leq \left\{ \begin{array}{ll} C\varepsilon^{-\frac{1}{\frac{1}{p-1}-\frac n2}}, & { } 1<p<1+\frac2n, \\ \exp\left(C\varepsilon^{-(p-1)}\right), & { } p = 1+\frac2n, \end{array} \right. \end{equation} $

其中$ C $表示一个独立于$ \varepsilon $的正常数, 在不同地方取值可能不一样.

3 局部存在性

在证明主要结果之前, 首先证明问题(1.1)存在局部解.

引理 3.1    假设初值$ (f, g) $满足和定理2.1中一样的条件, 则问题(1.1)存在局部解

    令

其中$ \partial: = (\partial_t, \nabla) $, 且$ C_1, E $是正常数. 定义映射

使得

$ \begin{equation} \left \{ \begin{array}{ll} u_{tt}(t, x)-\Delta u(t, x)+u_t = |v|^p, \; (t, x)\in [0, \infty)\times B_1^c, \\ u(0, x) = \varepsilon f(x), \; \; u_t(0, x) = \varepsilon g(x), \; \; x\in B_1^c, \\ \partial_{r}u(t, x)|_{\partial B_1^c} = 0.\\ \end{array} \right. \end{equation} $

首先证明映射$ \Gamma $是到上的. (3.1)式中的方程乘以$ u_t $并在$ B_1^c $上积分, 利用零Neumann边界条件可以得到如下能量不等式

从而

$ \begin{eqnarray} \|\partial u\|_{L^2(B_1^c)}&\le& C\left(\|\partial u(0)\|_{L^2(B_1^c)}+\int_0^t\||v|^p\|_{L^2(B_1^c)}{\rm d}\tau\right){}\\ &\le &C\left(\|\partial u(0)\|_{L^2(B_1^c)}+\int_0^t\|v\|_{L^{2p}(B_1^c)}^p{\rm d}\tau\right){}\\ &\le &C\left(\|\partial u(0)\|_{L^2(B_1^c)}+\int_0^t\Big(\|\nabla v\|_{L^{2}(B_1^c)}^{a}\|v\|_{L^{2}(B_1^c)}^{1-a}\Big)^p{\rm d}\tau\right){}\\ &\le &C\left(\|\partial u(0)\|_{L^2(B_1^c)}+\int_0^t\|v\|_{H^1(B_1^c)}^p{\rm d}\tau\right), \; \; \; t\in [0, T), \end{eqnarray} $

这里用到了外域上$ a = \frac{n(p-1)}{2p}(n\ge 2) $的Gagliardo-Nirenberg型不等式(见下面引理3.2). 另一方面, 易知$ u\in C^1([0, T), L^2(B_1^c)) $满足

则有

结合

可得

$ \begin{equation} \|u(t)\|_{H^1(B_1^c)}+\|\partial_tu\|_{L^2(B_1^c)}\le C\varepsilon+(1+T)\sup\limits_{t\in[0, T]}\|\partial u\|_{L^2(B_1^c)}. \end{equation} $

由(3.2)和(3.3)式得到

$ \begin{eqnarray} \|u(t)\|_{E_T}& = &\|u(t)\|_{L^2(B_1^c)}+\|\partial u(t)\|_{L^2(B_1^c)}{}\\ & \le&C(1+T)\varepsilon+C(1+T)\int_0^t\|v\|_{H^1(B_1^c)}^p{\rm d}\tau{}\\ & \le&C(1+T)\varepsilon+C(1+T)T(2C_1E)^p{}\\ & \le&2C_1E\left(\frac{C(1+T)\varepsilon}{2C_1E}+C(1+T)T(2C_1E)^{p-1}\right){}\\ & \le&2C_1E, \end{eqnarray} $

$ T $足够小使得

由此可得映射$ \Gamma $是到上的. 接下来证明$ \Gamma $是一个压缩映射. 取$ v, w\in E_T $, 则$ v-w $满足

$ \begin{equation} \left \{ \begin{array}{ll} \partial_t^2\Gamma(v-w)-\Delta \Gamma(v-w)+\partial_t\Gamma(v-w) = |v|^p-|w|^p, \; (t, x)\in [0, T)\times B_1^c, \\ \Gamma(v-w)(0, x) = 0, \; \; \partial_t\Gamma(v-w)(0, x) = 0, \; \; x\in B_1^c, \\ \partial_r\Gamma(v-w)\big|_{r = 1} = 0.\\ \end{array} \right. \end{equation} $

通过上述类似的方法, 可得

$ \begin{eqnarray} \|\Gamma(v-w)\|_{L^2(B_1^c)}+\|\partial \Gamma(v-w)\|_{L^2(B_1^c)} \le C(1+T)\sup\limits_{t\in [0, T]}\|\partial\Gamma(v-w)\|_{L^2(B_1^c)}. \end{eqnarray} $

另外根据(3.2)式中的能量估计, 当$ n\ge 3 $

$ \begin{eqnarray} \|\partial\Gamma(v-w)\|_{L^2(B_1^c)}&\le &C\int_0^t\big\||v|^p-|w|^p\big\|_{L^2(B_1^c)}{\rm d}\tau{}\\ &\le& C\int_0^t\big\|(v-w)(|v|^{p-1}-|w|^{p-1})\big\|_{L^2(B_1^c)}{\rm d}\tau{}\\ &\le &C\int_0^t\|v-w\|_{L^{\frac{2n}{n-2}}(B_1^c)}\left(\|v\|_{L^{n(p-1)}(B_1^c)}^{p-1}+\|w\|_{L^{n(p-1)}(B_1^c)}^{p-1}\right){\rm d}\tau{}\\ &\le &C\int_0^t\|v-w\|_{H^1(B_1^c)}\left(\|v\|_{H^{1}(B_1^c)}^{p-1}+\|w\|_{H^{1}(B_1^c)}^{p-1}\right){\rm d}\tau{}\\ &\le &C(1+T)2(2C_1E)^{p-1}\|v-w\|_{E_T}, \end{eqnarray} $

这里用到了Sobolev嵌入定理

其中$ \frac1q\ge \frac12-\frac1n $.

对于$ n = 2 $, 同理可得

$ \begin{eqnarray} \|\partial\Gamma(v-w)\|_{L^2(B_1^c)}&\le& C\int_0^t\big\||v|^p-|w|^p\big\|_{L^2(B_1^c)}{\rm d}\tau{}\\ &\le& C\int_0^t\big\|(v-w)(|v|^{p-1}-|w|^{p-1})\big\|_{L^2(B_1^c)}{\rm d}\tau{}\\ &\le &C\int_0^t\|v-w\|_{L^4(B_1^c)}\left(\|v\|_{L^{4(p-1)}(B_1^c)}^{p-1}+\|w\|_{L^{4(p-1)}(B_1^c)}^{p-1}\right){\rm d}\tau{}\\ &\le &C\int_0^t\|v-w\|_{H^1(B_1^c)}\left(\|v\|_{H^{1}(B_1^c)}^{p-1}+\|w\|_{H^{1}(B_1^c)}^{p-1}\right){\rm d}\tau{}\\ &\le &C(1+T)2(2C_1E)^{p-1}\|v-w\|_{E_T}, \end{eqnarray} $

故当$ T $取得足够小使得

便有

$ \begin{eqnarray} \|\partial\Gamma(v-w)\|_{L^2(B_1^c)}&\le& C\int_0^t\big\||v|^p-|w|^p\big\|_{L^2(B_1^c)}{\rm d}\tau{}\\ &\le& C(1+T)2(2C_1E)^{p-1}\|v-w\|_{E_T}, \end{eqnarray} $

因此$ \Gamma $是一个压缩映射, 局部存在性得证.

引理 3.2[1, Theorem 2.1]    设$ w(x) $属于$ W^{m, p}(\Omega)\cap L^q(\Omega) $, $ p\in [1, +\infty] $, $ q\ge 1 $. 则对于$ k\in \{0, 1, \cdots, m\} $, 成立以下不等式

其中

$ p = 1 $$ p>1 $$ m-k-\frac np \notin {\Bbb N}\cup \{0\} $时, $ a\in [\frac km, 1] $, 当$ p>1 $$ m-k-\frac np \in {\Bbb N}\cup \{0\} $时, $ a\in [\frac km, 1) $.

4 定理2.1的证明

和文献[6]中一样, 引入两个截断函数

其中

不妨假设

对于$ R\in [R_0, T_{\varepsilon}) $, 令

构造试探函数

其中$ p' = \frac{p}{p-1} $. 在(1.1)式中的方程两边乘$ \Phi(t, x) $并在$ [0, T_{\varepsilon})\times B_1^c $上积分可得

$ \begin{eqnarray} && \varepsilon\left(\int_{B_1^c}(f(x)+g(x)){\rm d}x\right)+ \int_0^{T_{\varepsilon}}\int_{B_1^c}|u|^p\Phi(t, x){\rm d}x{\rm d}t{}\\ & = &\int_0^{T_{\varepsilon}}\int_{B_1^c}u\Phi_{tt}{\rm d}x{\rm d}t-\int_0^{T_{\varepsilon}}\int_{B_1^c}u\Phi_{t}{\rm d}x{\rm d}t-\int_0^{T_{\varepsilon}}\int_{B_1^c}u\Delta\Phi {\rm d}x{\rm d}t{}\\ &\triangleq&I+II+III. \end{eqnarray} $

这里用到了紧支集假设(1.2)以及当$ |x|\le \frac{\sqrt{2R}}{2} $$ R\ge R_0 = 8 $

这意味着

$ II $用Hölder不等式可得

$ \begin{eqnarray} II&\le&\frac CR\int_0^{T_{\varepsilon}}\int_{B_1^c}\left|u\eta_R^{2p'-1}(t)\partial_t\eta_R(t)\theta_R^{2p'}(x)\right|{\rm d}x{\rm d}t{}\\ &\le& \frac CR\bigg(\int_0^{T_{\varepsilon}}\int_{B_1^c}|u|^p\eta_{R}^{*2p'}(t)\theta_{R}^{2p'}(x){\rm d}x{\rm d}t\bigg)^{\frac1p}\times \bigg(\int_0^{R}\int_{B_1^c}\theta_R^{2p'}(x){\rm d}x{\rm d}t\bigg)^{\frac{1}{p'}}{}\\ &\le& CR^{\frac{n+2}{2p'}-1}\bigg(\int_0^{T_{\varepsilon}}\int_{B_1^c}|u|^p\eta_{R}^{*2p'}(t)\theta_{R}^{2p'}(x){\rm d}x{\rm d}t\bigg)^{\frac1p}. \end{eqnarray} $

同理对$ I $

$ \begin{equation} I \le CR^{\frac{n+2}{2p'}-2}\bigg(\int_0^{T_{\varepsilon}}\int_{B_1^c}|u|^p\eta_{R}^{*2p'}(t)\theta_{R}^{2p'}(x){\rm d}x{\rm d}t\bigg)^{\frac1p}. \end{equation} $

对于$ III $, 因为

$ \begin{eqnarray} \Delta\theta_R^{2p'}(x)& = &8p'(2p'-1)R^{-1}\theta_R^{2p'-2}(x)\left(\theta_R'(x)\right)^2\frac{|x|^2}{R}{}\\ &&+8p'R^{-1}\theta_R^{2p'-1}(x)\theta_R''(x)\frac{|x|^2}{R}+4p'R^{-1}\theta_R^{2p'-1}(x)\theta_R'(x){}\\ &\le&CR^{-1}\theta_R^{*2p'-2}(x), \end{eqnarray} $

故有

$ \begin{eqnarray} III& = &\int_0^{T_{\varepsilon}}\int_{B_1^c}u\eta_R^{2p'}(t)\Delta \theta_R^{2p'}(x){\rm d}x{\rm d}t{}\\ &\le&CR^{-1}\int_0^{T_{\varepsilon}}\int_{B_1^c}u\eta_R^{2p'}(t)\theta_{R}^{*2p'-2}{\rm d}x{\rm d}t{}\\ &\le& CR^{-1}\bigg(\int_0^{T_{\varepsilon}}\int_{B_1^c}|u|^p\eta_{R}^{2p'}(t)\theta_{R}^{*2p'}(x){\rm d}x{\rm d}t\bigg)^{\frac1p} \bigg(\int_0^{R}\int_{\frac{\sqrt{2R}}{2}\le|x|\le\sqrt R}\eta_R^{2p'}(t){\rm d}x{\rm d}t\bigg)^{\frac{1}{p'}}{}\\ &\le& CR^{\frac{n+2}{2p'}-1}\bigg(\int_0^{T_{\varepsilon}}\int_{B_1^c}|u|^p\eta_{R}^{2p'}(t) \theta_{R}^{*2p'}(x){\rm d}x{\rm d}t\bigg)^{\frac1p}. \end{eqnarray} $

从而由(4.1)–(4.3) 式和(4.5)式可得

$ \begin{eqnarray} &&C_1\varepsilon+ \int_0^{T_{\varepsilon}}\int_{B_1^c}|u|^p\eta_R^{2p'}(t)\theta_R^{2p'}(x){\rm d}x{\rm d}t{}\\ &\le& CR^{\frac{n+2}{2p'}-1}\Bigg[\bigg(\int_0^{T_{\varepsilon}}\int_{B_1^c}|u|^p\eta_{R}^{*2p'}(t) \theta_{R}^{2p'}(x){\rm d}x{\rm d}t\bigg)^{\frac1p}{}\\ &&+\bigg(\int_0^{T_{\varepsilon}}\int_{B_1^c}|u|^p\eta_{R}^{2p'}(t)\theta_{R}^{*2p'}(x){\rm d}x{\rm d}t\bigg)^{\frac1p}\Bigg]. \end{eqnarray} $

由上式易知

$ \begin{eqnarray} &&C_1\varepsilon+ \int_0^{T_{\varepsilon}}\int_{B_1^c}|u|^p\eta_R^{2p'}(t)\theta_R^{2p'}(x){\rm d}x{\rm d}t{}\\ &\le& CR^{\frac{n+2}{2p'}-1}\bigg(\int_0^{T_{\varepsilon}}\int_{B_1^c}|u|^p\eta_R^{2p'}(t)\theta_R^{2p'}(x){\rm d}x{\rm d}t\bigg)^{\frac1p}{}\\ &\le& CR^{\frac{n+2}{2}-\frac{p}{p-1}}+\frac12\int_0^{T_{\varepsilon}}\int_{B_1^c}|u|^p\eta_R^{2p'}(t)\theta_R^{2p'}(x){\rm d}x{\rm d}t, \end{eqnarray} $

由此可得

$ \begin{equation} C_1\varepsilon \le CR^{\frac{n+2}{2}-\frac{p}{p-1}}, \end{equation} $

从而可得当$ 1<p<1+\frac 2n $时生命跨度估计满足

$ \begin{equation} R\le C\varepsilon^{-\frac{1}{\frac{1}{p-1}-\frac n2}}. \end{equation} $

对于临界指标$ p = 1+\frac 2n $, 引入

对于$ Y_1(R) $

$ \begin{eqnarray} Y_1(R)& = &\int_0^{T_{\varepsilon}}\int_{B_1^c}|u|^p\bigg(\int_0^R\eta^{*2p'}(t/\sigma)\theta^{2p'}(|x|^2/\sigma)\sigma^{-1}{\rm d}\sigma\bigg){\rm d}x{\rm d}t{}\\ & = &\int_0^{T_{\varepsilon}}\int_{B_1^c}|u|^p\bigg(\int_{\frac tR}^\infty\eta^{*2p'}(s)\theta^{2p'}\big(\frac{|x|^2s}{t}\big)s^{-1}{\rm d}s\bigg){\rm d}x{\rm d}t{}\\ &\le& \log2\int_0^{T_{\varepsilon}}\int_{B_1^c}|u|^p\eta_R^{2p'}(t)\theta_R^{2p'}(x){\rm d}x{\rm d}t, \end{eqnarray} $

其中$ \eta(s) $$ \theta(s) $都是非增函数. 同理成立

$ \begin{eqnarray} Y_2(R)& = &\int_0^{T_{\varepsilon}}\int_{B_1^c}|u|^p\bigg(\int_0^R\eta^{2p'}(t/\sigma)\theta^{*2p'}(|x|^2/\sigma)\sigma^{-1}{\rm d}\sigma\bigg){\rm d}x{\rm d}t{}\\ & = &\int_0^{T_{\varepsilon}}\int_{B_1^c}|u|^p\bigg(\int_{\frac{|x|^2}{R}}^\infty\eta^{2p'}(s)\theta^{*2p'}\big(\frac{|x|^2s}{t}\big)s^{-1}{\rm d}s\bigg){\rm d}x{\rm d}t{}\\ &\le& \log2\int_0^{T_{\varepsilon}}\int_{B_1^c}|u|^p\eta_R^{2p'}(t)\theta_R^{2p'}(x){\rm d}x{\rm d}t. \end{eqnarray} $

因此, 由(4.6)式可知存在$ C_2, C_3 $使得

$ \begin{equation} \left(C_2\varepsilon+Y_1(R)+Y_2(R)\right)^p\le C_3R(Y_1'(R)+Y_2'(R)), \end{equation} $

若令$ \overline{Y}(R) = Y_1(R)+Y_2(R) $, 则上式即

$ \begin{equation} \left(C_2\varepsilon+\overline{Y}(R)\right)^p\le C_3R\overline{Y}'(R), \end{equation} $

从而得到当$ p = 1+\frac2n $时的生命跨度估计

定理2.1得证.

参考文献

Crispo F , Maremonti P .

An interpolation inequality in exterior domains

Rend Semi Mate Univ Padova, 2004, 112, 11- 39

URL     [本文引用: 1]

Fujita H .

On the blowing up of solutions of the Cauchy problem for utu+u1+α

Journal of the Faculty of Science University Tokyo Sect I, 1966, 13, 109- 124

[本文引用: 1]

耿金波, 杨珍珍, 赖宁安.

半无界区域上半线性薛定谔方程初边值问题解的破裂及其生命跨度的估计

数学物理学报, 2016, 36A (6): 1186- 1195

DOI:10.3969/j.issn.1003-3998.2016.06.016      [本文引用: 1]

Geng J B , Yang Z Z , Lai N A .

Blow-up and lifespan estimates for initial boundary value problems for semilinear Schrödinger equations on half-line

Acta Math Sci, 2016, 36A (6): 1186- 1195

DOI:10.3969/j.issn.1003-3998.2016.06.016      [本文引用: 1]

黄守军, 孟希望.

常微分不等式及其在半线性波动方程的应用

数学物理学报, 2020, 40A (5): 1319- 1332

DOI:10.3969/j.issn.1003-3998.2020.05.018      [本文引用: 1]

Huang S J , Meng X W .

Improved ordinary differential inequality and its application to semilinear wave equations

Acta Math Sci, 2020, 40A (5): 1319- 1332

DOI:10.3969/j.issn.1003-3998.2020.05.018      [本文引用: 1]

Ikeda M , Ogawa T .

Lifespan of solutions to the damped wave equation with a critical nonlinearity

Journal of Differential Equations, 2016, 261 (3): 1880- 1903

DOI:10.1016/j.jde.2016.04.016      [本文引用: 1]

Ikeda M , Sobajima M .

Remark on upper bound for lifespan of solutions to semilinear evolution equations in a two-dimensional exterior domain

Journal of Mathematical Analysis and Applications, 2019, 470, 318- 326

DOI:10.1016/j.jmaa.2018.10.004      [本文引用: 5]

Ikehata R .

Global existence of solutions for semilinear damped wave equation in 2-D exterior domain

Journal of Differential Equations, 2004, 200, 53- 68

DOI:10.1016/j.jde.2003.08.009     

Ikehata R .

Two dimensional exterior mixed problem for semilinear damped wave equations

Journal of Mathematical Analysis and Applications, 2005, 301, 366- 377

DOI:10.1016/j.jmaa.2004.07.028      [本文引用: 1]

Lai N A , Takamura H , Wakasa K .

Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent

Journal of Differential Equations, 2017, 263, 5377- 5394

DOI:10.1016/j.jde.2017.06.017      [本文引用: 1]

Lai N A , Yin S L .

Finite time blow-up for a kind of initial-boundary value problem of semilinear damped wave equation

Mathematical Methods in the Applied Sciences, 2017, 40 (4): 1223- 1230

DOI:10.1002/mma.4046      [本文引用: 1]

Lai N A , Zhou Y .

The sharp lifespan estimate for semilinear damped wave equation with Fujita critical power in higher dimensions

Journal De Mathematiques Pures Et Appliquees, 2018, 123, 229- 243

[本文引用: 1]

Li T , Zhou Y .

Breakdown of solutions to $□u+u_t=|u|.{1+α}$

Discrete Contin Dyn Syst, 1995, 1 (4): 503- 520

DOI:10.3934/dcds.1995.1.503     

Li Y C .

Classical solutions for fully nonlinear wave equations with dissipation

Chinese Annals of Mathematics Series A, 1996, 17 (4): 451- 466

URL     [本文引用: 1]

林银河, 蒋红标, 尹思露.

高维半线性耗散波动方程外问题解的整体存在性

中国科学: 数学, 2018, 48 (4): 507- 518

URL     [本文引用: 1]

Lin Y H , Jiang H B , Yin S L .

Global existence for damped semilinear wave equations outside obstacles in high dimensions(in Chinese)

Scientia Sinica Mathematica, 2018, 48 (4): 507- 518

URL     [本文引用: 1]

Nishihara K .

Lp-Lq estimates of solutions to the damped wave equation in 3-dimensional space and their application

Mathematische Zeitschrift, 2003, 244 (3): 631- 649

DOI:10.1007/s00209-003-0516-0      [本文引用: 1]

Nishihara K , Zhao H J .

Existence and nonexistence of time-global solutions to damped wave equation on half-line

Nonlinear Analysis: Theory Methods Applications, 2005, 61 (6): 931- 960

DOI:10.1016/j.na.2005.01.025      [本文引用: 3]

Ogawa T , Takeda H .

Non-existence of weak solutions to nonlinear damped wave equations in exterior domains

Nonlinear Analysis: Theory Methods Applications, 2009, 70 (10): 3696- 3701

DOI:10.1016/j.na.2008.07.025      [本文引用: 2]

Todorova G , Yordanov B .

Critical exponent for a nonlinear wave equation with damping

Journal of Differential Equations, 2001, 174 (2): 464- 489

DOI:10.1006/jdeq.2000.3933      [本文引用: 1]

/