强Wolfe线搜索下的修正PRP和HS共轭梯度法
Improved PRP and HS Conjugate Gradient Methods with the Strong Wolfe Line Search
收稿日期: 2020-04-11
基金资助: |
|
Received: 2020-04-11
Fund supported: |
|
作者简介 About authors
马国栋,E-mail:
The conjugate gradient method is one of the most effective methods for solving large-scale unconstrained optimization. Combining the second inequality of the strong Wolfe line search, two new conjugate parameters are constructed. Under usual assumptions, it is proved that the improved PRP and HS conjugate gradient methods satisfy sufficient descent condition with the greater range of parameter in the strong Wolfe line search and converge globally for unconstrained optimization. Finally, two group numerical experiments for the proposed methods and their comparisons are tested, the numerical results and their corresponding performance files are reported, which show that the proposed methods are promising.
Keywords:
本文引用格式
马国栋.
Ma Guodong.
1 引言
共轭梯度法是求解大规模光滑无约束优化问题
其中
或由强Wolfe线搜索获得
其中参数
该方法在强Wolfe搜索条件下(
显然,
显然,
2 算法描述
基于公式(1.9)和(1.10), 建立该文算法框架如下.
初始化. 任取初始点
步骤1 若
步骤2 由强Wolfe线搜索准则产生步长
步骤3 令
步骤4 令
为便于分析, 记IPRP方法和IHS方法分别为由参数公式
3 IPRP方法的性质及其全局收敛性
为获得算法的收敛性, 首先给出算法所需的两个常规假设条件.
(H1) 函数
(H2) 函数
下面引理所给出的是著名Zoutendijk条件[15], 其在共轭梯度法全局收敛性分析中起着非常重要的作用.
引理3.1 设假设(H1)和(H2)成立, 考虑一般迭代方法(1.1)–(1.2), 若搜索方向
对于无约束优化问题, 若存在常数
称搜索方向
接下来, 将分析IPRP算法的全局收敛性. 为此, 首先证明IPRP算法所产生的搜索方向在强Wolfe线搜索准则下均为充分下降的.
引理3.2 设假设(H2)成立, 且方向
证 当
利用(1.2)和(1.9)式, 立得
考虑到强Wolfe线搜索(1.4)的第二个不等式和归纳假设, 有
将(3.5)式代入(3.4)式, 可得
进而, 对(3.6)式利用
因此, 关系式(3.2)对所有的
由引理3.2可知, 当
引理3.3 设假设(H1)和(H2)成立, 对任意的
证 结合强Wolfe线搜索, (1.9)和(3.3)式, 再利用
令
证毕.
基于引理3.1, 3.2和3.3, 可建立IPRP方法的全局收敛性定理.
定理3.1 设假设(H1)和(H2)成立, 迭代点列
4 IHS方法的性质及其全局收敛性
下面将分析IHS方法的搜索方向在强Wolfe线搜索下满足充分下降条件(3.1).
引理4.1 设假设(H2)成立, 且搜索方向
进而, 关系式
证 利用数学归纳法证明. 当
假设对
此外, 由归纳假设易知
进一步, 利用(3.3)和(4.2)式, 可得
将(4.3)式的两边同除以
最后, 可建立IHS方法的全局收敛性定理.
定理4.1 设假设(H1)和(H2)成立, 迭代点列
证 由反证法. 若定理不成立, 注意到
将(4.4)式的两端同除以
注意到
这意味着
这与引理3.1的Zoutendijk条件矛盾. 证毕.
5 数值试验
为检验该文所提出的IPRP和IHS方法的实际数值效果, 两种方法的数值试验都测试了64个问题, 所有算例均取自于无约束优化测试问题集[16-17], 测试算例的规模从2到50000不等. 为便于比对数值效果, 将进行两组算法的数值试验, 即: 第一组为该文算法IPRP、算法FR[2]、算法WYL[6]、算法VPRP[9]和算法IFR[13]; 第二组为该文算法IHS、算法DY[5]、算法YWH[8]、算法VHS[9]和算法IDY[13]. 测试的环境为MATLAB R2017b, Windows 10操作系统, 计算机硬件为Inter(R) Core(TM) i5-8250U CPU 1.80 GHz和8 GB RAM. 所有测试都采用强Wolfe线搜索准则(1.4)获得步长, 参数选取为
在试验中, 分别对所测试算法的迭代次数(Itr), 目标函数函数值计算次数(NF), 梯度计算次数(NG), 计算时间(Tcpu) (单位为秒)4个重要指标进行观测和比较, 并列出算法终止时目标函数梯度的2-范数(
表 1 第一组方法数值试验报告
序号 | 算例 | IPRP | VPRP | WYL | IFR | FR |
算例名/维数 | Itr/NF/NG/Tcpu/||gk|| | Itr/NF/NG/Tcpu/||gk|| | Itr/NF/NG/Tcpu/||gk|| | Itr/NF/NG/Tcpu/||gk|| | Itr/NF/NG/Tcpu/||gk|| | |
1 | bdexp 10 | 3/1/3/0.005/2.27e-48 | 3/1/3/0.001/6.25e-49 | 3/1/3/0.000/6.25e-49 | 3/1/3/0.000/1.06e-48 | F/F/F/F/F |
2 | bdexp 100 | 3/2/3/0.000/1.33e-82 | 3/2/3/0.000/1.24e-82 | 3/2/3/0.000/1.24e-82 | 3/2/3/0.000/1.23e-82 | 4/4/4/0.001/8.22e-10 |
3 | bdexp 1000 | 3/2/3/0.001/4.45e-107 | 3/2/3/0.001/4.45e-107 | 3/2/3/0.002/4.45e-107 | 3/2/3/0.001/4.41e-107 | 3/2/3/0.001/3.25e-65 |
4 | bdexp 10000 | 3/2/3/0.009/1.14e-109 | 3/2/3/0.009/1.14e-109 | 3/2/3/0.009/1.14e-109 | 3/2/3/0.009/1.13e-109 | 3/2/3/0.007/5.74e-104 |
5 | bdexp 20000 | 3/2/3/0.019/1.07e-109 | 3/2/3/0.019/1.07e-109 | 3/2/3/0.018/1.07e-109 | 3/2/3/0.019/1.07e-109 | 3/2/3/0.022/8.65e-107 |
6 | exdenschnb 6 | 18/333/142/0.027/5.87e-06 | 21/424/199/0.031/2.28e-06 | F/F/F/F/F | 92/2469/1261/0.120/7.46e-06 | F/F/F/F/F |
7 | exdenschnb 8 | 18/333/142/0.016/6.77e-06 | 21/424/198/0.020/2.63e-06 | F/F/F/F/F | 81/2181/1132/0.103/9.46e-06 | F/F/F/F/F |
8 | himmelbg 200 | 3/6/7/0.001/7.14e-29 | 3/6/7/0.001/7.12e-29 | 3/6/7/0.001/7.12e-29 | 3/6/7/0.001/7.13e-29 | 3/6/7/0.001/2.78e-27 |
9 | himmelbg 1000 | 3/6/7/0.002/1.60e-28 | 3/6/7/0.001/1.59e-28 | 3/6/7/0.001/1.59e-28 | 3/6/7/0.001/1.59e-28 | 3/6/7/0.001/6.23e-27 |
10 | himmelbg 2000 | 3/6/7/0.002/2.26e-28 | 3/6/7/0.002/2.25e-28 | 3/6/7/0.002/2.25e-28 | 3/6/7/0.002/2.26e-28 | 3/6/7/0.002/8.81e-27 |
11 | himmelbg 5000 | 3/6/7/0.006/3.57e-28 | 3/6/7/0.004/3.56e-28 | 3/6/7/0.004/3.56e-28 | 3/6/7/0.005/3.57e-28 | 3/6/7/0.003/1.39e-26 |
12 | genquartic 1000 | 26/527/272/0.051/8.90e-06 | 49/1193/591/0.087/1.72e-06 | F/F/F/F/F | 135/3820/1894/0.262/7.72e-06 | F/F/F/F/F |
13 | genquartic 2000 | 24/465/195/0.041/3.68e-07 | 40/829/402/0.071/3.32e-07 | F/F/F/F/F | 63/1527/759/0.152/4.42e-06 | 80/1963/985/0.166/8.99e-06 |
14 | genquartic 3000 | 28/533/256/0.074/9.56e-07 | 39/819/394/0.110/4.38e-06 | 130/3558/1746/0.438/2.90e-06 | 109/2817/1389/0.343/3.04e-06 | 60/14 36/699/0.198/1.29e-06 |
15 | biggsb1 5 | 47/1099/508/0.060/3.03e-06 | 51/1260/580/0.058/3.30e-06 | 83/2167/1067/0.096/9.24e-06 | 101/2486/1235/0.114/3.20e-06 | 116/3006/1485/0.151/1.63e-06 |
16 | biggsb1 10 | 72/1771/868/0.097/3.99e-06 | 110/3065/1354/0.176/6.47e-06 | 321/9146/4502/0.464/6.68e-06 | 165/4546/2275/0.249/7.11e-06 | 260/73 83/3699/0.394/7.49e-06 |
17 | sinqua d 3 | 211/6309/2454/0.327/5.45e-06 | 141/3934/1661/0.167/8.82e-07 | F/F/F/F/F | 209/5635/2820/0.292/1.67e-06 | F/F/F/F/F |
18 | fletcbv3 10 | 1/1/1/0.000/5.97e-06 | 1/1/1/0.000/5.97e-06 | 1/1/1/0.000/5.97e-06 | 1/1/1/0.000/5.97e-06 | 1/1/1/0.000/5.97e-06 |
19 | fletcbv3 20 | 123/2561/1320/0.158/5.54e-06 | 207/3854/1963/0.230/9.67e-06 | 144/3777/1938/0.208/9.27e-06 | 144/3549/1786/0.173/9.18e-06 | 235/6092/3110/0.287/8.70e-06 |
20 | nonscomp 50 | 69/1550/742/0.090/5.32e-06 | 350/10319/4581/0.511/8.98e-06 | 332/9490/4661/0.474/8.39e-06 | F/F/F/F/F | F/F/F/F/F |
21 | dixmaana 1500 | 15/159/64/0.217/9.53e-07 | 16/263/115/0.249/2.16e-06 | 56/1370/656/1.247/7.33e-06 | 54/1387/654/1.258/6.30e-06 | 63/1542/738/1.411/8.05e-06 |
22 | dixmaan b 1500 | 11/140/50/0.145/2.91e-06 | 11/140/50/0.120/2.90e-06 | 65/1613/757/1.566/6.91e-06 | 50/1278/623/1.139/5.80e-06 | F/F/F/F/F |
23 | dixmaanc 1500 | 60/1667/793/1.578/7.39e-06 | 21/430/199/0.406/3.25e-06 | F/F/F/F/F | 141/4104/2008/3.680/1.69e-06 | 49/1260/611/1.156/8.49e-06 |
24 | dixmaand 1500 | 63/1757/855/1.670/6.73e-06 | F/F/F/F/F | 59/1419/655/1.251/8.17e-06 | 75/1811/888/1.692/2.60e-06 | 54/1303/644/1.186/8.75e-06 |
25 | dixon3dq 20 | 521/14809/6503/0.737/4.61e-06 | 403/11099/5010/0.493/9.85e-06 | F/F/F/F/F | 411/11043/5496/0.490/8.31e-06 | F/F/F/F/F |
26 | dqdrtic 1000 | 89/2094/957/0.135/7.15e-06 | 123/3254/1469/0.195/7.20e-06 | 337/8603/4223/0.506/8.01e-06 | 145/3860/1933/0.236/7.33e-06 | F/F/F/F/F |
27 | dqdrtic 3000 | 115/2569/1149/0.318/2.11e-06 | 130/3633/1604/0.394/8.77e-06 | F/F/F/F/F | 267/7418/3623/0.882/4.49e-06 | 348/9565/4759/1.167/5.93e-06 |
28 | dqrtic 50 | 17/226/94/0.019/2.87e-06 | 23/340/152/0.025/9.97e-07 | 30/571/257/0.039/3.97e-06 | 37/718/334/0.047/3.17e-06 | 42/847/422/0.058/3.39e-06 |
29 | dqrtic 100 | 23/292/117/0.024/9.22e-07 | 37/740/350/0.059/4.05e-06 | 39/834/412/0.069/4.43e-06 | F/F/F/F/F | 56/1250/607/0.100/2.99e-06 |
30 | dqrtic 150 | 23/345/158/0.035/5.20e-06 | 27/473/221/0.047/7.25e-06 | 41/890/411/0.087/7.32e-06 | F/F/F/F/F | 55/1239/607/0.124/9.64e-06 |
31 | edensch 100 | 38/805/372/0.075/6.94e-06 | 37/747/358/0.066/4.94e-06 | F/F/F/F/F | F/F/F/F/F | F/F/F/F/F |
32 | edensch 200 | 39/837/402/0.099/7.72e-06 | 41/894/409/0.103/3.57e-06 | 586/17937/8632/2.164/6.27e-06 | 90/2221/1066/0.257/2.92e-06 | 203/5577/2766/0.698/6.38e-06 |
33 | edensch 1000 | 53/1251/618/0.559/8.40e-06 | 57/1412/678/0.604/6.60e-06 | 212/6028/2941/2.500/9.89e-06 | F/F/F/F/F | 121/3187/1554/1.336/9.97e-06 |
34 | fletchcr 10 | 92/2330/1063/0.122/4.66e-06 | 137/3824/1720/0.198/5.62e-06 | 181/4817/2375/0.239/9.63e-06 | 130/3342/1649/0.161/8.36e-06 | F/F/F/F/F |
35 | fletchcr 100 | 63/1570/739/0.072/4.99e-06 | 126/3389/1561/0.153/6.47e-06 | 200/5116/2552/0.272/2.95e-06 | 136/3723/1839/0.194/8.70e-06 | F/F/F/F/F |
36 | liarwhd 10 | 85/2053/931/0.126/4.38e-06 | 118/3128/1461/0.153/6.45e-06 | 67/1637/822/0.079/7.80e-06 | 143/3622/1726/0.174/1.86e-06 | F/F/F/F/F |
37 | liarwhd 10 | 85/2053/931/0.102/4.38e-06 | 118/3128/1461/0.152/6.45e-06 | 67/1637/822/0.079/7.80e-06 | 143/3622/1726/0.175/1.86e-06 | F/F/F/F/F |
38 | liarwhd 20 | 54/1201/548/0.059/2.51e-06 | 83/2005/946/0.096/3.67e-06 | F/F/F/F/F | 112/2678/1341/0.132/6.28e-06 | F/F/F/F/F |
39 | penalt y1 1000 | 14/243/93/0.755/2.34e-06 | 14/243/93/0.753/2.34e-06 | 20/440/186/1.402/8.67e-07 | 14/243/93/0.702/2.34e-06 | F/F/F/F/F |
40 | penalt y1 2000 | 10/129/39/1.282/5.53e-06 | 10/129/39/1.295/5.53e-06 | 19/421/183/4.409/1.67e-07 | 13/220/81/2.262/7.43e-07 | 14/233/82/2.331/1.04e-06 |
41 | power1 30 | 390/11133/4828/0.479/7.51e-06 | F/F/F/F/F | F/F/F/F/F | 554/14994/7484/0.661/7.38e-06 | F/F/F/F/F |
42 | power1 50 | 974/27796/12081/1.271/7.98e-06 | F/F/F/F/F | F/F/F/F/F | 844/22960/11507/1.063/7.28e-06 | F/F/F/F/F |
43 | quartc 20 | 17/218/97/0.015/1.93e-06 | 25/436/214/0.024/3.39e-06 | 32/624/296/0.034/5.70e-06 | 21/369/172/0.022/9.11e-06 | 21/348/170/0.023/5.01e-06 |
44 | quartc 100 | 23/292/117/0.034/9.22e-07 | 37/740/350/0.075/4.05e-06 | 39/834/412/0.068/4.43e-06 | F/F/F/F/F | 56/1250/607/0.099/2.99e-06 |
45 | tridia 5 | 90/2208/1021/0.131/7.47e-06 | 91/2347/1098/0.111/5.04e-06 | 233/6288/3116/0.288/9.52e-06 | 132/3694/1822/0.167/9.45e-06 | 178/4808 /2347/0.224/8.08e-06 |
46 | raydan2 1000 | 11/173/64/0.025/6.93e-06 | 11/173/59/0.015/6.97e-06 | 13/235/98/0.019/5.88e-06 | 11/173/64/0.015/6.93e-06 | F/F/F/F/F |
47 | raydan2 5000 | 15/270/119/0.068/8.63e-07 | 12/204/71/0.052/8.98e-06 | F/F/F/F/F | 13/235/81/0.071/7.52e-06 | F/F/F/F/F |
48 | raydan2 9000 | 13/235/89/0.119/3.57e-06 | 14/236/80/0.122/8.17e-07 | F/F/F/F/F | 12/204/73/0.105/9.68e-06 | F/F/F/F/F |
49 | diagonal 1 12 | 105/3134/1528/0.152/6.47e-06 | 105/3134/1528/0.138/6.46e-06 | 178/5045/2412/0.254/8.59e-06 | 123/3267/1606/0.175/2.63e-06 | 154/4290/2074/0.188/9.47e-06 |
50 | diagonal 2 20 | 110/3291/1615/0.167/7.74e-07 | 112/3352/1629/0.152/1.21e-06 | 177/4865/2381/0.234/8.10e-06 | 91/2436/1199/0.109/7.14e-06 | 158/4381/2169/0.195/6.73e-06 |
51 | diagonal2 100 | 86/2332/1156/0.125/9.74e-06 | 138/3993/1881/0.226/5.03e-06 | 258/7007/3440/0.367/5.18e-06 | 142/3889/1927/0.228/4.61e-06 | 314/8540/4265/0.457/3.56e-06 |
52 | diagonal 3 20 | 94/2642/1291/0.153/4.23e-06 | 92/2518/1239/0.173/6.97e-06 | 198/5426/2744/0.254/7.35e-06 | 136/3671/1808/0.169/8.58e-06 | 297/8635/4233/0.389/8.19e-06 |
53 | diagonal 3 40 | 78/1848/864/0.088/8.04e-06 | 70/1662/798/0.082/2.75e-06 | 330/9184/4561/0.436/8.35e-06 | F/F/F/F/F | 166/4212/2153/0.221/7.77e-06 |
54 | bv 1000 | 1/1/1/0.000/4.99e-06 | 1/1/1/0.000/4.99e-06 | 1/1/1/0.000/4.99e-06 | 1/1/1/0.000/4.99e-06 | 1/1/1/0.000/4.99e-06 |
55 | bv 10000 | 1/1/1/0.000/5.00e-08 | 1/1/1/0.000/5.00e-08 | 1/1/1/0.000/5.00e-08 | 1/1/1/0.000/5.00e-08 | 1/1/1/0.000/5.00e-08 |
56 | ie 50 | 12/193/77/0.255/6.88e-06 | 11/166/63/0.178/4.87e-06 | 42/1006/516/1.155/2.93e-06 | 30/598/294/0.676/7.83e-06 | 49/1249/599/1.258/9.32e-06 |
57 | ie 200 | 14/225/98/3.642/3.11e-06 | 11/166/64/2.631/9.62e-06 | 58/1475/739/24.086/9.66e-06 | 42/961/446/15.469/6.32e-06 | 37/834/424/13.787/4.12e-06 |
58 | gauss 3 | 8/142/65/0.018/3.85e-06 | 8/142/64/0.014/3.78e-06 | 35/912/446/0.082/2.70e-06 | 5/51/16/0.004/2.43e-06 | 27/699/363/0.055/3.86e-06 |
59 | kowosb 4 | 403/11443/5023/0.678/5.35e-06 | 501/13830/6067/0.789/6.93e-06 | F/F/F/F/F | 241/6791/3346/0.387/8.22e-06 | F/F/F/F/F |
60 | lin 500 | 2/2/2/0.021/9.93e-14 | 2/2/2/0.018/9.93e-14 | 2/2/2/0.020/9.93e-14 | 2/2/2/0.016/9.93e-14 | 2/2/2/0.016/9.93e-14 |
61 | rosex 50 | 454/13379/5609/0.780/9.65e-06 | 518/14946/6508/1.015/8.36e-06 | F/F/F/F/F | F/F/F/F/F | F/F/F/F/F |
62 | trid 20 | 101/2542/1164/0.206/4.07e-06 | 111/2785/1293/0.253/4.46e-06 | 717/20092/10002/1.691/9.73e-06 | 173/4652/2343/0.360/9.95e-06 | 449/12935/6383/1.034/9.91e-06 |
63 | vardim 5 | 10/137/43/0.011/5.41e-07 | 10/137/43/0.008/5.41e-07 | 13/228/96/0.013/9.27e-07 | 10/137/43/0.008/5.41e-07 | 14/228/88/0.017/5.31e-07 |
64 | watson 4 | 106/2780/1261/0.345/9.27e-06 | 190/5428/2430/0.585/9.92e-06 | F/F/F/F/F | 138/3688/1822/0.368/9.18e-06 | F/F/F/F/F |
表 2 第二组方法数值试验报告
序号 | 算例 | IHS | VHS | YWH | IDY | DY |
算例名/维数 | Itr/NF/NG/Tcpu/||gk|| | Itr/NF/NG/Tcpu/||gk|| | Itr/NF/NG/Tcpu/||gk|| | Itr/NF/NG/Tcpu/||gk|| | Itr/NF/NG/Tcpu/||gk|| | |
1 | bdexp 10 | 3/1/3/0.001/2.25e-48 | 3/1/3/0.001/5.63e-49 | 3/1/3/0.001/5.63e-49 | 3/1/3/0.001/9.95e-49 | 3/1/3/0.000/8.27e-54 |
2 | bdexp 100 | 3/2/3/0.001/1.33e-82 | 3/2/3/0.001/1.24e-82 | 3/2/3/0.001/1.24e-82 | 3/2/3/0.001/1.22e-82 | 3/2/3/0.001/2.02e-83 |
3 | bdexp 1000 | 3/2/3/0.002/4.45e-107 | 3/2/3/0.001/4.45e-107 | 3/2/3/0.001/4.45e-107 | 3/2/3/0.001/4.40e-107 | 3/2/3/0.001/3.49e-107 |
4 | bdexp 10000 | 3/2/3/0.012/1.14e-109 | 3/2/3/0.009/1.14e-109 | 3/2/3/0.006/1.14e-109 | 3/2/3/0.005/1.13e-109 | 3/2/3/0.005/1.11e-109 |
5 | bdexp 20000 | 3/2/3/0.015/1.07e-109 | 3/2/3/0.017/1.07e-109 | 3/2/3/0.019/1.07e-109 | 3/2/3/0.020/1.07e-109 | 3/2/3/0.018/1.06e-109 |
6 | exdenschnb 6 | 27/575/270/0.031/6.48e-07 | 46/1205/572/0.060/5.91e-06 | 85/2160/1080/0.102/9.61e-06 | F/F/F/F/F | 45/1082/500/0.049/2.80e-06 |
7 | exdenschnb 8 | 27/575/270/0.035/7.48e-07 | 46/1205/581/0.070/6.83e-06 | 82/2086/1040/0.099/9.94e-06 | F/F/F/F/F | 45/1082/521/0.050/3.23e-06 |
8 | himmelbg 200 | 3/6/7/0.001/7.14e-29 | 3/6/7/0.001/7.12e-29 | 3/6/7/0.001/7.12e-29 | 3/6/7/0.001/7.13e-29 | 3/6/7/0.001/6.93e-29 |
9 | himmelbg 1000 | 3/6/7/0.001/1.60e-28 | 3/6/7/0.001/1.59e-28 | 3/6/7/0.001/1.59e-28 | 3/6/7/0.001/1.59e-28 | 3/6/7/0.001/1.55e-28 |
10 | himmelbg 2000 | 3/6/7/0.001/2.26e-28 | 3/6/7/0.001/2.25e-28 | 3/6/7/0.001/2.25e-28 | 3/6/7/0.001/2.25e-28 | 3/6/7/0.001/2.19e-28 |
11 | himmelbg 5000 | 3/6/7/0.003/3.57e-28 | 3/6/7/0.003/3.56e-28 | 3/6/7/0.003/3.56e-28 | 3/6/7/0.004/3.57e-28 | 3/6/7/0.004/3.47e-28 |
12 | genquartic 200 | 21/337/151/0.021/2.29e-06 | 38/872/413/0.058/5.45e-06 | 92/2398/1194/0.124/6.62e-06 | 63/1571/737/0.087/3.97e-06 | 821/19378 /9592/1.049/9.80e-06 |
13 | genquartic 500 | 30/599/289/0.033/5.23e-06 | 36/712/351/0.047/4.93e-06 | 65/1501/760/0.112/1.08e-06 | 78/1989/962/0.114/9.02e-06 | 645/17776/8774/1.104/9.29e-06 |
14 | genquartic 1000 | 26/497/224/0.034/2.70e-06 | 32/582/258/0.038/4.41e-06 | 149/4040/1993/0.282/6.24e-06 | F/F/F/F/F | 918/25177/12373/1.652/9.83e-06 |
15 | biggsb1 10 | 92/2354/1072/0.137/8.90e-06 | 99/2590/1194/0.130/4.88e-06 | 93/2353/1157/0.118/6.10e-06 | F/F/F/F/F | 300/7576/3703/0.363/9.64e-06 |
16 | biggsb1 20 | 223/6267/2797/0.328/4.70e-06 | 231/6441/2952/0.310/9.38e-06 | 141/3413/1740/0.158/9.96e-06 | F/F/F/F/F | 585/15571/7647/0.817/6.94e-06 |
17 | fletcbv3 10 | 1/1/1/0.000/5.97e-06 | 1/1/1/0.000/5.97e-06 | 1/1/1/0.000/5.97e-06 | 1/1/1/0.000/5.97e-06 | 1/1/1/0.000/5.97e-06 |
18 | nonscomp 50 | 71/1796/850/0.118/6.23e-06 | 49/988/455/0.047/4.92e-06 | F/F/F/F/F | F/F/F/F/F | F/F/F/F/F |
19 | dixmaana 1500 | 15/177/73/0.187/8.55e-06 | 13/184/61/0.156/5.51e-06 | F/F/F/F/F | 18/267/110/0.237/2.08e-06 | 25/423/187/0.394/2.57e-06 |
20 | dixmaan b 1500 | 11/140/44/0.147/2.91e-06 | 11/140/53/0.128/2.90e-06 | 18/316/132/0.297/9.49e-06 | 10/117/35/0.097/7.97e-06 | 13/172/69/0.155/5.31e-07 |
21 | dixmaanc 1500 | 20/324/142/0.330/1.63e-06 | 24/400/169/0.369/4.89e-07 | F/F/F/F/F | 29/579/278/0.526/2.10e-06 | F/F/F/F/F |
22 | dixmaand 1500 | 20/303/137/0.316/9.11e-06 | 18/297/129/0.272/7.43e-06 | 59/1312/656/1.246/7.34e-06 | F/F/F/F/F | F/F/F/F/F |
23 | dixmaanf 1500 | 384/10668/4805/9.600/6.61e-06 | 328/8716/3884/7.877/6.86e-06 | 368/9331/4633/8.518/9.40e-06 | F/F/F/F/F | 569/13296/6208/12.037/9.45e-06 |
24 | dixmaang 1500 | 462/12937/5721/11.405/6.91e-06 | 349/9644/4160/8.895/9.67e-06 | 251/6303/3170/5.904/7.43e-06 | F/F/F/F/F | F/F/F/F/F |
25 | dixmaanh 1500 | 340/8992/4020/8.074/9.24e-06 | 443/12355/5798/11.331/6.07e-06 | 253/6592/3315/6.061/9.63e-06 | F/F/F/F/F | 545/12688/6055/11.547/9.72e-06 |
26 | dqdrtic 500 | 112/2969/1315/0.169/4.71e-06 | 808/24158/10585/1.257/6.11e-06 | 234/5935/2961/0.308/8.73e-06 | F/F/F/F/F | 332/7838/3899/0.402/8.00e-06 |
27 | dqdrtic 1000 | 448/12853/5663/0.829/6.15e-06 | 677/20184/8818/1.191/7.38e-06 | 195/5120/2524/0.303/6.75e-06 | F/F/F/F/F | 356/9315/4555/0.572/9.28e-06 |
28 | dqdrtic 5000 | 211/5452/2496/0.871/9.23e-06 | 786/23433/10290/3.794/7.65e-06 | 329/9479/4559/1.520/7.36e-06 | F/F/F/F/F | 355/9103/4407/1.442/9.96e-06 |
29 | edensch 200 | 40/923/459/0.120/3.76e-06 | 37/773/344/0.090/3.17e-06 | 99/2586/1330/0.303/2.67e-06 | F/F/F/F/F | F/F/F/F/F |
30 | edensch 500 | 48/1121/538/0.261/5.01e-06 | 48/1121/507/0.250/9.24e-06 | F/F/F/F/F | F/F/F/F/F | 646/14842/7011/3.463/9.95e-06 |
31 | fletchcr 20 | 96/2510/1184/0.133/3.12e-06 | 122/3213/1517/0.168/4.57e-06 | 100/2485/1271/0.143/5.84e-06 | F/F/F/F/F | 720/19851/9712/0.967/9.81e-06 |
32 | fletchcr 50 | 108/2811/1292/0.143/9.45e-06 | 111/2937/1382/0.131/8.33e-06 | 70/1702/811/0.104/1.88e-06 | F/F/F/F/F | 353/9180/4634/0.447/8.43e-06 |
33 | genrose 40000 | 394/11155/4844/14.998/1.15e-06 | 484/13780/6083/18.593/9.07e-06 | 617/16168/8104/22.158/6.56e-06 | F/F/F/F/F | F/F/F/F/F |
34 | genrose 50000 | 239/6311/2783/10.298/6.13e-06 | 307/8594/3772/13.857/3.30e-06 | 726/18954/9375/33.155/4.74e-06 | F/F/F/F/F | F/F/F/F/F |
35 | liarwhd 10 | 75/1884/846/0.104/7.13e-06 | 92/2380/1068/0.121/9.74e-06 | 81/1932/948/0.098/1.58e-06 | F/F/F/F/F | 169/4333/2143/0.236/7.07e-06 |
36 | liarwhd 20 | 91/2350/1048/0.123/1.68e-06 | 147/3927/1783/0.204/4.36e-06 | 71/1791/870/0.101/1.15e-06 | F/F/F/F/F | 158/3925/1941/0.244/2.74e-06 |
37 | penalt y1 1000 | 14/243/93/0.791/2.34e-06 | 14/243/93/0.758/2.34e-06 | 19/406/179/1.333/9.37e-07 | 19/406/177/1.367/9.37e-07 | 14/243/93/0.750/2.34e-06 |
38 | penalt y1 2000 | 10/129/39/1.354/5.53e-06 | 10/129/39/1.301/5.53e-06 | 18/385/157/4.370/3.61e-08 | 18/385/157/4.268/3.61e-08 | 10/129/39/1.302/5.53e-06 |
39 | penalt y1 5000 | 11/152/50/11.744/3.01e-06 | 11/152/50/11.720/3.01e-06 | 10/156/50/12.004/4.03e-06 | 10/156/50/11.701/4.03e-06 | 11/152/51/11.610/3.01e-06 |
40 | quartc 20 | 12/131/50/0.012/1.48e-06 | 15/193/77/0.013/6.78e-07 | 25/465/214/0.027/7.65e-06 | 27/554/243/0.031/4.83e-06 | 42/907/438/0.049/8.77e-06 |
41 | quartc 100 | 21/268/112/0.034/2.55e-06 | 22/298/107/0.042/5.43e-06 | F/F/F/F/F | 40/835/412/0.077/7.91e-06 | F/F/F/F/F |
42 | tridia 10 | 93/2351/1061/0.138/6.02e-06 | 160/4450/1973/0.215/5.81e-06 | 143/3824/1885/0.193/6.63e-06 | F/F/F/F/F | 509/13202/6489/0.659/6.52e-06 |
43 | tridia 30 | 243/6517/2942/0.339/7.01e-06 | 244/6428/2942/0.362/8.75e-06 | 229/6007/2989/0.310/9.35e-06 | F/F/F/F/F | F/F/F/F/F |
44 | raydan 1 50 | 54/1229/560/0.067/4.85e-06 | 65/1361/679/0.071/1.69e-06 | 91/2358/1158/0.114/5.16e-06 | F/F/F/F/F | 685/15740/7582/0.776/9.90e-06 |
45 | raydan 1 80 | 69/1547/712/0.072/8.33e-06 | 98/2546/1222/0.123/8.71e-06 | 107/2819/1366/0.139/2.74e-06 | F/F/F/F/F | 602/13450/6380/0.789/9.59e-06 |
46 | raydan2 1000 | 11/173/64/0.018/6.93e-06 | 11/173/66/0.014/6.95e-06 | 11/173/65/0.014/6.93e-06 | 11/173/65/0.014/6.95e-06 | 11/173/65/0.027/6.95e-06 |
47 | raydan2 4000 | 12/204/79/0.055/9.01e-06 | 13/235/109/0.062/4.97e-06 | 15/268/96/0.063/4.95e-07 | 16/301/98/0.067/1.75e-06 | 15/271/92/0.079/7.57e-07 |
48 | raydan2 10000 | 13/208/79/0.135/6.37e-09 | 14/236/90/0.139/2.02e-06 | 14/238/92/0.155/5.95e-07 | 15/272/115/0.157/1.62e-06 | 12/204/72/0.126/8.83e-06 |
49 | diagonal 1 50 | 156/4632/2239/0.252/5.98e-06 | 168/5006/2447/0.314/9.21e-06 | 106/2632/1279/0.134/5.76e-06 | F/F/F/F/F | F/F/F/F/F |
50 | diagonal2 200 | 168/4488/2112/0.294/6.79e-06 | 232/6717/3155/0.423/5.53e-06 | 156/3915/1904/0.264/3.42e-06 | F/F/F/F/F | 901/23693/11745/1.642/9.54e-06 |
51 | diagonal2 800 | 468/13834/6665/1.469/9.51e-06 | 460/13514/6589/1.395/4.10e-06 | 297/8009/3930/0.846/7.15e-06 | F/F/F/F/F | F/F/F/F/F |
52 | diagonal 3 5 | 82/2438/1160/0.146/4.57e-06 | 82/2438/1151/0.130/4.58e-06 | 90/2387/1194/0.115/7.49e-06 | 74/1924/927/0.106/6.19e-06 | 322/8250 /4083/0.460/9.78e-06 |
53 | diagonal 3 20 | 107/3017/1401/0.150/8.29e-06 | 117/3398/1613/0.174/7.60e-06 | 91/2344/1142/0.131/8.12e-06 | F/F/F/F/F | 542/13718/6653/0.701/9.80e-06 |
54 | bv 1000 | 1/1/1/0.000/4.99e-06 | 1/1/1/0.000/4.99e-06 | 1/1/1/0.000/4.99e-06 | 1/1/1/0.000/4.99e-06 | 1/1/1/0.000/4.99e-06 |
55 | bv 10000 | 1/1/1/0.000/5.00e-08 | 1/1/1/0.000/5.00e-08 | 1/1/1/0.000/5.00e-08 | 1/1/1/0.000/5.00e-08 | 1/1/1/0.000/5.00e-08 |
56 | ie 100 | 12/193/85/0.894/9.38e-06 | 11/166/75/0.729/2.85e-06 | 70/1873/917/8.274/4.81e-06 | F/F/F/F/F | 71/1838/904/7.827/9.92e-06 |
57 | ie 200 | 14/225/89/3.598/2.89e-06 | 11/166/67/2.651/4.02e-06 | 102/2876/1443/48.512/3.88e-06 | 15/207/104/3.495/2.82e-06 | 62/1551/711/25.058/5.32e-06 |
58 | singx 10 | 174/4588/2004/0.307/2.52e-06 | 618/18316/7284/1.186/8.99e-06 | 334/8361/4166/0.620/7.59e-06 | F/F/F/F/F | 731/19522/9716/1.219/9.55e-06 |
59 | singx 150 | 175/4802/2117/0.758/6.53e-06 | 720/21252/8241/3.513/9.69e-06 | 601/15530/7775/2.721/3.25e-06 | F/F/F/F/F | 228/5911/2866/1.009/4.27e-06 |
60 | beale 2 | 134/3736/1642/0.201/7.28e-06 | 203/5839/2717/0.305/3.43e-06 | F/F/F/F/F | F/F/F/F/F | F/F/F/F/F |
61 | froth 2 | 933/26993/11996/1.634/9.76e-06 | F/F/F/F/F | F/F/F/F/F | F/F/F/F/F | 210/6330/3026/0.396/9.06e-06 |
62 | lin 100 | 2/2/2/0.007/3.13e-14 | 2/2/2/0.004/3.13e-14 | 2/2/2/0.003/3.13e-14 | 2/2/2/0.002/3.13e-14 | 2/2/2/0.002/3.13e-14 |
63 | lin 500 | 2/2/2/0.027/9.93e-14 | 2/2/2/0.019/9.93e-14 | 2/2/2/0.019/9.93e-14 | 2/2/2/0.016/9.93e-14 | 2/2/2/0.024/9.93e-14 |
64 | trid 120 | 963/28247/12176/6.211/6.81e-06 | F/F/F/F/F | 461/11845/5899/2.515/6.45e-06 | F/F/F/F/F | F/F/F/F/F |
图 1
图 2
图 3
图 4
图 5
图 6
图 7
图 8
参考文献
Method of conjugate gradient for solving linear system
,DOI:10.6028/jres.049.044 [本文引用: 1]
Function minimization by conjugate gradients
,DOI:10.1093/comjnl/7.2.149 [本文引用: 2]
Note sur la convergence de méthodes de directions conjugées
,
The conjugate gradient method in extreme problems
,DOI:10.1016/0041-5553(69)90035-4 [本文引用: 1]
A nonlinear conjugate gradient method with a strong global convergence property
,DOI:10.1137/S1052623497318992 [本文引用: 2]
The convergence properties of some new conjugate gradient methods
,
The proof of the sufficient descent condition of the Wei-Yao-Liu conjugate gradient method under the strong Wolfe-Powell line search
,
A note about WYL's conjugate gradient method and its applications
,
An imporoved Wei-Yao-Liu nonlinear conjugate gradient method for optimization computation
,
A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search
,
一类修正的非单调谱共轭梯度法及其在非负矩阵分解中的应用
,DOI:10.3969/j.issn.1003-3998.2018.05.012
A class of modified non-monotonic spectral conjugate gradient method and applications to non-negative matrix factorization
DOI:10.3969/j.issn.1003-3998.2018.05.012
具有充分下降性的两个共轭梯度法
,
Two conjugate gradient methods with sufficient descent property
Improved Fletcher-Reeves and Dai-Yuan conjugate gradient methods with the strong Wolfe line search
,
Global covergence properties of conjugate gradient method for optimization
,
Testing unconstrained optimization software
,DOI:10.1145/355934.355936 [本文引用: 1]
CUTE: constrained and unconstrained testing environments
,DOI:10.1145/200979.201043 [本文引用: 1]
Benchmarking optimization software with performance profiles
,DOI:10.1007/s101070100263 [本文引用: 1]
/
〈 | 〉 |