Hénon型椭圆系统多个非径向对称解的存在性
Existence of Multiple Non-Radial Positive Solutions of a Hénon Type Elliptic System
通讯作者:
收稿日期: 2020-05-19
基金资助: |
|
Received: 2020-05-19
Fund supported: |
|
In this paper, we study the following elliptic system
Keywords:
本文引用格式
贾小尧, 娄振洛.
Jia Xiaoyao, Lou Zhenluo.
1 引言
椭圆偏微分方程是偏微分方程研究的一个重要方向, 解的存在性、多解性以及对称性等是偏微分方程研究的基本问题.该文研究如下椭圆系统
这里
许多数学家研究了方程
这里
我们指出关于椭圆系统超临界问题非径向对称解这方面的工作并不多, 文献[15]研究了一类特殊椭圆系统的非径向对称解, 本文参考上述工作得到如下结果:
定理 1.1 令
2 准备知识和相关引理
首先定义工作空间
其中
以及下面Rayleigh商
为方便定义如下集合
这里
引理2.1[10] 令
此处
注 2.1 因为
引理 2.2[10] 假设
由上面的引理可知如果
3 定理1.1的证明
本节分两步来证明定理1.1, 首先得到如下结论:
引理 3.1 存在一个仅依赖于
证 直接计算可得
与
其中
以及
利用H
再结合Rellich嵌入不等式, 可得
与
为方便记
则我们可以得到
结合Young不等式, 则可得
利用(3.2)–(3.4)式, 得到
其中
利用文献[10]中Li的想法, 我们得到如下结论.
引理 3.2 存在常数
其中
证 选取一个非负函数
和
另一方面直接计算可得
以及
我们还有
综上可得
引理证毕.
下面给出定理1.1的证明.
证 利用引理2.1, 可以证明
注 3.1 旋转等价指的是如果
参考文献
On system of elliptic equations involving subcritical or critical Sobolev exponents
,DOI:10.1016/S0362-546X(99)00121-2 [本文引用: 1]
Symmetry and symmetry breaking for ground state solutions of some strongly coupled systems
,DOI:10.1016/j.jfa.2012.10.002 [本文引用: 1]
Radial and non-radial solutions for Hardy-Hénon type elliptic systems
,
A nonlinear boundary value problem with many positive solutions
,DOI:10.1016/0022-0396(84)90153-0
Supercritical elliptic problems on a perturbation of the ball
,
The limit equation for the Gross-Pitaevskii equations and S Terracini's conjecture
,
A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system
,DOI:10.1016/j.anihpc.2010.01.009
Symmetry and related properties via the maximum principle
,DOI:10.1007/BF01221125 [本文引用: 1]
Symmetry of positive solutions of nonlinear elliptic equations in
Existence of many positive polutions of semilinear elliptic equations on annulus
,DOI:10.1016/0022-0396(90)90062-T [本文引用: 5]
含Caffarelli-Kohn-Nirenberg不等式和非线性边界条件的拟线性椭圆型方程组的多解性
,DOI:10.3969/j.issn.1003-3998.2020.06.017
Multiple positive solutions for a quasilinear elliptic system involving the Caffarelli-Kohn-Nirenberg inequality and nonlinear boundary conditions
DOI:10.3969/j.issn.1003-3998.2020.06.017
带有凸非线性项分数阶Laplace方程的解的对称性
,DOI:10.3969/j.issn.1003-3998.2020.05.010
A symmetry result for solutions of the fractional Laplacian with convex nonlinearites
DOI:10.3969/j.issn.1003-3998.2020.05.010
A perturbation result for system of Schrödinger equations of Bose-Einstein condensates in
Existence of many positive nonradial solutions for nonlinear elliptic equations on an annulus
,
Existence of non-radial solutions of an elliptic system
,DOI:10.1016/j.aml.2016.12.020 [本文引用: 2]
A nonlinear Dirichlet problem on the unit ball and its applications
,DOI:10.1512/iumj.1982.31.31056 [本文引用: 1]
Segregated and synchronized vector solutions for nonlinear Schrödinger systems
,
Non-radial ground states for the Hénon equation
,DOI:10.1142/S0219199702000725 [本文引用: 2]
Multipulse phases in k-mixtures of Bose-Einstein condensates
,
Existence and symmetry results for competing variational systems
,DOI:10.1007/s00030-012-0176-z [本文引用: 1]
Symmetry properties in systems of semilinear elliptic equations
,DOI:10.1016/0022-0396(81)90113-3
Partial symmetry of vector solutions for elliptic systems
,
Some new results in competing systems with many species
,DOI:10.1016/j.anihpc.2009.11.004
Radial solutions and phase separation in a system of two coupled Schrödinger equations
,
/
〈 | 〉 |