数学物理学报, 2021, 41(3): 642-651 doi:

论文

一维可压缩Navier-Stokes方程初值问题强解的整体存在性

郭尚喜,

Existence of Global Strong Solutions for Initial Value Problems of One-Dimensional Compressible Navier-Stokes Equations

Guo Shangxi,

收稿日期: 2019-05-24  

Received: 2019-05-24  

作者简介 About authors

郭尚喜,E-mail:guowei11012001@163.com , E-mail:guowei11012001@163.com

Abstract

To consider the initial problem for one-dimensional compressible isentropic Navier-Stokes equations with density-dependent viscosity. By using the energy estimates, the lower and upper bounds for the density is derived, that is, nether vacuum states nor concentration states can occur. Finally, the approximate solution is constructed by transforming the viscous coefficient, the existence of global strong solution is obtained by using the local existence conclusion of the strong solution and combining a prior estimates of the density function and the velocity function.

Keywords: Navier-Stokes equation ; Compressible ; Global strong solution ; Density-dependent viscosity

PDF (293KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

郭尚喜. 一维可压缩Navier-Stokes方程初值问题强解的整体存在性. 数学物理学报[J], 2021, 41(3): 642-651 doi:

Guo Shangxi. Existence of Global Strong Solutions for Initial Value Problems of One-Dimensional Compressible Navier-Stokes Equations. Acta Mathematica Scientia[J], 2021, 41(3): 642-651 doi:

1 引言

考虑粘性依赖于密度的一维等熵可压缩Navier-Stokes方程的初值问题, 在Lagrange坐标系下方程的形式如下

$ \begin{eqnarray} \left\{\begin{array}{ll} \rho_{t}+\rho^{2}u_{x} = 0, (x, t)\in{{\Bbb R}} \times{\Bbb R_{+}}, \\ u_{t}+p(\rho)_{x} = (\rho\mu(\rho)u_{x})_{x}, \end{array}\right. \end{eqnarray} $

其中$ \rho(x, t)\geq0, u(x, t) $分别表示流体的密度和速度, $ p(\rho) $$ \mu(\rho) $分别为压强和粘性系数. 对于等熵流体$ p(\rho) = A\rho^{\gamma}, A>0, \gamma>1 $. 假设粘性系数为

$ \begin{eqnarray} \mu(\rho) = B\rho^{\alpha}, \alpha\in(0, 1]. \end{eqnarray} $

不失一般性, 假设$ A = B = 1 $. 本文考虑方程$ (1.1) $的强解的整体存在性, 假设初始值在无穷远处有不同的极限

$ \begin{eqnarray} (\rho, u)(x, 0) = (\rho_{0}(x), u_{0}(x))\rightarrow (\rho^{\pm}, u^{\pm}), \; \; |x|\rightarrow \infty, \end{eqnarray} $

其中$ \rho^{\pm}>0 $$ u^{\pm} $是4个常数, $ u^{+}{\geq}u^{-} $.$ \overline{\rho}(x)>0 $$ \overline{u}(x) $是定义在$ {{\Bbb R}} $上的两个光滑单调函数,

使得$ \overline{\rho}(x)>0, 0\leq\overline{u}(x)_{x}<\infty $. 假设初值满足

$ \begin{eqnarray} \left\{\begin{array}{ll} \rho_{0}-\overline{\rho}\in{H^{1}({{\Bbb R}} ), u_{0}-\overline{u}\in H^{1}({{\Bbb R}} )}, \\ 0<c_{0}\leq\rho_{0}(x)\leq{c^{0}}<+\infty, (\rho_{0})_{x}\in{L^{\infty}({{\Bbb R}} )}, \end{array}\right. \end{eqnarray} $

其中$ c_{0}, c^{0} $为常数.

近些年来, 关于等熵可压缩Navier-Stokes方程的解的研究受到学者们广泛关注. 文献[1-2]研究了方程(1.1)中粘性系数$ \mu $为常数时的情形. 文献[3-4]考虑了等熵粘性流体的物理特性, 这时会出现粘性系数与密度函数$ \rho $的次幂成比例的情形, 如: $ \mu(\rho) = \rho^{\alpha}, \alpha>0 $.文献[5-12]研究了流体连续连接真空或不连续连接真空时不同范围的$ \alpha $的自由边界问题. 在关于方程(1.1)的自由边界问题中, 自由边界条件对于密度函数的下界的推导起到关键作用. 但是, 在关于方程(1.1)的初边值问题或Cauchy问题中情况是不同的. 文献[13]研究了初边值问题弱解的整体存在性和真空区域的动力学性质, 其中$ \alpha>\frac12 $. 文献[14]研究了Cauchy问题的整体强解的存在唯一性, 其中粘性系数$ \mu $满足: 存在常数$ \nu>0, C>0 $, 使得当$ \rho\geq1 $$ \mu(\rho)\geq\nu $; 当$ \rho\leq1 $$ \mu(\rho)\geq\nu\rho^{\alpha}, \alpha\in[0, \frac12) $; 任意的$ \rho\geq0 $都有$ \mu(\rho)\leq{C}(1+p(\rho)) $. 后来, 文献[15]拓展了$ \alpha $的范围, 得到$ \mu(\rho) = \rho^{\alpha}, \alpha\in(0, 1) $时方程(1.1)的Cauchy问题强解的整体存在性. 那么, 在保证强解的整体存在性的前提下, 对于粘性系数$ \mu(\rho) = \rho^{\alpha} $中指数$ \alpha $的范围的极大值的研究是有意义的.

本文的主要目的是证明$ \mu(\rho) = \rho^{\alpha}, \alpha\in(0, 1] $时方程(1.1)的强解的整体存在性. 为此, 需要证明密度函数$ \rho $是有正上、下界的, 然后, 利用文献[16]中关于解的局部存在性结论可知在任意时间$ t>0 $都不会出现真空区域或聚集区域, 从而也就证明了解的整体存在性. 本文的主要困难在于对密度函数$ \rho $$ (x, t)\in{{\Bbb R}} \times[0, T] $时正下界的估计(见引理3.6), 为了克服这个困难本文首先考虑了在任意有界区域$ K\times[0, T] $上的情形, 然后利用$ \rho\rightarrow \overline{\rho}, |x|\rightarrow \infty $得到密度函数在$ {{\Bbb R}} \times[0, T] $上的正下界的估计.

接下来, 首先给出本文的主要结论, 然后得到一些预备引理, 最后借助文献[16]中的结论(见引理4.1)给出主要定理的证明.

2 主要结论

定理2.1  假设初值$ (\rho_{0}, u_{0}) $满足$ (1.4) $式, 那么初值问题(1.1)–(1.3) 存在整体强解$ (\rho, u) $, 使得任意的$ T>0 $都有

$ \begin{equation} \rho-\overline{\rho}\in{L^{\infty}(0, T;H^{1}({{\Bbb R}} ))}, \rho_{t}\in{L^{2}(0, T;L^{2}({{\Bbb R}} ))}, \end{equation} $

$ \begin{equation} u-\overline{u}\in{L^{\infty}(0, T;H^{1}({{\Bbb R}} ))}\bigcap{L^{2}(0, T;H^{2}({{\Bbb R}} ))}, u_{t}\in{L^{2}(0, T;L^{2}({{\Bbb R}} ))}. \end{equation} $

另外, 存在常数$ C(T)>0 $使得

$ \begin{eqnarray} 0<C^{-1}(T)\leq\rho(x, t)\leq{C(T)}<\infty, \forall(x, t)\in{{\Bbb R}} \times(0, T). \end{eqnarray} $

为使得到的解$ (\rho, u) $在无穷远处收敛到$ (\rho^{\pm}, u^{\pm}) $, 参考文献[14] 引入相对熵为

其中$ p(\rho|\overline{\rho}) $满足

注2.1  $ {\rm (H_{1})} $易知$ {\rho}p(\rho|\overline{\rho}) $是严格凸函数$ , {\rho}p(\rho|\overline{\rho})\geq0 $, 当且仅当$ \rho = \overline{\rho} $$ {\rho}p(\rho|\overline{\rho}) = 0 $;

$ {\rm (H_{2})} $易知存在依赖于$ \rho^{\pm} $的常数$ C>0 $, 使得$ \mathop{\lim \inf }\limits_{\rho\rightarrow \infty} p(\rho|\overline{\rho})\geq{C} $;

$ {\rm (H_{3})} $下文中出现的$ C $表示依赖于初值的常数, $ C(\cdot) $表示依赖于初值和括号中的量"$ \cdot $"的常数.

3 先验估计

本节的先验估计包含对密度函数$ \rho $的正则性估计和上、下界估计, 还有对速度$ u $的正则性估计. 引理3.1, 3.2和3.4由文献[15]得到, 虽然文献[15]中考虑的是$ \mu(\rho) = \rho^{\alpha}, \alpha\in(0, 1) $的情形, 但是对于$ \mu(\rho) = \rho^{\alpha}, \alpha\in(0, 1] $的情形引理3.1, 3.2和3.4仍然适用. 本节的重难点是对密度函数$ \rho $的上、下界估计(见引理3.3和引理3.6), 借助引理3.1和引理3.2可以得到引理3.3, 利用引理3.4中关于$ (\rho^{\alpha})_{x}, (u-\overline{u}) $的高阶可积性和引理3.5中在任意有界区域$ (x, t){\in}K\times[0, T] $$ \int_{0}^{t}||\rho^{2n(\gamma-\alpha)}u^{2n}||_{L^{\infty}([-M, M])}{\rm d}s\leq{C(T, M)}, \int_{0}^{t}(\rho^{\gamma})_{x}^{2n}{\rm d}s\leq{C(T, M)}, \forall{x}\in[-M, M] $的结论得到密度函数$ \rho $在任意有界区域$ (x, t){\in}K\times[0, T] $上是有正下界的, 再结合$ \rho\rightarrow \overline{\rho} $, $ |x|\rightarrow \infty $证得引理3.6. 最后参考文献[14]给出了关于密度函数$ \rho $和速度$ u $的正则性估计(见引理3.7).

引理3.1  若$ (\rho, u) $是初值问题(1.1)–(1.3)的强解, 则任意的$ T>0 $, 都有常数$ C(T)>0 $使得

 证明过程参考文献[15].

引理3.2  若$ (\rho, u) $是初值问题(1.1)–(1.3)的强解, 则任意的$ T>0 $, 都有常数$ C(T)>0 $使得

  证明过程参考文献[15].

引理3.3  若$ (\rho, u) $是初值问题(1.1)–(1.3)的强解, 则任意的$ T>0 $, 都有常数$ C(T)>0 $使得

  根据注$ 2.1{\rm (H_{2})} $可知存在$ \eta>0 $使得

下面证明任意的$ (x_{0}, t_{0})\in{{\Bbb R}} \times[0, T] $都有$ \rho(x_{0}, t_{0})\leq{C(T)}. $若任意的$ r(T)>0 $都有

$ \begin{eqnarray} \int_{{{\Bbb R}} }p(\rho|\overline{\rho}){\rm d}x\geq\int_{x_{0}-r(T)}^{x_{0}}p(\rho|\overline{\rho}){\rm d}x\geq\frac{C}{2}r(T), \end{eqnarray} $

可以取适当的$ r(T) $使得(3.1)式与引理3.1矛盾, 因此存在$ r(T)>0, x_{1}\in[x_{0}-r(T), x_{0}] $使得$ \rho(x_{1}, t_{0})\leq\eta. $又根据引理3.1和引理3.2易知$ \int_{{{\Bbb R}} }(\rho^{\alpha})_{x}^{2}{\rm d}x\leq{C(T)} $, 所以

引理3.3得证.

引理3.4  若$ (\rho, u) $是初值问题(1.1)–(1.3)的强解, 则$ \forall{T}>0, \forall{n}\in{\Bbb Z}^{+} $ (正整数集), 都有常数$ C(T, n)>0 $使得

  证明过程参考文献[15].

引理3.5  若$ (\rho, u) $是初值问题(1.1)–(1.3)的强解, 则任意的$ {T}>0, 0<M<+\infty $, $ n\geq\frac{1+\alpha}{4(\gamma-\alpha)} $, 都有依赖于初值, 时间$ T $, 常数$ M, n $的常数$ C(T, M, n)>0 $, 使得

  利用Sobolev嵌入定理, 引理3.1–3.4和Cauchy不等式, 有

$ \begin{eqnarray} &&||\rho^{2n(\gamma-\alpha)}u^{2n}||_{L^{\infty}([-M, M])}{}\\ &\leq&{C}\int_{-M}^{M}\rho^{2n(\gamma-\alpha)}u^{2n}{\rm d}x+C\int_{-M}^{M}|(\rho^{2n(\gamma-\alpha)}u^{2n})_{x}|{\rm d}x{}\\ &\leq&{C(T, n)}\int_{-M}^{M}u^{2n}{\rm d}x+C(n)\int_{-M}^{M}|\rho^{2n(\gamma-\alpha)-1}\rho_{x}u^{2n}|{\rm d}x{}\\ &&+C(n)\int_{-M}^{M}|\rho^{2n(\gamma-\alpha)}u^{2n-1}u_{x}|{\rm d}x{}\\ &\leq&{C(T, n)}\int_{-M}^{M}(u-\overline{u})^{2n}{\rm d}x+C(T, n)\int_{-M}^{M}(\overline{u})^{2n}{\rm d}x+C(T, n)\int_{-M}^{M}|(\rho^{\alpha})_{x}u^{2n}|{\rm d}x{}\\ &&+C(n)\int_{-M}^{M}\rho^{\alpha+1}u_{x}^{2}{\rm d}x+C(n)\int_{-M}^{M}\rho^{4n(\gamma-\alpha)-(1+\alpha)}u^{4n-2}{\rm d}x{}\\ &\leq&{C(T, n)}\int_{-M}^{M}(\rho^{\alpha})_{x}^{2}{\rm d}x+{C(n)}\int_{-M}^{M}\rho^{\alpha+1}u_{x}^{2}{\rm d}x+C(T, M, n){}\\ &\leq&{C(n)}\int_{-M}^{M}\rho^{\alpha+1}u_{x}^{2}{\rm d}x+C(T, M, n), \end{eqnarray} $

再由(3.2)式在$ (0, t) $上积分, 利用引理3.1, 在取定$ n $ (使得$ n\geq\frac{(1+\alpha)}{4(\gamma-\alpha)} $)后可得

$ (1.1)_{1} $式代入$ (1.1)_{2} $式得到

$ \begin{eqnarray} (\rho^{\alpha})_{xt} = -\alpha{u_{t}}-\alpha(\rho^{\gamma})_{x}, \end{eqnarray} $

再由(3.3)式在$ (0, t) $上积分可得

$ \begin{eqnarray} (\rho^{\alpha})_{x} = (\rho_{0}^{\alpha})_{x}+\alpha(u_{0}-u)-\alpha\int_{0}^{t}(\rho^{\gamma})_{x}{\rm d}s, \end{eqnarray} $

利用(3.4)式, Cauchy不等式和H$ \ddot{\rm o} $lder不等式, 有

再利用Gronwall不等式, 在取定$ n $充分大(使得$ n\geq\frac{(1+\alpha)}{4(\gamma-\alpha)} $) 后, 有

引理3.5得证.

引理3.6  若$ (\rho, u) $是初值问题(1.1)–(1.3)的强解, 则任意的$ T>0 $, 都有常数$ C(T)>0 $使得

  利用引理3.1和引理3.2可知$ \int_{{{\Bbb R}} }(\rho^{\alpha})_{x}^{2}{\rm d}x\leq{C(T)} $, 再结合引理3.3和$ \alpha\in(0, 1] $得到$ \int_{{{\Bbb R}} }\rho_{x}^{2}{\rm d}x\leq{C(T)} $, 因此

又根据引理3.1和引理3.3可知$ \int_{{{\Bbb R}} }{\rho}p(\rho|\overline{\rho}){\rm d}x\leq{C(T)} $, 所以

而由注$ {\rm 2.1(H_{1})} $可知$ {\rho}p(\rho|\overline{\rho})\geq{0} $, 当且仅当$ \rho = \overline{\rho} $$ {\rho}p(\rho|\overline{\rho}) = 0 $, 所以

由此可知, 可以取$ \epsilon>0 $, 则存在$ N>0 $, 使得当$ |x|\geq{N} $

$ \begin{eqnarray} \rho(x, t)\geq\overline{\rho}(x)-\epsilon>0. \end{eqnarray} $

$ K = [-N, N] $, 设$ \upsilon(x, t) = \frac{1}{\rho(x, t)}, \forall(x, t)\in{K}\times[0, T]. $根据$ (1.1)_{1} $式易知

$ \begin{eqnarray} (\upsilon^{b})_{t} = b\upsilon^{b-1}\upsilon_{t} = b\upsilon^{b-1}u_{x}, \forall{b>1}. \end{eqnarray} $

由(3.6)式在$ K\times(0, t) $上积分, 利用(3.4)式有

上式可等价变形为

$ \begin{eqnarray} &&\int_{K}\upsilon^{b}{\rm d}x+b(b-1)\int_{0}^{t}\int_{K}\upsilon^{b-1+\alpha}u^{2}{\rm d}x{\rm d}s{}\\ & = &b\int_{0}^{t}(\upsilon^{b-1}u)|_{-N}^{N}{\rm d}s+\int_{K}\upsilon_{0}^{b}{\rm d}x+(b(b-1)/\alpha)\int_{0}^{t}\int_{K}\upsilon^{b-1+\alpha}u(\rho_{0}^{\alpha})_{x}{\rm d}x{\rm d}s{}\\ &&+b(b-1)\int_{0}^{t}\int_{K}\upsilon^{b-1+\alpha}uu_{0}{\rm d}x{\rm d}s-b(b-1)\int_{0}^{t}\int_{K}\upsilon^{b-1+\alpha}u\int_{0}^{s}(\rho^{\gamma})_{x}{\rm d}l{\rm d}x{\rm d}s{}\\ :& = &I_{1}+I_{2}+I_{3}+I_{4}+I_{5}. \end{eqnarray} $

$ (x, t)\in{K}\times[0, T] $上, 设$ w(T) = \max\{\upsilon(x, t)\} $. 由引理3.3知$ \rho(x, t)\leq{C(T)} $, 不妨设$ w(T)\geq1 $, 则由Sobolev不等式, Hölder不等式和引理3.4, 有

因此

$ \begin{eqnarray} \int_{0}^{t}||u||_{L^{\infty}(K)}{\rm d}s &\leq&{C(T, N)}+C(T, N)\int_{0}^{t}\bigg(\int_{K}u_{x}^{2}{\rm d}x\bigg)^{1/8}{\rm d}s{} \\ &\leq&{C(T, N)}+C(T, N)(w(T))^{(1+\alpha)/8}\int_{0}^{t}\bigg(\int_{K}\rho^{1+\alpha}u_{x}^{2}{\rm d}x\bigg)^{1/8}{\rm d}s{} \\ &\leq&{C(T, N)}+C(T, N)(w(T))^{(1+\alpha)/8}. \end{eqnarray} $

根据(3.8)式和(3.5)式易知

另外

这里的$ C(N) $表示与初值和$ N $有关的常数. 利用$ (1.4) $式, 引理3.3和$ 0<\alpha\leq1 $可得

利用$ (1.4) $式和Sobolev不等式易知

因此

由引理3.5可知当$ n\geq\frac{(1+\alpha)}{4(\gamma-\alpha)} $

因此

$ I_{1}-I_{5} $的估计式代入(3.7)式得到

再由Gronwall不等式可得

$ \begin{eqnarray} \int_{K}\upsilon^{b}{\rm d}x&\leq{C(T, N, n)}+{C(T, N)}(w(T))^{\frac{(1+\alpha)}{8}}, \forall{b>1}. \end{eqnarray} $

根据引理3.1可知$ \int_{{{\Bbb R}} }p(\rho|\overline{\rho}){\rm d}x\leq{C(T)} $, 因此$ \int_{K}{\upsilon}{\rm d}x\leq{C(T, N)} $. 假设任意的$ (x, t)\in{K}\times[0, T] $都有$ \upsilon(x, t)\geq{C(T, N)} $, 则$ \int_{K}{\upsilon}{\rm d}x\geq{C(T, N)} $, 显然矛盾. 因此必存在$ x_{1}\in{K} $使得$ \upsilon(x_{1}, t)\leq{C(T, N)} $. 再利用引理3.1–3.2和(3.9)式, 有

又因为$ b>1, 0<\alpha\leq1, $所以

$ \begin{eqnarray} \upsilon(x, t)\leq{C(T, N, n)}, \forall(x, t)\in{K\times[0, T]}. \end{eqnarray} $

结合(3.5)式和(3.10)式可得

引理3.6得证.

引理3.7  若$ (\rho, u) $是初值问题(1.1)–(1.3)的强解, 则任意的$ T>0 $, 都有常数$ C(T)>0 $使得

  证明过程参考文献[14].

4 定理2.1的证明

在证明定理2.1之前先给出下述关于解的局部存在唯一性的引理.

引理4.1  若初值$ (\rho_{0}, u_{0}) $满足$ (1.4) $式, $ \mu(\rho)\geq\theta>0 $, 则存在$ T_{0}>0 $($ T_{0} $仅依赖于初值), 使得$ t\in(0, T_{0}) $时, 初值问题(1.1)–(1.3)存在唯一的解$ (\rho, u) $满足

同时, 存在$ c_{0}(t), c^{0}(t)>0 $使得

  参考文献[16].

下面根据上述引理给出定理2.1的证明.

  首先, 变换粘性系数为

借助引理4.1可以假设$ (\rho_{n}, u_{n}) $$ \mu = \mu_{n}(\rho) $时初值问题(1.1)–(1.3)在$ {t}\in(0, T_{0}) $上的强解. 其次, 利用引理3.1–3.7可知$ (\rho_{n}, u_{n}) $$ {t}\in(0, T_{0}) $上满足

最后, 由引理4.1可知当$ n $充分大($ 1/n\leq{C^{-1}(T)} $)$ (\rho_{n}, u_{n}) $是初值问题(1.1)–(1.3)的一个整体解, 即$ T_{0}(n)\rightarrow \infty\; (n\rightarrow \infty $), 此时有$ \mu_{n}(\rho)\rightarrow \mu(\rho)\; (n\rightarrow \infty $), 即初值问题(1.1)–(1.3)存在整体强解$ (\rho, u) $, 使得$ C^{-1}(T)\leq\rho\leq{C(T)} $. $ (\rho, u) $的正则性由引理3.1–3.7和引理4.1给出, 定理2.1得证.

参考文献

Hoff D .

Global existence for 1D, compressible, isentropic Navier-Stokes equations with large initial date

Transactions of the American Mathematical Society, 1987, 303 (1): 169- 181

[本文引用: 1]

Hoff D .

Global solutions of the equations of one-dimensional, compressible flow with large date and forces, and with differing and states

Zeitschrift für Angewandte Mathematik und Physik, 1998, 49 (5): 774- 785

DOI:10.1007/PL00001488      [本文引用: 1]

Hoff D , Serre D .

The failure of continuous dependence on initial date for the Navier-Stokes equations of compressible flow

SIAM Journal on Applied Mathematics, 1991, 51 (4): 887- 898

DOI:10.1137/0151043      [本文引用: 1]

Liu T P , Xin Z P , Yang T .

Vacuum states for compressible flow

Discrete and Continuous Dynamical Systems, 1998, 4 (1): 1- 32

DOI:10.3934/dcds.1998.4.1      [本文引用: 1]

Okada M .

Free boundary value problems for the equation of the one-dimensional motion of viscous gas

Japan Journal of Industrial and Applied Mathematics, 1989, 6 (1): 161- 177

DOI:10.1007/BF03167921      [本文引用: 1]

Okada M , Makino T .

Free boundary problem for the equation of one-dimensional motion of compressible gas with density-dependent viscosity

Annali dell'Universita di Ferrara, 2002, 48 (1): 1- 20

DOI:10.1007/BF02824736     

Jiang S , Xin Z P , Zhang P .

Global weak solutions to 1D compressible isentropic Navier-Stokes equations with density-dependent viscosity

Methods and Applications of Analysis, 2005, 12 (3): 239- 252

DOI:10.4310/MAA.2005.v12.n3.a2     

Vong S W , Yang T , Zhu C J .

Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum(Ⅱ)

Journal of Differential Equations, 2003, 192 (2): 475- 501

DOI:10.1016/S0022-0396(03)00060-3     

Yang T , Yao Z A , Zhu C J .

Compressible Navier-Stokes equations with density-dependent viscosity and vacuum

Communications in Partial Differential Equations, 2001, 26 (5/6): 965- 981

URL    

Qin X L , Yao Z A , Zhao H X .

One dimensional compressible Navier-Stokes equations with density-dependent viscosity and free boundaries

Communications on Pure and Applied Analysis, 2008, 7 (2): 373- 381

DOI:10.3934/cpaa.2008.7.373     

Yang T , Zhu C J .

Compressible Navier-Stokes equations with degenerate viscosity coefficient and vacuum

Communications in Mathematical Physics, 2002, 230 (2): 329- 363

DOI:10.1007/s00220-002-0703-6     

Yang T , Zhao H J .

A vacuum problem for the one-dimensional compressible Navier-Stokes equations with density-dependent viscosity

Journal of Differential Equations, 2002, 184 (1): 163- 184

DOI:10.1006/jdeq.2001.4140      [本文引用: 1]

Li H L , Li J , Xin Z P .

Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations

Communications in Mathematical Physics, 2008, 281 (2): 401- 444

DOI:10.1007/s00220-008-0495-4      [本文引用: 1]

Mellet A , Vasseur A .

Existence and uniqueness of global strong solutions for one dimensional compressible Navier-Stokes equations

SIAM Journal on Mathematical Analysis, 2008, 39 (4): 1344- 1365

DOI:10.1137/060658199      [本文引用: 4]

Liu S Q , Zhao J N .

Global strong solutions of the Cauchy problem for 1D compressible Navier-Stokes equations with density-dependent viscosity

Acta Mathematicae Applicatae Sinica, 2017, 33 (1): 25- 34

DOI:10.1007/s10255-016-0631-4      [本文引用: 6]

Solonnikov V A .

Solvability of the initial-boundary value problem for the equations of motion of a viscous compressible fluid

Zap Naucn Sem Leningrad Otdel Mat Inst Steklov(LOMI), 1976, 56, 128- 142

[本文引用: 3]

/