三维不可压Navier-Stokes方程组轨道统计解的退化正则性
Degenerate Regularity of Trajectory Statistical Solutions for the 3D Incompressible Navier-Stokes Equations
通讯作者:
收稿日期: 2020-02-26
基金资助: |
|
Received: 2020-02-26
Fund supported: |
|
作者简介 About authors
徐明月,E-mail:
TomásCaraballo,E-mail:
In this article, the authors prove that if the (generalized) 3D Grashof number of the 3D autonomous incompressible Navier-Stokes equations is less than 2.057, then its weak trajectory statistical solutions possess (partial) degenerate regularity in the sense that they are supported by a set in which the weak solutions are in fact (partially) strong solutions. Also, they reveal that if the 3D Grashof number is less than 2.057, then the 3D incompressible Navier-Stokes equations possess only one complete and bounded strong solution which not only forward attracts but also pullback attracts its trajectories.
Keywords:
本文引用格式
徐明月, 赵才地, TomásCaraballo.
Xu Mingyue, Zhao Caidi, Tomás Caraballo.
1 引言
该文研究下面三维自治Navier-Stokes方程组轨道统计解的退化正则性
其中未知函数
不变测度和统计解对于人们理解湍流很有帮助[7, 9, 18], 这是由于湍流中的一些重要物理量(比如质量, 速度)本质上都依赖于时间的均值. 在统计物理中, 统计解就是用来描述湍流整体均值的数学概念. 目前主要有两种统计解的定义, 一个是由Foias和Prodi在文献[8] 中提出的Foias-Prodi统计解, 另一个是由Vishik和Furshikov在文献[22] 中给出的Vishik-Furshikov统计解. Foias-Prodi统计解是定义在Navier-Stokes方程组的相空间上的一族用时间参数化的Borel测度, 用以刻画流体的速度场在每个时刻的概率分布. 而Vishik-Furshikov统计解是定义在轨道空间上的单个Borel测度, 用以表示时-空速度场的概率分布.
至今已有不少文献研究了多种演化方程的统计解. 例如, Foias, Rosa以及Temam在文献[9-13]中系统的研究了三维Navier-Stokes方程的统计解; Łukaszewicz在文献[17] 中构造了二维Navier-Stokes方程的统计解; Bronzi, Mondaini和Rosa在文献[1, 3] 中给出了一般演化方程统计解存在的抽象框架, 并且在文献[2] 中研究了当
这篇文章的主要目的是借用文献[29] 中轨道统计解的构造方法来研究三维不可压Navier-Stokes方程弱轨道统计解的退化正则性. 在文献[29]中作者通过轨道吸引子和平移半群来构造轨道统计解. 在他们的构造中, 轨道统计解是定义在时-空间上的不变概率测度且由轨道吸引子支撑. 正是由于这个原因, 轨道统计解的正则性问题就转化为轨道吸引子的正则性问题. 因此, 考虑通过研究轨道吸引子的退化正则性来研究轨道统计解的正则性是很自然的. 对于三维不可压Navier-Stokes方程组, 从文献[5] 中得知其具有紧的轨道吸引子且当
时, 弱拉回吸引子将会退化成一个唯一的完全有界的强解.
时,
2 准备工作
首先引入一些记号.记
记
问题(2.1) 弱解的定义可以参考文献[32, 定义2.1]. 若弱解
引理2.1 设
其中, 若
证 给定
及
由计算可知
由(2.3) 和(2.5) 式可得
对(2.6) 式使用Gronwall不等式, 即得(2.2)式. 当
方程(2.1) 的核
轨道吸引子的定义可参考文献[32, 定义2.2].
定义2.1
命题2.1 (1) (文献[32, 命题2.2]) 方程(2.1) 的轨道吸引子
(2) (文献[32, 定理3.1]) 对于任意的
3 轨道统计解的退化正则性
这一节首先证明如果
引理3.1 假设
其中
证 对任意给定的
又从(2.4) 和(2.5) 式可得
(3.2) 式表明
令
从(3.3) 式可知对于
否则, 如果
那么有
这和(3.3) 式相矛盾. 证毕.
从引理3.1可得下面的推论.
推论3.1 对任意的
(1)
(2)
证 对任意的
则从(3.1) 式可知
并且(2) 显然成立.
注3.1 推论
引理3.2 假设
此处的
证 假设对于
由(3.7) 和(3.8) 式可得
对任意的
又因为
由于
由不等式(3.11) 可以推出
因此, 如果(3.5) 成立, 则有
进一步由(3.10)式, (3.13)式和Gronwall不等式可得
令
结合定义2.1, 命题2.1(2), 推论3.1及引理3.2, 可得如下结论.
定理3.1 假设给定
则命题
(1)
(2)
证 弱轨道统计解
如果
定理3.2 假设
则命题
证 在文献[5, XIII. 命题1.4] 中, Chepyzhov和Vishik证明了在(3.15) 式成立的条件下, 三维Navier-Stokes方程组的吸引子
4 总结和展望
这篇文章借用文献[29] 中轨道统计解的构造方法将三维自治不可压Navier-Stokes方程组的轨道统计解的退化正则性问题转化为轨道吸引子的退化正则性问题. 主要结果如下.
(1) 假设
则三维不可压Navier-Stokes方程组的弱轨道统计解
(2) 假设
则三维不可压Navier-Stokes方程组的弱轨道统计解
参考文献
Trajectory statistical solutions for three-dimensional Navier-Stokes-like systems
,DOI:10.1137/130931631 [本文引用: 2]
On the convergence of statistical solutions of the 3D Navier-Stokes-α model as α vanishes
,DOI:10.3934/dcds.2014.34.19 [本文引用: 1]
Abstract framework for the theory of statistical solutions
,DOI:10.1016/j.jde.2016.02.027 [本文引用: 2]
Invariant measures and statistical solutions of the globally modified Navier-Stokes equations
,
Degenerate pullback attractors for the 3D Navier-Stokes equations
,DOI:10.1007/s00021-015-0214-9 [本文引用: 3]
Invariant measures for dissipative dynamical systems: abstract results and applications
,DOI:10.1007/s00220-012-1515-y [本文引用: 1]
Sur les solutions statistiques des équations de Naiver-Stokes
,DOI:10.1007/BF02411822 [本文引用: 1]
A note on statistical solutions of the three-dimensional Navier-Stokes equations: the stationary case
,DOI:10.1016/j.crma.2009.12.017
A note on statistical solutions of the three-dimensional Navier-Stokes equations: the time-dependent case
,DOI:10.1016/j.crma.2009.12.018
Properties of time-dependent statistical solutions of the three-dimensional Navier-Stokes equations
,DOI:10.5802/aif.2836
Convergence of time averages of weak solutions of the three-dimensional Navier-Stokes equations
,DOI:10.1007/s10955-015-1248-3 [本文引用: 1]
Properties of stationary statistical solutions of the three-dimensional Navier-Stokes equations
,
Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations
,DOI:10.3934/cpaa.2009.8.785 [本文引用: 1]
Pullback attractors and statistical solutions for 2-D Navier-Stokes equations
,DOI:10.3934/dcdsb.2008.9.643 [本文引用: 1]
Invariant measures for non-autonomous dissipative dynamical systems
,DOI:10.3934/dcds.2014.34.4211 [本文引用: 1]
Translationally homogeneous statistical solutions and individual solutions with infinite energy of a system of Navier-Stokes equations
,
Regularity of trajectory attractor and upper semicontinuity of global attractor for a 2D non-Newtonian fluid
,DOI:10.1016/j.jde.2009.07.031 [本文引用: 1]
Uniform attractors for non-autonomous incompressible non-Newtonian fluid with a new class of external forces
,DOI:10.1016/S0252-9602(11)60362-7
Smooth pullback attractors for a non-autonomous 2D non-Newtonian fluid and their tempered behaviors
,DOI:10.1007/s00021-013-0153-2 [本文引用: 1]
The trajectory attractor and its limiting behavior for the convective Brinkman-Forchheimer equations
,
Analyticity of the global attractor for the 3D regularized MHD equations
,
Asymptotic regularity of trajectory attractor and trajectory statistical solution for the 3D globally modified Navier-Stokes equations
,DOI:10.1016/j.jde.2018.11.032 [本文引用: 1]
Trajectory statistical solutions and Liouville type equations for evolution equations: Abstract results and applications
,DOI:10.1016/j.jde.2019.12.011 [本文引用: 5]
Statistical solution and partial degenerate regularity for the 2D non-autonomous magneto-micropolar fluids
,DOI:10.1007/s00033-019-1224-x [本文引用: 1]
Strong trajectory statistical solutions and Liouville type equations for dissipative Euler equations
,DOI:10.1016/j.aml.2019.07.012 [本文引用: 2]
Trajectory statistical solutions for the 3D Navier-Stokes equations: The trajectory attractor approach
,DOI:10.1016/j.nonrwa.2019.103077 [本文引用: 7]
Using trajectory attractor to construct trajectory statistical solutions for 3D incompressible micropolar flows
,
Pullback attractor and invariant measures for the three-dimensional regularized MHD equations
,DOI:10.3934/dcds.2018060 [本文引用: 1]
/
〈 | 〉 |