数学物理学报, 2021, 41(2): 313-325 doi:

论文

${A_{p}(\varphi)}$权, 拟微分算子及其交换子

邓宇龙,1,2, 龙顺潮,2

${A_{p}(\varphi)}$ Weights, Pseudo-Differential Operators and Their Commutators

Deng Yulong,1,2, Long Shunchao,2

通讯作者: 龙顺潮, E-mail: sclong@xtu.edu.cn

收稿日期: 2020-05-3  

基金资助: 湖南省教育厅科研项目.  20A487
湖南省教育厅科研项目.  18C107

Received: 2020-05-3  

Fund supported: the Scientific Research Projects of Hunan Eduction Department.  20A487
the Scientific Research Projects of Hunan Eduction Department.  18C107

作者简介 About authors

邓宇龙,E-mail:yuldeng@163.com , E-mail:yuldeng@163.com

Abstract

In this paper, we establish weighted $L^{p}$ inequalities for pseudo-differential operators $T$ and their commutators $[b, T]$ with smooth symbols in $S^{m}_{\rho, \delta}(\mathbb{R}^n)$, where $b\in BMO(\mathbb{R}^n)$ and the weight $\omega$ belongs to the new class $A_{p}(\varphi)$. It is well known that the Muckenhoupt class $A_{p}$ falls within the class $A_{p}(\varphi)$. This results extend the class of pseudo-differential operator to a wide range of $m$.

Keywords: Pseudo-differential operator ; Commutator ; $BMO$ ; $A_{p}(\varphi)$ weights ; Weighted $L^{p}$ estimate

PDF (348KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

邓宇龙, 龙顺潮. ${A_{p}(\varphi)}$权, 拟微分算子及其交换子. 数学物理学报[J], 2021, 41(2): 313-325 doi:

Deng Yulong, Long Shunchao. ${A_{p}(\varphi)}$ Weights, Pseudo-Differential Operators and Their Commutators. Acta Mathematica Scientia[J], 2021, 41(2): 313-325 doi:

1 引言

回顾拟微分算子的Hörmander象征类$ S^{m}_{\rho, \delta}({{\Bbb R}} ^n) $ (参见文献[8]). $ \forall m\in {{\Bbb R}} $$ \rho, \delta\in[0, 1] $, 称$ {{\Bbb R}} ^n\times{{\Bbb R}} ^n $上的光滑函数$ a(x, \xi)\in S^{m}_{\rho, \delta}({{\Bbb R}} ^n) $, 如果对任意的重指标$ \alpha, \beta\in {\Bbb N}^{n} $, 成立

$ \begin{eqnarray} |\partial_{x}^{\alpha}\partial_{\xi}^{\beta}a(x, \xi)|\leq C_{\alpha, \beta}(1+|\xi|)^{m-\rho|\beta|+\delta|\alpha|}, \end{eqnarray} $

其中, $ C_{\alpha, \beta} $是与$ x $$ \xi $无关的常数. 本文约定, 象征函数$ a(x, \xi) $关于变量$ x $$ \xi $光滑.

$ \forall f\in C^{\infty}_{0}({{\Bbb R}} ^n) $, 设$ a(x, \xi)\in S^{m}_{\rho, \delta}({{\Bbb R}} ^n) $, 则拟微分算子$ T $定义为

$ \begin{eqnarray} Tf(x) = \int_{{{\Bbb R}} ^n}a(x, \xi)\text{e}^{2\pi {\rm i}x\cdot\xi} \hat{f}(\xi){\rm d}\xi, \end{eqnarray} $

其中$ \hat{f} $表示函数$ f $的Fourier变换, 记为$ T\in {\cal L}^{m}_{\rho, \delta} $. 由文献[18]可知, $ \forall T\in{\cal L}^{m}_{\rho, \delta} $可表示为

$ \begin{eqnarray} Tf(x) = \int K(x, y)f(y){\rm d} y. \end{eqnarray} $

拟微分算子的形成和发展伴随着偏微分发展史上一些基本问题研究的重大进展. 对拟微分算子的研究最早可追溯到Kohn和Nirenberg[13]以及Hörmander[8]. 拟微分算子$ T\in{\cal L}^{m}_{\rho, \delta} $$ L^{p} $有界性参见文献[2, 6, 8, 18].

拟微分算子$ T\in{\cal L}^{m}_{\rho, \delta} $在加权$ L^{p} $空间$ L^{p}_{\omega} $上的有界性也吸引了人们的兴趣. 早在1982年, Miller[16]就研究了算子$ T\in{\cal L}^{0}_{1, 0} $$ L^{p}_{\omega} $有界性问题. 随后, Chanillo和Torchinsky[3], Alvarez和Hounie[1]分别研究了属于$ {\cal L}^{\frac{n}{2}(\rho-1)}_{\rho, \delta} $$ {\cal L}^{n(\rho-1)}_{\rho, \delta} $的算子$ T $$ L^{p}_{\omega} $有界性, 其中$ 0\leq \delta \leq \rho \leq\frac{1}{2} $. 2012年, Michalowski, Rule和Staubach[15] 改进Alvarez和Hounie文献[1]中的参数为$ \delta\in [0, 1), \rho \in (0, 1] $. 然而, 上述结果都在经典的Muckenhoupt $ A_p $权条件下获得.

在文献[19]中, Tang通过引进权$ A_{p}(\varphi) $从而改进了Miller的结果, 得到拟微分算子$ T \in {\cal L}^{0}_{1, 0} $$ L^{p}_{\omega} $有界性估计, 其中$ p\in(1, \infty), \omega\in A_{p}(\varphi) $. 这一结果可推广到$ T\in{\cal L}^{0}_{1, \delta}, \delta\in [0, 1) $. 虽然$ A_{p}({{\Bbb R}} ^n)\subset A_{p}(\varphi) $, 然而这里的算子$ T $是Calderón-Zygmund算子[12, 14].

2018年, Wu和Wang[20]引进了权$ A_{p}^{\theta}(\phi) $并获得了$ \phi $ -型Calderón-Zygmund算子的$ L^{p}_{\omega} $有界性, 其中$ \theta\geq 0 $, $ p\in [1, \infty) $$ \omega\in A_{p}^{\theta}(\phi) $. 这里, $ A_{p}^{0}(\phi) = A_{p}({{\Bbb R}} ^n) $且当$ \theta>1 $时, $ A_{p}(\varphi) $包含在$ A_{p}^{\theta}(\phi) $. 拟微分算子$ T\in{\cal L}^{0}_{1, \delta} $$ \phi $ -型Calderón-Zygmund算子. 然而, $ \phi $ -型Calderón-Zygmund算子属于Calderón-Zygmund算子的理论范畴.

受以上研究启发, 本文主要探讨拟微分算子$ T\in {\cal L}^{m}_{\rho, \delta} $及其交换子$ [b, T] $$ L^{p}_{\omega} $有界性问题, 其中$ \omega\in A_{p}(\varphi) $. 本文改进了文献[19]中参数$ m $的取值范围. 如文献[5] 所述, 一旦在$ m\in [-(n+1), -(n+1)(1-\rho)) $时建立了拟微分算子$ T $$ L^{p}_{\omega} $有界性, 就可以将相应的结论延拓到整个$ m\leq -(n+1)(1-\rho) $. 本文探讨了交换子$ [b, T] $$ L^{p}_{\omega} $有界性问题, 其中$ b\in BMO({{\Bbb R}} ^n) $ (有界平均振荡函数). 类似地, 当$ \omega\in A_{p}^{\theta}(\phi) $时, 本文的结论仍成立.

设方体$ Q $的边、面平行于坐标轴; 记$ Q(x, r) $表示中心在点$ x $且其半边长为$ r>0 $的方体.$ Q = Q(x, r) $时, $ tQ $表示$ Q(x, tr), t>0 $.$ E $是可测函数, $ |E| $表示$ E $的Lebesgue测度; $ \chi_{E} $表示$ E $的特征函数. 设$ \omega $是权函数, 记$ \omega(E) = \int_{E}\omega(y){\rm d} y $.$ f\in L_{loc} $, 记$ f_{Q} = \frac{1}{|Q|}\int_{Q}|f(y)|{\rm d} y $; 当$ p\in(0, \infty) $时, 给定一个权函数$ \omega $, 满足

的函数空间称为加权Lebesgue空间, 记为$ \|f\|_{L^{p}_{\omega}}({{\Bbb R}} ^n) $. $ C $表示一个常数, 可能会随上下文变化. $ a\lesssim b $表示$ a\leq Cb $.$ a\lesssim b $$ b\lesssim a $, 则记为$ a\sim b $.

本文总是记$ \varphi(t) = (1+t)^{\alpha_{0}} $, 其中$ \alpha_{0}, t>0 $. 下面给出的$ A_{p}(\varphi) $权定义参见文献[19].

定义1.1   称权$ \omega $属于$ A_{p}(\varphi) $, 如果存在常数$ C $, 使得对任意的方体$ Q $, 有

$ \begin{equation} \left(\frac{1}{\varphi(|Q|)|Q|}\int_{Q}\omega(y){\rm d}y\right)\left(\frac{1}{\varphi(|Q|)|Q|}\int_{Q}\omega^{-\frac{1}{p-1}}(y){\rm d}y\right)^{p-1}\leq C, 1<p<\infty. \end{equation} $

称非负函数$ \omega $满足$ A_{1}(\varphi) $条件, 如果存在常数$ C $, 使得对任意的方体$ Q $, 有

$ \begin{equation} M_{\varphi}(\omega)(x)\leq C\omega(x), \; \; \text{a.e.}\; x\in{{\Bbb R}} ^n, \end{equation} $

其中

$ \begin{equation} M_{\varphi}f(x) = \sup\limits_{Q\ni x}\frac{1}{\varphi(|Q|)|Q|}\int_{Q}|f(y)|{\rm d} y. \end{equation} $

Hardy-Littlewood极大函数$ M $ (H-L极大函数)定义为

$ \begin{equation} Mf(x) = \sup\limits_{Q\ni x}\frac{1}{|Q|}\int_{Q}|f(y)|{\rm d} y. \end{equation} $

显然, 对几乎处处的$ x\in{{\Bbb R}} ^n $, $ |f(x)|\leq M_{\varphi}f(x)\leq Mf(x) $. $ \forall 1\leq p<\infty $, 易知$ A_{p}({{\Bbb R}} ^n)\subset A_{p}(\varphi) $, 其中$ A_{p}({{\Bbb R}} ^n) $表示经典的Muckenhoupt权[7]. 众所周知, $ \omega\in A_{p}({{\Bbb R}} ^n) $意味着$ \omega(x){\rm d} x $是一个倍测度. 然而, 当$ \omega\in A_{p}(\varphi) $时, $ \omega(x){\rm d} x $只具有局部倍测度性质.

本文的主要结果叙述如下.

定理1.1   设拟微分算子$ T\in {\cal L}^{m}_{\rho, \delta} $, 其中$ \rho\in (0, 1], \delta\in [0, 1) $

$ T $$ L^{p}_{\omega}({{\Bbb R}} ^n) $上的有界算子, 即存在常数$ C>0 $, 成立不等式

$ \begin{eqnarray} \|Tf\|_{L^{p}_{\omega}({{\Bbb R}} ^n)}\leq C\|f\|_{L^{p}_{\omega}({{\Bbb R}} ^n)}, \end{eqnarray} $

其中$ \omega\in A_{p}(\varphi) $, $ p\in(1, \infty) $. 进一步地, 参数$ m $的取值范围可延拓到$ m\leq -(n+1)(1-\rho) $.

设函数$ b\in BMO({{\Bbb R}} ^n) $ (参见文献[9]). Coifman, Rochberg和Weiss给出的交换子算子$ [b, T] $定义为[4]

$ \begin{equation} [b, T]f(x) = b(x)Tf(x)-T(bf)(x). \end{equation} $

类似定理1.1, 本文得到如下定理.

定理1.2   设拟微分算子$ T\in {\cal L}^{m}_{\rho, \delta} $, 其中$ \rho\in (0, 1], \delta\in [0, 1) $

如果函数$ b\in BMO({{\Bbb R}} ^n) $, 则交换子算子$ [b, T] $$ L^{p}_{\omega}({{\Bbb R}} ^n) $上的有界算子, 即存在常数$ C>0 $, 成立不等式

$ \begin{equation} \|[b, T]f\|_{L^{p}_{\omega}({{\Bbb R}} ^n)}\leq C\|b\|_{BMO({{\Bbb R}} ^n)}\|f\|_{L^{p}_{\omega}({{\Bbb R}} ^n)}. \end{equation} $

其中$ \omega\in A_{p}(\varphi) $, $ p\in(1, \infty) $. 进一步地, 参数$ m $的取值范围可延拓到$ m\leq -(n+1)(1-\rho) $.

本文结构安排如下. 第2节给出了拟微分算子和极大函数的一些基本概念和辅助引理. 第3节和第4节分别证明了定理1.1和定理1.2. 证明的思路主要来自文献[17, 19]. 本文先证明函数$ f\in C_{0}^{\infty}({{\Bbb R}} ^n) $时定理1.1和定理1.2成立, 再由稠密性延拓到加权$ L^{p}({{\Bbb R}} ^n) $空间[16]. 类似地, 本文的结果可推广到$ A_{p}^{\theta}(\phi) $权.

2 几个引理

$ {\cal S}({{\Bbb R}} ^n) $$ {{\Bbb R}} ^n $中所有Schwartz函数构成的空间, $ {\cal S}^{\prime}({{\Bbb R}} ^n) $是它的对偶空间. $ {{\Bbb R}} ^n $中无穷可微($ C^{\infty} $ -函数)且具有紧支集的函数空间记为$ C_{0}^{\infty}({{\Bbb R}} ^n) $. 易知, 拟微分算子是$ {\cal S}({{\Bbb R}} ^n) $$ {\cal S}({{\Bbb R}} ^n) $上的有界线性算子, 从而具有分布核$ K(x, y)\in {\cal S}^{\prime}({{\Bbb R}} ^n\times {{\Bbb R}} ^n) $ (参见文献[18]).

引理2.1  设拟微分算子$ T\in {\cal L}^{m}_{\rho, \delta} $, $ \rho\in (0, 1], \delta\in [0, 1) $.$ T $的定义为

$ \begin{eqnarray} K(x, y) = \lim\limits_{\varepsilon\to 0}\int_{{{\Bbb R}} ^n}\text{e}^{2\pi i(x-y)\cdot\xi} a(x, \xi)\psi(\varepsilon\xi){\rm d} \xi \end{eqnarray} $

的分布核$ K(x, y) $在除对角线$ \{(x, x):x\in{{\Bbb R}} ^n\} $外光滑. 其中, 函数$ a(x, \xi)\in {\cal S}^{m}_{\rho, \delta}({{\Bbb R}} ^n) $为算子$ T $的象征; $ \psi(\xi)\in C_{0}^{\infty}({{\Bbb R}} ^n) $$ |\xi|\leq 1 $时取值为$ 1 $; 极限在$ {\cal S}^{\prime}({{\Bbb R}} ^n) $意义下收敛且与$ \psi $的选取无关. $ K(x, y) $有估计式如下.

(1) 如果$ M\in{\Bbb N} $$ M+m+n>0 $, 则

$ \begin{eqnarray} \sup\limits_{|\alpha+\beta| = M}|D_{x}^{\alpha}D_{y}^{\beta}K(x, y)|\leq C_{M}\frac{1}{|x-y|^{\frac{M+m+n}{\rho}}}, x\neq y. \end{eqnarray} $

(2) 任给多重指标$ \alpha, \beta\in{\Bbb N}^{n} $$ N\in{\Bbb N} $, 有

$ \begin{eqnarray} \sup\limits_{|x-y|\geq \frac{1}{2}}|x-y|^{N}|D_{x}^{\alpha}D_{y}^{\beta}K(x, y)|\leq C_{\alpha, \beta, N}. \end{eqnarray} $

引理2.1首先由Alvarez和Hounie在文献[1]获得; Hounie和Kapp在文献[10, 命题3.1] 中给出其具体形式; 它在文献[11]中也有应用. 下面给出属于$ {\cal L}^{m}_{\rho, \delta} $的拟微分算子$ T $的弱$ (1, 1) $估计(参见文献[1]).

引理2.2  设$ T\in {\cal L}^{m}_{\rho, \delta} $, $ \rho\in (0, 1] $, $ \delta\in [0, 1) $, 如果$ m\leq -\frac{n}{2}(1-\rho)+\min\{0, \frac{n(\rho-\delta)}{2}\} $, 则$ T $是弱$ (1, 1) $型的.

注2.1   显然, $ m\leq -(n+1)(1-\rho) $满足引理2.2中$ m $要求的条件.

$ f\in L_{loc} $, $ \eta\in (0, \infty) $, $ (\varphi, \eta) $ -极大算子$ M_{\varphi, \eta} $定义为

由文献[19, 命题2.1]可知, $ (\varphi, \eta) $ -极大算子$ M_{\varphi, \eta} $是加权$ L^{p} $有界的. 即有如下引理.

引理2.3   设$ p\in(1, \infty), p^{\prime} = \frac{p}{p-1} $, 如果权$ \omega\in A_{p}(\varphi) $, 则存在常数$ C>0 $, 使得

$ \begin{eqnarray} \|M_{\varphi, p^{\prime}}f\|_{L^{p}_{\omega}({{\Bbb R}} ^n)}\leq C\|f\|_{L^{p}_{\omega}({{\Bbb R}} ^n)}. \end{eqnarray} $

注2.2  当$ \eta>p^{\prime} $时, 易知$ M_{\varphi, \eta} f(x)\leq M_{\varphi, p^{\prime}}f(x) $. 从而有

$ \eta\in(0, \infty) $, 二进$ (\varphi, \eta) $ -极大函数$ M^{\triangle}_{\varphi, \eta}f(x) $和二进Sharp$ (\varphi, \eta) $ -极大函数$ M^{\#, \triangle}_{\varphi, \eta}f(x) $分别定义为

其中上确界是对所有的二进方体$ Q = Q(x_{0}, r) $取的.

$ \varepsilon>0 $, 二进$ (\varepsilon, \varphi, \eta) $ - 极大函数$ M^{\triangle}_{\varepsilon, \varphi, \eta}f(x) $和二进Sharp$ (\varepsilon, \varphi, \eta) $ -极大函数$ M^{\#, \triangle}_{\varepsilon, \varphi, \eta}f(x) $分别定义为

由文献[19, 命题2.3]可知如下引理.

引理2.4   设$ p\in (1, \infty) $, $ \omega\in A_{p}(\varphi) $, $ \eta\in (0, \infty) $$ \varepsilon>0 $. 如果$ f\in L^{p}_{\omega}({{\Bbb R}} ^n) $, 则

$ \begin{eqnarray} \|f\|_{L^{p}_{\omega}({{\Bbb R}} ^n)}\leq \|M^{\triangle}_{\varepsilon, \varphi, \eta}f\|_{L^{p}_{\omega}({{\Bbb R}} ^n)} \leq C\|M^{\#, \triangle}_{\varepsilon, \varphi, \eta}f\|_{L^{p}_{\omega}({{\Bbb R}} ^n)}. \end{eqnarray} $

3 定理1.1的证明

本节建立属于$ {\cal L}^{m}_{\rho, \delta} $的拟微分算子$ T $$ L^{p}_{\omega}({{\Bbb R}} ^n) $估计, 其中$ \omega\in A_{p}(\varphi) $.

   为证定理1.1, 由引理2.3和引理2.4可知, 只要证对任意的$ \eta\in(p^{\prime}, \infty) $$ \varepsilon\in(0, 1) $

$ \begin{eqnarray} M^{\#, \Delta}_{\varepsilon, \varphi, \eta}(Tf)(x_{0})\leq CM_{\varphi, \eta} f(x_{0}), \; \; \text{a.e. } \; x_{0}\in{{\Bbb R}} ^n. \end{eqnarray} $

固定$ x_{0}\in{{\Bbb R}} ^n $$ x_{0}\in Q = Q(x_{1}, r) $, 其中$ Q $是二进方体. 作$ f $的分解: $ f = f_{1}+f_{2} $, 其中, $ f_{1} = f\chi_{Q^{\ast}} $$ Q^{\ast} = Q(x_{1}, 2\sqrt{n}r) $. 下面根据$ r $的取值分两种情形考虑$ M^{\#, \Delta}_{\varepsilon, \varphi, \eta}(Tf) $.

情形1  $ r\in(0, 1) $.$ \varepsilon \in(0, 1) $可知, $ \forall\alpha, \beta\in{{\Bbb R}} $$ ||\alpha|^{\varepsilon}-|\beta|^{\varepsilon}|\leq |\alpha-\beta|^{\varepsilon} $. 从而, 选取$ C_{Q} = (Tf_{2})_{Q} $, 可得

$ \begin{eqnarray} &&\left(\frac{1}{|Q|}\int_{Q}||Tf(x)|^{\varepsilon}-|C_{Q}|^{\varepsilon}|{\rm d} x\right)^{\frac{1}{\varepsilon}}\leq \left(\frac{1}{|Q|}\int_{Q}|Tf(x)-(Tf_{2})_{Q}|^{\varepsilon}{\rm d} x\right)^{\frac{1}{\varepsilon}}{}\\ &\leq &C\left(\frac{1}{|Q|}\int_{Q}|Tf_{1}(x)|^{\varepsilon}{\rm d} x\right)^{\frac{1}{\varepsilon}}+C\left(\frac{1}{|Q|}\int_{Q}|Tf_{2}(x)-(Tf_{2})_{Q}|^{\varepsilon}{\rm d} x\right)^{\frac{1}{\varepsilon}}{}\\ &\leq &C\left(\frac{1}{|Q|}\int_{Q}|Tf_{1}(x)|^{\varepsilon}{\rm d} x\right)^{\frac{1}{\varepsilon}}+\frac{C}{|Q|}\int_{Q}|Tf_{2}(x)-(Tf_{2})_{Q}|{\rm d} x{}\\ & = &I_{1}+I_{2}. \end{eqnarray} $

对于$ I_{1} $, 注意到算子$ T $是弱$ (1, 1) $型的(引理2.2) 且$ \varphi(|Q^{\ast}|)\leq C_{n, \alpha_{0}} $, 由Kolmogorov不等式[7, p485]可得

$ \begin{eqnarray} I_{1}\leq \frac{C}{|Q|}\|f_{1}\|_{L^{1}({{\Bbb R}} ^n)}\leq \frac{C}{|Q^{\ast}|}\int_{Q^{\ast}}|f(y)|{\rm d} y\leq CM_{\varphi, \eta} f(x_{0}). \end{eqnarray} $

对于$ I_{2} $, 记

$ \begin{eqnarray} I_{2}& = &\frac{C}{|Q|}\int_{Q}\left|\frac{1}{|Q|}\int_{Q}\int_{{{\Bbb R}} ^n} (K(x, z)-K(y, z))f_{2}(z){\rm d} z{\rm d} y\right|{\rm d} x{}\\ &\leq&\frac{C}{|Q|}\int_{Q}\frac{1}{|Q|}\int_{Q}\int_{{{\Bbb R}} ^n\setminus Q^{\ast}} |K(x, z)-K(y, z)||f(z)|{\rm d} z{\rm d} y{\rm d} x{}\\ & = &\frac{C}{|Q|}\int_{Q}\frac{1}{|Q|}\int_{Q}\sum\limits_{l = 0}^{\infty}\int_{2^{l+1}Q^{\ast}\setminus 2^{l}Q^{\ast}} |K(x, z)-K(y, z)||f(z)|{\rm d} z{\rm d} y{\rm d} x. \end{eqnarray} $

选取$ l_{0} = \max\{l\in{\Bbb N}:2^{l}2\sqrt{n}r\leq 1\} $, 则

$ \begin{eqnarray} I_{2}&\leq & C\sum\limits_{l = 0}^{l_{0}}\frac{1}{|Q|}\int_{Q}\frac{1}{|Q|}\int_{Q}\int_{2^{l+1}Q^{\ast}\setminus 2^{l}Q^{\ast}} |K(x, z)-K(y, z)||f(z)|{\rm d} z{\rm d} y{\rm d} x{}\\ &&+C\sum\limits_{l = l_{0}+1}^{\infty}\frac{1}{|Q|}\int_{Q}\frac{1}{|Q|}\int_{Q}\int_{2^{l+1}Q^{\ast}\setminus 2^{l}Q^{\ast}} |K(x, z)-K(y, z)||f(z)|{\rm d} z{\rm d} y{\rm d} x{}\\ & = &I_{21}+I_{22}. \end{eqnarray} $

可以断言: (1) $ \forall y\in Q(x_{1}, r) $$ \forall z\in {{\Bbb R}} ^n\setminus Q^{\ast} $, 有$ |z-x_{1}|\sim |z-y| $. 这是因为由$ |y-x_{1}|\leq \sqrt{n}r $$ |z-x_{1}|\geq 2\sqrt{n}r $, 有

$ \begin{eqnarray} \frac{1}{2}|z-x_{1}|\leq |z-y| \leq \frac{3}{2}|z-x_{1}|. \end{eqnarray} $

(2) $ \forall z\in 2^{l+1}Q^{\ast}\setminus 2^{l}Q^{\ast} $, 有$ |z-x_{1}|\sim 2^{l}2\sqrt{n}r $. 事实上

$ \begin{eqnarray} 2^{l}2\sqrt{n}r\leq |z-x_{1}|\leq 2\sqrt{n} 2^{l}2\sqrt{n}r\Rightarrow |z-x_{1}|\sim 2^{l}2\sqrt{n}r. \end{eqnarray} $

下面接着估计$ I_{21} $. 由中值定理和(2.2)式(选取$ M = 1 $)可得

$ \begin{eqnarray} I_{21}&\leq &C\sum\limits_{l = 0}^{l_{0}}\frac{1}{|Q|}\int_{Q}\frac{1}{|Q|}\int_{Q}\int_{2^{l+1}Q^{\ast}\setminus 2^{l}Q^{\ast}} \frac{|x-y|}{|z-x_{1}|^{\frac{1+n+m}{\rho}}}|f(z)|{\rm d} z{\rm d} y{\rm d} x{}\\ &\leq& C\sum\limits_{l = 0}^{l_{0}}\frac{1}{|Q|}\int_{Q}\frac{1}{|Q|}\int_{Q}\int_{2^{l+1}Q^{\ast}\setminus 2^{l}Q^{\ast}} \frac{2\sqrt{n}r}{(2^{l}2\sqrt{n}r)^{\frac{1+n+m}{\rho}}}|f(z)|{\rm d} z{\rm d} y{\rm d} x{}\\ &\leq& C\sum\limits_{l = 0}^{l_{0}}\frac{2\sqrt{n}r}{(2^{l}2\sqrt{n}r)^{\frac{1+n+m}{\rho}}}\int_{2^{l+1}Q^{\ast}} |f(z)|{\rm d} z, \end{eqnarray} $

其中用到等价关系: $ \xi\in Q = Q(x_{1}, r) $时, $ |z-\xi|\sim|z-x_{1}| $. 注意到$ l_{0} $的取法以及$ m\leq -(1-\rho)(n+1) $, 可知(3.8)式被

$ \begin{eqnarray} C\sum\limits_{l = 0}^{l_{0}}\frac{1}{2^{l}}\frac{1}{|2^{l+1}Q^{\ast}|}\int_{2^{l+1}Q^{\ast}} |f(z)|{\rm d} z\leq C\sum\limits_{l = 0}^{l_{0}}\frac{1}{2^{l}}M_{\varphi, \eta} f(x_{0}) \end{eqnarray} $

控制. 于是, 由(3.9)式可得

$ \begin{eqnarray} I_{21}\leq CM_{\varphi, \eta} f(x_{0}). \end{eqnarray} $

因为$ \forall z\in 2^{l+1}Q^{\ast}\setminus 2^{l}Q^{\ast} $$ \forall y\in Q = Q(x_{1}, r) $都有

因此, 在(2.3)式中选取$ N = n+n\eta\alpha_{0}+1 $, 就有

$ \begin{eqnarray} I_{22}&\leq &C\sum\limits_{l = l_{0}+1}^{\infty}\frac{1}{|Q|}\int_{Q}\frac{1}{|Q|}\int_{Q}\int_{2^{l+1}Q^{\ast}\setminus 2^{l}Q^{\ast}} |K(y, z)||f(z)|{\rm d} z{\rm d} y{\rm d} x{}\\ &\leq& C\sum\limits_{l = l_{0}+1}^{\infty}\frac{1}{|Q|}\int_{Q}\frac{1}{|Q|}\int_{Q}\int_{2^{l+1}Q^{\ast}\setminus 2^{l}Q^{\ast}} \frac{|f(z)|}{|z-y|^{n+n\eta\alpha_{0}+1}}{\rm d} z{\rm d} y{\rm d} x{}\\ &\leq &C\sum\limits_{l = l_{0}+1}^{\infty}\frac{1}{|Q|}\int_{Q}\frac{1}{|Q|}\int_{Q}\int_{2^{l+1}Q^{\ast}\setminus 2^{l}Q^{\ast}} \frac{|f(z)|}{|z-x_{1}|^{n+n\eta\alpha_{0}+1}}{\rm d} z{\rm d} y{\rm d} x{}\\ &\leq &C\sum\limits_{l = l_{0}+1}^{\infty}\frac{1}{(2^{l}2\sqrt{n}r)^{n+n\eta\alpha_{0}+1}}\int_{2^{l+1}Q^{\ast}}|f(y)|{\rm d} y{}\\ &\leq &C\sum\limits_{l = l_{0}+1}^{\infty}\frac{1}{(2^{l}2\sqrt{n}r)}M_{\varphi, \eta} f(x_{0}){}\\ &\leq &CM_{\varphi, \eta} f(x_{0}). \end{eqnarray} $

综上所述, 有

$ \begin{equation} I_{2}\leq CM_{\varphi, \eta} f(x_{0}). \end{equation} $

于是, 当$ r\in (0, 1) $时, (3.2)式成立.

情形2   $ r\geq 1 $.$ \eta_{1} = \frac{\eta}{\varepsilon} $, 则有

$ \begin{eqnarray} &&\left(\frac{1}{\varphi(|Q|)^{\eta}|Q|}\int_{Q}|Tf(x)|^{\varepsilon}{\rm d} x\right)^{\frac{1}{\varepsilon}}{}\\ &\leq& \frac{C}{\varphi(|Q|)^{\eta_{1}}}\left(\frac{1}{|Q|}\int_{Q}|Tf_{1}(x)|^{\varepsilon}{\rm d} x\right)^{\frac{1}{\varepsilon}}+\frac{C}{\varphi(|Q|)^{\eta_{1}}}\left(\frac{1}{|Q|}\int_{Q}|Tf_{2}(x)|^{\varepsilon}{\rm d} x\right)^{\frac{1}{\varepsilon}}{}\\ &\leq& \frac{C}{\varphi(|Q|)^{\eta_{1}}}\left(\frac{1}{|Q|}\int_{Q}|Tf_{1}(x)|^{\varepsilon}{\rm d} x\right)^{\frac{1}{\varepsilon}}+\frac{C}{|Q|}\int_{Q}|Tf_{2}(x)|{\rm d} x{}\\ & = &L_{1}+L_{2}. \end{eqnarray} $

类似$ I_{1} $的估计并注意到$ \eta_{1}>\eta $, 有

$ \begin{eqnarray} L_{1}\leq \frac{C}{\varphi(|Q|)^{\eta_{1}}}\frac{1}{|Q|}\|f_{1}\|_{L^{1}({{\Bbb R}} ^n)}\leq \frac{C}{\varphi(|Q|)^{\eta}}\frac{1}{|Q|}\int_{Q^{\ast}}|f(y)|{\rm d} y\leq CM_{\varphi, \eta} f(x_{0}). \end{eqnarray} $

另外, 由于$ \forall z\in 2^{l+1}Q^{\ast}\setminus 2^{l}Q^{\ast} $$ \forall y\in Q $, 有

因此, 对$ L_{2} $采用情形1中估计$ I_{22} $的方法, 可得

$ \begin{eqnarray} L_{2}&\leq &\frac{C}{|Q|}\int_{Q}\int_{{{\Bbb R}} ^n\setminus Q^{\ast}}|K(x, y)||f(y)|{\rm d} y{\rm d} x{}\\ & = &C\sum\limits_{l = 0}^{\infty}\frac{1}{|Q|}\int_{Q}\int_{2^{l+1}Q^{\ast}\setminus 2^{l}Q^{\ast}}|K(x, y)||f(y)|{\rm d} y{\rm d} x{}\\ &\leq & \sum\limits_{l = 0}^{\infty}\frac{1}{|Q|}\int_{Q}\int_{2^{l+1}Q^{\ast}\setminus 2^{l}Q^{\ast}}\frac{|f(y)|}{|y-x|^{n+n\eta\alpha_{0}+1}}{\rm d} y{\rm d} x{}\\ &\leq & C\sum\limits_{l = 0}^{\infty}\frac{1}{2^{l}}M_{\varphi, \eta} f(x_{0}){}\\ &\leq & CM_{\varphi, \eta} f(x_{0}). \end{eqnarray} $

因此, 当$ r\geq 1 $时, (3.1)式仍成立. 定理1.1得证.

4 定理1.2的证明

本节采用文献[17, 19]的方法来证明定理1.2. 为此, 首先给出一些基本的概念和事实.

如果连续、单调不减的凸函数$ B(t):[0, \infty)\to[0, \infty) $, 它还满足$ B(0) = 0 $$ B(t)\to \infty $ ($ t\to\infty $), 则称$ B $为Young函数. 函数$ f $在方体$ Q $上的$ B $ -平均由Luxemburg范数定义为

$ \begin{eqnarray} \|f\|_{B, Q} = \inf\left\{\lambda>0:\frac{1}{|Q|}\int_{Q}B(\frac{|f(y)|}{\lambda}){\rm d} y\leq 1\right\}. \end{eqnarray} $

$ \bar{B} $是Young函数$ B $的互补Young函数, 则有广义Hölder不等式

$ \begin{eqnarray} \frac{1}{|Q|}\int_{Q}|f(y)g(y)|{\rm d} y\leq \|f\|_{B, Q}\|g\|_{\bar{B}, Q}. \end{eqnarray} $

给定Young函数$ B $, 则$ B $极大函数$ M_{B}f(x) $$ (\varphi, \eta) $-$ B $极大函数$ M_{B, \varphi, \eta}f(x) $分别定义为

其中$ \eta\in(0, \infty) $.

本文选取Young函数$ B(t) = t(1+\log^{+}t) $, 相应的$ B $极大函数记为$ M_{L\log L} $. 其互补Young函数$ \bar{B}(t)\thickapprox\text{e}^{t} $, 相应的$ \bar{B} $极大函数记为$ M_{\text{exp}L} $. 下面的引理给出了$ (\varphi, \eta) $ -极大函数$ M_{\varphi, \eta} f(x) $$ (\varphi, \eta) $-$ B $极大函数$ M_{L\log L, \varphi, \eta}f(x) $的比较[19].

引理4.1  设$ \eta\in(0, \infty) $$ M_{\varphi, \frac{\eta}{2}}f $局部可积, 则存在不依赖于$ f $$ x $的常数$ C_{1}, C_{2}>0 $, 使得

$ \begin{eqnarray} C_{2}M_{\varphi, \eta}M_{\varphi, \eta} f(x)\leq M_{L\log L, \varphi, \eta}f(x)\leq C_{1}M_{\varphi, \frac{\eta}{2}}M_{\varphi, \frac{\eta}{2}}f(x), f\in L_{loc}. \end{eqnarray} $

接下来建立二进Sharp$ (\varepsilon, \varphi, \eta) $ -极大函数$ M^{\#, \triangle}_{\varepsilon, \varphi, \eta}f(x) $的一个点态估计.

引理4.2   设$ b\in BMO $, $ 1\leq \eta<\infty $$ 0<\varepsilon<\kappa<1 $, 则

$ \begin{eqnarray} M^{\#, \triangle}_{\varepsilon, \varphi, \eta}([b, T]f)(x_{0})\leq C\|b\|_{BMO}(M^{\triangle}_{\kappa, \varphi, \eta}Tf(x_{0})+M_{L\log L, \varphi, \eta}f(x_{0}) \end{eqnarray} $

对几乎处处的$ x_{0}\in{{\Bbb R}} ^n $和任意的$ f\in C_{0}^{\infty}({{\Bbb R}} ^n) $成立.

   固定$ x\in{{\Bbb R}} ^n $$ x\in Q = Q(x_{0}, r) $, 其中$ Q $为二进方体. 作$ f $的分解: $ f = f_{1}+f_{2} $, 其中$ f_{1} = f\chi_{Q^{\ast}} $, $ Q^{\ast} = Q(x_{0}, 2\sqrt{n}r) $. 任给常数$ \lambda $, 有

为了证得(4.4)式, 下面根据$ r $的取值分两种情形讨论.

情形1   $ r\in(0, 1) $. 因为$ \varepsilon\in(0, 1) $, 所以有

为了估计$ J_{1} $, 选取$ \lambda = b_{Q^{\ast}} $($ b $在方体$ Q^{\ast} $上的平均). 然后, 对指数$ q $($ 1<q<\frac{\kappa}{\varepsilon} $)使用Hölder不等式, 再由$ BMO({{\Bbb R}} ^n) $中的John-Nirenberg不等式可得

$ \begin{eqnarray} J_{1}&\leq & C\left(\frac{1}{|Q^{\ast}|}\int_{Q^{\ast}}|b(x)-b_{Q^{\ast}}|^{q^{\prime}\varepsilon}{\rm d} x\right)^{\frac{1}{q^{\prime}\varepsilon}}\left(\frac{1}{|Q|}\int_{Q}|Tf(x)|^{q\varepsilon}{\rm d} x\right)^{\frac{1}{q\varepsilon}}{}\\ &\leq& C\|b\|_{BMO({{\Bbb R}} ^n)}M^{\Delta}_{\kappa, \varphi, \eta}(Tf)(x_{0}), \end{eqnarray} $

其中$ q^{\prime} $$ q $的共轭指标.

对于$ J_{2} $, 由算子$ T $的弱$ (1, 1) $有界性(引理2.2), Kolmogorov不等式以及广义Hölder不等式((4.2)式), 可得

$ \begin{eqnarray} J_{2}&\leq & \frac{C}{|Q|}\|(b-b_{Q^{\ast}})f_{1}\|_{L^{1}({{\Bbb R}} ^n)} {}\\ &\leq & \frac{C}{|Q^{\ast}|}\int_{Q^{\ast}}|b(x)-b_{Q^{\ast}}||f(x)|{\rm d} x{}\\ &\leq & C\|b-b_{Q^{\ast}}\|_{\exp{L}, Q^{\ast}}\|f\|_{L\log{L}, Q^{\ast}} {}\\ &\leq & C\|b\|_{BMO({{\Bbb R}} ^n)}M_{L\log{L}}f(x_{0}){}\\ &\leq& C\|b\|_{BMO({{\Bbb R}} ^n)}M_{L\log{L}, \varphi, \eta}f(x_{0}), \end{eqnarray} $

其中用到了$ r\in(0, 1) $时, $ \varphi(|Q^{\ast}|)\sim C $的等价关系以及不等式$ \|b-b_{Q^{\ast}}\|_{\exp{L}, Q^{\ast}}\leq C\|b\|_{BMO({{\Bbb R}} ^n)} $ (参见文献[17, p8-9]).

为估计$ J_{3} $, 令$ C_{Q} = (T((b-b_{Q^{\ast}})f_{2}))_{Q} $. 然后, 利用Hölder不等式可得

再取$ l_{0} = \max\{l\in{\Bbb N}:2^{l}2\sqrt{n}r\leq 1\} $, 则有

类似(3.8)式的估计, 由中值定理和(2.2)式(选取$ M = 1 $)可得

$ \begin{eqnarray} I_{31}&\leq & \frac{C}{|Q|^{2}}\int_{Q}\int_{Q}\sum\limits_{l = 0}^{l_{0}}\int_{2^{l+1}Q^{\ast}\setminus 2^{l}Q^{\ast}} \frac{|x-y|}{|z-x_{1}|^{\frac{1+n+m}{\rho}}}|f(z)|{\rm d} z{\rm d} y{\rm d} x{}\\ &\leq& \frac{C}{|Q|^{2}}\int_{Q}\int_{Q}\sum\limits_{l = 0}^{l_{0}}\int_{2^{l+1}Q^{\ast}\setminus 2^{l}Q^{\ast}} \frac{2\sqrt{n}r}{(2^{l}2\sqrt{n}r)^{\frac{1+n+m}{\rho}}}|b(z)-b_{Q^{\ast}}||f(z)|{\rm d} z{\rm d} y{\rm d} x{}\\ &\leq & C\sum\limits_{l = 0}^{l_{0}}\frac{2\sqrt{n}r}{(2^{l}2\sqrt{n}r)^{\frac{1+n+m}{\rho}}}\int_{2^{l+1}Q^{\ast}} |b(z)-b_{Q^{\ast}}||f(z)|{\rm d} z. \end{eqnarray} $

$ Q^{\ast}_{l} = 2^{l+1}Q^{\ast} $, 由$ m\leq -(1-\rho)(n+1) $可知

于是, 由广义Hölder不等式((4.2)式), 不等式$ \|b-b_{Q^{\ast}}\|_{\exp{L}, Q^{\ast}}\leq C\|b\|_{BMO({{\Bbb R}} ^n)} $$ |b_{Q^{\ast}_{l}}-b_{Q^{\ast}}|\leq Cl\|b\|_{BMO({{\Bbb R}} ^n)} $以及引理4.1, 可得

$ \begin{eqnarray} J_{31}&\leq & C\sum\limits_{l = 0}^{l_{0}}2^{-l}\bigg[\|b\|_{BMO({{\Bbb R}} ^n)}M_{L\log{L}, \varphi, \eta}f(x_{0})+l\|b\|_{BMO({{\Bbb R}} ^n)}M_{\varphi, \eta}(f)(x_{0})\bigg]{}\\ &\leq & C\sum\limits_{l = 0}^{\infty}2^{-l}l\|b\|_{BMO({{\Bbb R}} ^n)}(M_{L\log{L}, \varphi, \eta}f(x_{0})+M_{\varphi, \eta}M_{\varphi, \eta}(f)(x_{0})){}\\ &\leq& C\|b\|_{BMO({{\Bbb R}} ^n)}M_{L\log{L}, \varphi, \eta}f(x_{0}). \end{eqnarray} $

为估计$ J_{32} $, 在(2.3)式中取$ N = n+n\eta\alpha_{0}+1 $, 从而

于是

$ \begin{eqnarray} J_{32}&\leq & C\|b\|_{BMO({{\Bbb R}} ^n)} \sum\limits_{l = l_{0}+1}^{\infty}\frac{1}{2^{l}\varphi(|Q^{\ast}_{l}|)^{\eta}|Q^{\ast}_{l}|}\bigg[\|f\|_{L\log{L}, Q^{\ast}_{l}}+l\int_{Q^{\ast}_{l}}|f(z)|{\rm d} z\bigg]{}\\ &\leq &C\|b\|_{BMO({{\Bbb R}} ^n)}\sum\limits_{l = l_{0}+1}^{\infty}\frac{1}{2^{l}}(M_{L\log{L}, \varphi, \eta}f(x_{0})+lM_{\varphi, \eta}(f)(x_{0})){}\\ &\leq &C\|b\|_{BMO({{\Bbb R}} ^n)}M_{L\log{L}, \varphi, \eta}f(x_{0})\sum\limits_{l = 1}^{\infty}\frac{l}{2^{l}}{}\\ &\leq& C\|b\|_{BMO({{\Bbb R}} ^n)}M_{L\log{L}, \varphi, \eta}f(x_{0}). \end{eqnarray} $

综上所述, 有

$ \begin{equation} J_{3}\leq C\|b\|_{BMO({{\Bbb R}} ^n)}M_{L\log{L}, \varphi, \eta}f(x_{0}). \end{equation} $

于是, 当$ r\in(0, 1) $时, (4.4)式成立.

情形2   $ r\geq 1 $. 由于$ 0<\varepsilon<\kappa<1 $, $ \eta\geq 1 $, 记$ \eta_{2} = \frac{\eta}{\varepsilon}\geq \eta $, 则有

$ \begin{eqnarray} &&\left(\frac{1}{\varphi(|Q|)^{\eta}|Q|}\int_{Q}|[b, T]f(x)|^{\varepsilon}{\rm d} x\right)^{\frac{1}{\varepsilon}}{}\\ & = & \frac{C}{\varphi(|Q|)^{\eta_{2}}}\left(\frac{1}{|Q|}\int_{Q}|(b(x)-b_{Q^{\ast}})Tf(x)-T((b-b_{Q^{\ast}})f)(x)|^{\varepsilon}{\rm d} x\right)^{\frac{1}{\varepsilon}}{}\\ &\leq& \frac{C}{\varphi(|Q|)^{\eta_{2}}}\left(\frac{1}{|Q|}\int_{Q}|(b(x)-b_{Q^{\ast}})Tf(x)|^{\varepsilon}{\rm d} x\right)^{\frac{1}{\varepsilon}}{}\\ &&+ \frac{C}{\varphi(|Q|)^{\eta_{2}}}\left(\frac{1}{|Q|}\int_{Q}|T((b-b_{Q^{\ast}})f_{1})(x)|^{\varepsilon}{\rm d} x\right)^{\frac{1}{\varepsilon}}{}\\ &&+\frac{C}{\varphi(|Q|)^{\eta_{2}}}\left(\frac{1}{|Q|}\int_{Q}|T((b-b_{Q^{\ast}})f_{2})(x)|^{\varepsilon}{\rm d} x\right)^{\frac{1}{\varepsilon}}{}\\ & = &S_{1}+S_{2}+S_{3}. \end{eqnarray} $

为估计$ S_{1} $, 对指数$ q $($ 1<q<\frac{\kappa}{\varepsilon} $)使用Hölder不等式, 再由$ BMO({{\Bbb R}} ^n) $中的John-Nirenberg不等式可得

$ \begin{eqnarray} S_{1}&\leq& \left(\frac{1}{|Q^{\ast}|}\int_{Q^{\ast}}|b(x)-b_{Q^{\ast}}|^{q^{\prime}\varepsilon}{\rm d} x\right)^{\frac{1}{q^{\prime}\varepsilon}}\frac{C}{\varphi(|Q|)^{\eta_{2}}}\left(\frac{1}{|Q|}\int_{Q}|Tf(x)|^{q\varepsilon}{\rm d} x\right)^{\frac{1}{q\varepsilon}}{}\\ &\leq& C\|b\|_{BMO({{\Bbb R}} ^n)}M^{\Delta}_{q\varepsilon, \varphi, \eta}(Tf)(x_{0}){}\\ &\leq & C\|b\|_{BMO({{\Bbb R}} ^n)}M^{\Delta}_{\kappa, \varphi, \eta}(Tf)(x_{0}), \end{eqnarray} $

其中$ q^{\prime} $$ q $的共轭指标.

对于$ S_{2} $, 由算子$ T $的弱$ (1, 1) $有界性(引理2.2), Kolmogorov不等式以及广义Hölder不等式((4.2)式), 有

$ \begin{eqnarray} S_{2}&\leq & \frac{C}{\varphi(|Q|)^{\eta_{2}}|Q|}\|(b-b_{Q^{\ast}})f_{1}\|_{L^{1}({{\Bbb R}} ^n)}{}\\ &\leq & \frac{C}{\varphi(|Q|)^{\eta}|Q^{\ast}|}\int_{Q^{\ast}}|b(x)-b_{Q^{\ast}}||f(x)|{\rm d} x{}\\ &\leq & \frac{C}{\varphi(|Q|)^{\eta}}\|b-b_{Q^{\ast}}\|_{\exp{L}, Q^{\ast}}\|f\|_{L\log{L}, Q^{\ast}}{}\\ &\leq& C\|b\|_{BMO({{\Bbb R}} ^n)}\frac{1}{\varphi(|Q^{\ast}|)^{\eta}}\|f\|_{L\log{L}, Q^{\ast}}{}\\ &\leq &C\|b\|_{BMO({{\Bbb R}} ^n)}M_{L\log{L}, \varphi, \eta}f(x_{0}). \end{eqnarray} $

对于$ S_{3} $, 由Hölder不等式可知

于是, 在(2.3)式中取$ N = n+n\eta\alpha_{0}+1 $

$ \begin{eqnarray} S_{3}&\leq & \frac{C}{|Q|}\int_{Q}\sum\limits_{l = 0}^{\infty}\int_{Q^{\ast}_{l+1}\setminus Q^{\ast}_{l}} \frac{1}{|y-x|^{n+n\eta\alpha_{0}+1}}|b(y)-b_{Q^{\ast}}||f(y)|{\rm d} y{\rm d} x{}\\ &\leq & C\sum\limits_{l = 0}^{\infty}\frac{1}{2^{l}\varphi(|Q^{\ast}_{l+1}|)^{\eta}|Q^{\ast}_{l+1}|}\int_{Q^{\ast}_{l+1}} |b(y)-b_{Q^{\ast}}||f(y)|{\rm d} y{}\\ &\leq& C\|b\|_{BMO({{\Bbb R}} ^n)}M_{L\log{L}, \varphi, \eta}f(x_{0})\sum\limits_{l = 0}^{\infty}\frac{l}{2^{l}}{}\\ &\leq& C\|b\|_{BMO({{\Bbb R}} ^n)}M_{L\log{L}, \varphi, \eta}f(x_{0}). \end{eqnarray} $

因此, 当$ r\geq 1 $时, (4.4)式也成立. 综上所述, 引理4.2得证.

下面给出定理1.2的证明.

   首先, 选取$ \eta\geq p^{\prime} $, 由引理2.4, (3.1)式和引理2.3可得

其次, 选取$ \eta\geq 2p^{\prime} $, 由引理4.1和引理2.3可得

最后, 选取$ \eta\geq 2p^{\prime} $并利用引理2.4和引理4.2可得

综上, 定理1.2得证.

参考文献

Alvarez J , Hounie J .

Estimates for the kernel and continuity properties of pseudo-differential operators

Ark Mat, 1990, 28 (1): 1- 22

URL     [本文引用: 4]

Calderón A P , Vaillancourt R .

A class of bounded pseudo-differential operators

Proc Nat Acad Sci USA, 1972, 69, 1185- 1187

DOI:10.1073/pnas.69.5.1185      [本文引用: 1]

Chanillo S , Torchinsky A .

Sharp function and weighted $L^{p}$ estimates for a class of pseudodifferential operators

Ark Mat, 1986, 24 (1): 1- 25

[本文引用: 1]

Coifman R , Rochberg R , Weiss G .

Factorization theorems for Hardy spaces in several variables

Ann Math, 1976, 103 (2): 611- 635

URL     [本文引用: 1]

Deng Y , Chen Z , Long S .

Double weighted commutators theorem for pseudo-differential operators with smooth symbols

Czech Math J, 2020,

DOI:10.21136/CMJ.2020.0246-19      [本文引用: 1]

Fefferman C .

$L^{p}$ bounds for pseudo-differential operators

Israel J Math, 1973, 14, 413- 417

DOI:10.1007/BF02764718      [本文引用: 1]

García-Cuerva J, Rubio De Francia J L. Weighted Norm Inequalities and Related Topics. Amsterdam: North-Holland Publishing Co, 1985

[本文引用: 2]

Hörmander L .

Pseudo-differential operators and hypoelliptic equations

Proc Symp Pure Math, 1961, 4, 415- 426

URL     [本文引用: 3]

John F , Nirenberg L .

On functions of bounded mean oscillation

Comm Pure Appl Math, 1967, 10, 138- 183

URL     [本文引用: 1]

Hounie J , Kapp R A S .

Pseudodifferential operators on local Hardy spaces

J Fourier Anal Appl, 2009, 15 (2): 153- 178

DOI:10.1007/s00041-008-9021-5      [本文引用: 1]

Hung H D , Ky L D .

An Hardy estimate for commutators of pseudo-differential operators

Taiwanese J Math, 2015, 19 (4): 1097- 1109

URL     [本文引用: 1]

Journé J . Calderón-Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón. Berlin: Springer-Verlag, 1983

[本文引用: 1]

Kohn J J , Nirenberg L .

An algebra of pseudo-differential operators

Comm Pure Appl Math, 1965, 18, 269- 305

DOI:10.1002/cpa.3160180121      [本文引用: 1]

Laptev A .

Spectral asympotics of a class of Fourier integral operators

Trudy Moskov Mat Obshch, 1981, 43, 92- 115

URL     [本文引用: 1]

Michalowski N , Rule D J , Staubach W .

Weighted $L^{p}$ boundedness of pseudodifferential operators and applications

Canad Math Bull, 2012, 55 (3): 555- 570

DOI:10.4153/CMB-2011-122-7      [本文引用: 1]

Miller N .

Weighted Soblev spaces and pseudodifferential operators with smooth sybols

Trans Amer Math Soc, 1982, 269 (1): 91- 109

DOI:10.1090/S0002-9947-1982-0637030-4      [本文引用: 2]

Pérez C .

Endpoint estimates for commutators of singular integral operators

J Func Anal, 1995, 128, 163- 185

DOI:10.1006/jfan.1995.1027      [本文引用: 3]

Stein E M . Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals. Princeton: Princeton University Press, 1993

[本文引用: 3]

Tang L .

Weighted norm inequalities for pseudo-differential operators with smooth symbols and their commutators

J Funct Anal, 2012, 262 (4): 1603- 1629

DOI:10.1016/j.jfa.2011.11.016      [本文引用: 8]

Wu R , Wang S .

$A_{p}(\phi)$ weightes, BMO($\phi$), and Calderón-Zygmund operators of $\phi$-type

J Funct Spaces, 2018, 2018, 1- 9

[本文引用: 1]

/