数学物理学报, 2021, 41(1): 217-226 doi:

论文

时标上具非正中立项的二阶动力方程的动力学性质

张萍,1, 杨甲山,2

Dynamical Properties of Second-Order Dynamic Equations with a Nonpositive Neutral Coefficient on a Time Scale

Zhang Ping,1, Yang Jiashan,2

通讯作者: 杨甲山, E-mail: syxyyjs@163.com

收稿日期: 2019-12-6  

基金资助: 国家自然科学基金项目.  51765060
湖南省教育厅一般项目.  20C1683

Received: 2019-12-6  

Fund supported: the NSFC.  51765060
the Science Project of Hunan Provence EducationDepartment.  20C1683

作者简介 About authors

张萍,E-mail:411451097@qq.com , E-mail:411451097@qq.com

Abstract

This paper is concerned with dynamical behavior of second-order nonlinear non-autonomous delay dynamic equations with a nonpositive neutral coefficient on a time scale T. By using the time scales theory and combining with the classical inequality, we establish some new dynamical properties for the equations. The dynamical properties of dynamic equations are further generalized and perfected.

Keywords: Dynamical properties ; Time scales ; Dynamic equations ; Riccati substitutions ; Nonlinear

PDF (337KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张萍, 杨甲山. 时标上具非正中立项的二阶动力方程的动力学性质. 数学物理学报[J], 2021, 41(1): 217-226 doi:

Zhang Ping, Yang Jiashan. Dynamical Properties of Second-Order Dynamic Equations with a Nonpositive Neutral Coefficient on a Time Scale. Acta Mathematica Scientia[J], 2021, 41(1): 217-226 doi:

1 引言

研究时标T上具有非正中立项的二阶动力方程

$ \begin{equation} \{a(t)\vert [x(t)-p(t)x(\tau (t))]^\Delta \vert ^{\alpha -1}[x(t)-p(t)x(\tau (t))]^\Delta \}^\Delta +q(t)f(x(\delta (t))) = 0, t\in {\rm {\bf T}}, t\ge t_0 >0 \end{equation} $

的动力学性质(振动性).方程(1.1)的解及其振动的定义, 可参见文献[1-15]及其参考文献.假设

(H$ _{1} $)常数$ \alpha >0 $; T为任意时标且$ \sup {\rm {\bf T}} = \infty $; $ [t_0 , \infty )_{\rm {\bf T}} = [t_0 , \infty )\cap {\rm {\bf T}} $为时标区间.

(H$ _{2} $)函数$ a, p, q\in C_{rd} ({\rm {\bf T}}, {\rm {\bf R}} $), 并且$ a(t)>0 $, $ q(t)>0 $, $ 0\le p(t)\le p_0 <1 $(此处$ p_{0} $是常数).

(H$ _{3} $)时滞函数$ \tau \in C_{rd} ({\rm {\bf T}}, {\rm {\bf T}} $), 并且$ 0<\tau (t)\le t $, $ \mathop {\lim }\limits_{t\to \infty } \tau (t) = \infty $.

(H$ _{4} $)时滞函数$ \delta \in C_{rd} ({\rm {\bf T}}, {\rm {\bf T}} $)$ \Delta - $可微的, 并且$ 0<\delta (t)\le t $, $ \delta ^\Delta (t)>0 $, $ \mathop {\lim }\limits_{t\to \infty } \delta (t) = \infty $.

(H$ _{5} $)函数$ f\in C({\rm {\bf R}}, {\rm {\bf R}} $), 当$ u\ne 0 $$ uf(u)>0 $, 且存在常数$ k> $0, 使得$ \frac{f(u)}{\vert u\vert ^{\alpha -1}u}\ge k $.

我们考虑正则情形的方程是即方程(1.1)满足条件

$ \begin{equation} \int_{{\kern 1pt}{\kern 1pt}{\kern 1pt}{\kern 1pt}t_0 }^{{\kern 1pt}{\kern 1pt}{\kern 1pt}\infty } {a^{-1/\alpha }(u)} \Delta u = \infty \end{equation} $

时的振动准则.

最近, 时标上动力方程的有关理论特别是振动和非振动理论的研究引起了中外学者们的极大兴趣[1-12], 但我们注意到, 在讨论的各类二阶中立型动力方程中, 大多要求中立项系数函数是非负的[2-7], 当中立项系数是非正函数时, 研究成果相对较少.如Bohner等[8]研究了一类具有非正中立项的二阶$ p $-Laplace型动力方程

$ \begin{equation} (r(t)\vert z^\Delta (t)\vert ^{p-2}z^\Delta (t))^\Delta +q(t)\vert x(\delta (t))\vert ^{p-2}x(\delta (t)) = 0, t\in {\rm {\bf T}} \end{equation} $

的振动性, 其中$ z(t) = x(t)-a(t)x(\tau (t) $), $ p>1 $, $ 0\le a(t)\le a_0 <1 $, 结果如下.

定理1.1[8]  设$ \int_{{\kern 1pt}{\kern 1pt}{\kern 1pt}{\kern 1pt}t_0 }^{{\kern 1pt}{\kern 1pt}{\kern 1pt}\infty } {r^{-1/(p-1)}(u)} \Delta u = \infty $, $ \int_{{\kern 1pt}{\kern 1pt}{\kern 1pt}{\kern 1pt}t_0 }^{{\kern 1pt}{\kern 1pt}{\kern 1pt}\infty } {q(u)} \Delta u = \infty $, 如果存在一个函数$ \alpha \in C_{rd} ({\rm {\bf T}}, {\rm {\bf T}} $), 它满足$ \alpha (t)>t $, $ \mathop {\lim }\limits_{t\to \infty } \tau ^{-1}(\delta (\alpha (t))) = \infty $, 并使得一阶动力微分不等式

$ \begin{equation} u^\Delta (t)+Q(t)u(\tau ^{-1}(\delta (\alpha (t))))\le 0 \end{equation} $

没有最终正解, 其中函数$ Q(t) = \frac{1}{a_0 }\Big( \frac{1}{r(t)}\int_t^{\alpha (t)} q(s)\Delta s \Big)^{1/(p-1)} $, 则方程(1.3)是振动的.

显然, 定理1.1的条件验证起来有点麻烦, 导致使用不方便.之后, Zhang等[9]研究了一类具非正中立项的二阶动力方程

$ \begin{equation} \{[a(t)(x(t)-p(t)x(\tau (t)))^\Delta ]^\alpha \}^\Delta +q(t)x^\alpha (\delta (t)) = 0, t\in {\rm {\bf T}} \end{equation} $

的振动性, 得到了方程(1.5)振动的充分条件, 结果如下.

定理1.2[9]  设条件(H$ _{1} $)–(H$ _{4} $)及(1.2)式成立, $ \alpha \ge 1 $是两个正奇数之商, $ \delta ([t_0 , \infty )_{\rm {\bf T}} ) = [\delta (t_0 ), \infty )_{\rm {\bf T}} $, 如果

$ \begin{equation} \mathop {\limsup }\limits_{t\to \infty } \Bigg[ {\Big( {Q(t)+\alpha \int _t^\infty \delta ^\Delta (s)a^{-\frac{1}{\alpha}}(\delta (s))Q^{ {{\alpha +1} \over \alpha }}(\sigma (s))\Delta s } \Big)\Big( {\int_{t_0 }^{\delta (t)} a^{-\frac{1}{\alpha}}(s)\Delta s} \Big)^\alpha } \Bigg]>1, \end{equation} $

其中函数$ Q(t) = \int_t^\infty q(s)\Delta s $, 则方程(1.5)的所有解$ x(t $)或者振动或者满足$ \mathop {\lim }\limits_{t\to \infty } x(t) = 0 $.

显然定理1.2的条件(1.6)较好, 但是由于当$ \alpha $是大于0的任意实数时没有方程(1.5)的振动准则, 因此使用时就会受到许多制约.

本文的目的是利用广义Riccati变换技术, 并结合时标上的有关理论(特别是时标上的微积分理论)和一些经典不等式来研究方程(1.1), 并获得了方程(1.1)的一系列新的振动准则, 改进并丰富了动力方程的有关理论, 并给出了一些有趣的例子来说明本文的结论.

2 几个引理

引理2.1  设条件(H$ _{1} $)–(H$ _{5} $)及(1.2)式成立, 函数$ x(t $)是方程(1.1)的最终正解, 令

$ \begin{equation} z(t) = x(t)-p(t)x(\tau (t)), \end{equation} $

$ z(t $)最终必为下列两种情形之一

(A$ _{1}) \quad z(t)> $0, $ z^{\Delta }(t)> $0, $ [a(t)\vert z^\Delta (t)\vert ^{\alpha -1}z^\Delta (t)]^\Delta \le 0 $;

(A$ _{2}) \quad z(t)< $0, $ z^{\Delta }(t)> $0, $ [a(t)\vert z^\Delta (t)\vert ^{\alpha -1}z^\Delta (t)]^\Delta \le 0 $.

  因为$ x(t $)是方程(1.1)的最终正解, 所以$ \exists {\kern 1pt}{\kern 1pt}t_1 \in [t_0 , \infty )_{\rm {\bf T}} $, 使得$ x(t)>0 $, $ x(\tau (t))>0 $, $ x(\delta (t))>0 $, $ t\in [t_1 , \infty )_{\rm {\bf T}} $.由方程(1.1)得

$ \begin{eqnarray} [a(t)\vert z^\Delta (t)\vert ^{\alpha -1}z^\Delta (t)]^\Delta &\le& -kq(t)\left| {x(\delta (t))} \right|^{\alpha -1}x(\delta (t)){}\\ & = &-kq(t)x^\alpha (\delta (t))\le 0, t\in [t_1 , \infty )_{\rm {\bf T}} , \end{eqnarray} $

所以函数$ a(t)\vert z^\Delta (t)\vert ^{\alpha -1}z^\Delta (t $)$ t\in [t_1 , \infty )_{\rm {\bf T}} $时单调递减且最终定号, 于是可导出$ z^\Delta (t $)也最终定号, 即存在$ t_2 \in [t_1 , \infty )_{\rm {\bf T}} , $使得$ z^{\Delta }(t)> $0$ z^{\Delta }(t)< $0($ t\in [t_2 , \infty )_{\rm {\bf T}} $).

我们断言: $ z^{\Delta }(t)> $0, $ t\in [t_2 , \infty )_{\rm {\bf T}} $.

若不然, 即有$ z^{\Delta }(t)< $0($ t\in [t_2 , \infty )_{\rm {\bf T}} $).则利用$ a(t)\vert z^\Delta (t)\vert ^{\alpha -1}z^\Delta (t $)的单调性, 当$ t\in [t_2 , \infty )_{\rm {\bf T}} $时, 有

其中常数$ M = -a(t_2 )\vert z^\Delta (t_2 )\vert ^{\alpha -1}z^\Delta (t_2 ) = a(t_2 )\vert z^\Delta (t_2 )\vert ^{\alpha -1}[-z^\Delta (t_2 )]>0 $.于是

所以

于是, 根据条件(1.2)知

$ \begin{equation} \mathop {\lim }\limits_{t\to \infty } z(t) = -\infty . \end{equation} $

如果$ x(t $)有界, 则由$ z(t $)的定义, $ z(t $)也有界, 这与(2.3)式矛盾!

如果$ x(t $)无界, 则有序列$ \{s_k \} $, $ s_k \in [t_2 , \infty )_{\rm {\bf T}} (k $ = 1, 2, 3, $ \cdots $), 它满足$ \mathop {\lim }\limits_{k\to \infty } s_k = \infty $, 并且使得$ \mathop {\lim }\limits_{k\to \infty } x(s_k ) = \infty $.

显然, $ \mathop {\lim }\limits_{k\to \infty } x(\bar {s}_k ) = \infty $.因为$ \mathop {\lim }\limits_{t\to \infty } \tau (t) = \infty $, 所以, 存在正数$ K $, 当$ k>K $时, 有$ \tau (s_k )>t_0 $.注意到$ \tau (t)<t $, 因此当$ k>K $时, 有

从而

这与(2.3)式矛盾!

故当$ t\in [t_2 , \infty )_{\rm {\bf T}} $时必有$ z^{\Delta }(t)> $0.于是函数$ z(t $)最终必是情形(A$ _{1} $)或(A$ _{2} $)之一.

引理2.2  设函数$ x(t $)是方程(1.1)的最终正解, 且$ z(t $)为引理2.1中的情形(A$ _{2} $), 则$ \mathop {\lim }\limits_{t\to \infty } x(t) = 0 $.

  因为$ z(t)< $0, $ z^{\Delta }(t)> $0, 所以$ \mathop {\lim }\limits_{t\to \infty } z(t) = l\le 0 $, 其中$ l $是常数.因此函数$ z(t $)最终是有界的.与引理2.1中的证明类似, 可推得$ x(t $)也是有界的: $ \mathop {\limsup }\limits_{t\to \infty } x(t) = c $, 则$ 0\le c<\infty $.

$ c>0 $, 则存在数列$ \{s_k \} $, $ s_k \in [t_0 , \infty )_{\rm {\bf T}}\ (k = 1, 2, 3, \cdots $), 满足$ \mathop {\lim }\limits_{k\to \infty } s_k = \infty $, 并使得$ \mathop {\lim }\limits_{k\to \infty } x(s_k ) = c $.于是对$ \varepsilon = \frac{1-p_0 }{2p_0 }c>0 $, 存在正数$ K $, 当$ k>K $时, 就有$ x(\tau (s_k ))<c+\varepsilon $, 故

进一步, 得

矛盾!因此$ c = 0 $, 从而$ \mathop {\lim }\limits_{t\to \infty } x(t) = 0 $.

引理2.3[3]  若$ x(t $)$ \Delta $ -可微的且最终为正或最终为负时, 则

引理2.4[4]  设$ A>0, B>0 $, $ \lambda >0 $为常数, 则

引理2.5[4] (Hölder不等式)  设$ a, b\in {\rm {\bf T}} $$ a<b $, 函数$ f, g:[a, b]\to {\rm {\bf R}} $是rd -连续函数, 则

3 主要结果及证明

定理3.1  设条件(H$ _{1} $)–(H$ _{5} $)及(1.2)式成立, 若有函数$ \varphi \in C_{rd}^1 ({\rm {\bf T}}, (0, \infty ) $)使得

$ \begin{equation} \mathop {\limsup }\limits_{t\to \infty } \int_{t_1 }^t \Bigg\{ k\varphi (s)q(s)-\frac{a(\delta (s))\vert \varphi^\Delta (s)\vert ^{\alpha +1}}{(\alpha +1)^{\alpha +1}[\varphi (s)\delta ^\Delta (s)]^\alpha }\Bigg\}\Delta s = \infty , \end{equation} $

常数$ t_1 \ge t_0 $充分大, 则在区间$ [t_0 , \infty )_{\rm {\bf T}} $上方程(1.1)的所有$ x(t $)或者振动或者$ \mathop {\lim }\limits_{t\to \infty } x(t) = 0 $.

  设函数$ x(t $)为方程(0.1)的一个非振动解, 不妨设$ x(t $)最终为正(当$ x(t $)最终为负时类似可证), 即$ x(t)>0 $, $ x(\tau (t))>0 $, $ x(\delta (t))>0(t\in [t_1 , \infty )_{\rm {\bf T}} $).根据引理2.1, $ z(t $)必为(A$ _{1} $), (A$ _{2} $)两种情形之一.

若属于情形(A$ _{2} $), 则由引理2.2, $ \mathop {\lim }\limits_{t\to \infty } x(t) = 0 $.

若属于情形(A$ _{1} $), 即$ z(t)> $0, $ z^{\Delta }(t)> $0.$ z(t $)的定义, 可得

$ \begin{equation} x(t) = z(t)+p(t)x(\tau (t))\ge z(t). \end{equation} $

由(2.2)式可导出

$ \begin{equation} a(\sigma (t))[z^\Delta (\sigma (t))]^\alpha \le a(t)[z^\Delta (t)]^\alpha \le a(\delta (t))[z^\Delta (\delta (t))]^\alpha , \end{equation} $

并且

$ \begin{eqnarray} z(t)& = &z(t_1 )+\int_{{\kern 1pt}{\kern 1pt}t_1 }^{{\kern 1pt}{\kern 1pt}t} {\frac{[a(s)(z^\Delta (s))^\alpha ]^{1/\alpha }}{a^{1/\alpha }(s)}} \Delta s{}\\ &\ge &a^{1/\alpha }(t)z^\Delta (t)\int_{{\kern 1pt}{\kern 1pt}t_1 }^{{\kern 1pt}{\kern 1pt}t} {\frac{1}{a^{1/\alpha }(s)}} \Delta s{}\\ & = &\xi (t)z^\Delta (t). \end{eqnarray} $

根据引理2.3, 易推得[4]

$ \begin{eqnarray} [(z(\delta(t)))^\alpha]^{\Delta}\ge \Bigg\{ \begin{array}{ll} \alpha z^\Delta(\delta(t))\delta^\Delta(t)(z(\delta(t)))^{\alpha-1}, &\alpha>1, \\ \alpha z^\Delta(\delta(t))\delta^\Delta(t)(z(\delta(\sigma(t))))^{\alpha-1}, &0<\alpha\le 1. \end{array} \Bigg. \end{eqnarray} $

$ \begin{equation} W(t) = \varphi (t)\frac{a(t)\vert z^\Delta (t)\vert ^{\alpha -1}z^\Delta (t)}{z^\alpha (\delta (t))} = \varphi (t)\frac{a(t)(z^\Delta (t))^\alpha }{z^\alpha (\delta (t))}, t\in [t_1 , \infty )_{\rm {\bf T}} , \end{equation} $

$ W(t)>0\ (t\in [t_1 , \infty )_{\rm {\bf T}} $).

$ \alpha >1 $时, 分别注意到(2.2), (3.5), (3.2)和(3.3)式, 则由(3.6)式可推出

$ \begin{eqnarray} W^\Delta (t)& = &\frac{\varphi (t)}{z^\alpha (\delta (t))}[a(t)\vert z^\Delta (t)\vert ^{\alpha -1}z^\Delta (t)]^\Delta {}\\ &&+a(\sigma (t))(z^\Delta (\sigma (t)))^\alpha \frac{\varphi ^\Delta (t)z^\alpha (\delta (t))-\varphi (t)[z^\alpha (\delta (t))]^\Delta }{z^\alpha (\delta (t))z^\alpha (\delta (\sigma (t)))}{}\\ &\le& -k\frac{\varphi (t)q(t)x^\alpha (\delta (t))}{z^\alpha (\delta (t))}+\varphi ^\Delta (t)\frac{a(\sigma (t))(z^\Delta (\sigma (t)))^\alpha }{z^\alpha (\delta (\sigma (t)))}{}\\ &&-a(\sigma (t))(z^\Delta (\sigma (t)))^\alpha \varphi (t)\frac{\alpha z^\Delta (\delta (t))\delta ^\Delta (t)z^{\alpha -1}(\delta (t))}{z^\alpha (\delta (t))z^\alpha (\delta (\sigma (t)))}{}\\ &\le& -k\varphi (t)q(t)+\varphi ^\Delta (t)\frac{a(\sigma (t))(z^\Delta (\sigma (t)))^\alpha }{z^\alpha (\delta (\sigma (t)))}{}\\ &&-\alpha \varphi (t)\delta ^\Delta (t)\frac{a(\sigma (t))(z^\Delta (\sigma (t)))^\alpha }{z^\alpha (\delta (\sigma (t)))}\cdot \frac{z^\Delta (\delta (t))}{z(\delta (t))}. \end{eqnarray} $

由(3.3)式, 可得

将其代入(3.7)式, 并注意到$ z(\delta (t))\le z(\delta (\sigma (t)) $)及(3.6)式, 则可推出

$ \begin{eqnarray} W^\Delta (t)&\le& -k\varphi (t)q(t)+\varphi ^\Delta (t)\frac{a(\sigma (t))(z^\Delta (\sigma (t)))^\alpha }{z^\alpha (\delta (\sigma (t)))}{}\\ & &-\alpha {\kern 1pt}\varphi (t)\delta ^\Delta (t)a(\sigma (t))\frac{(z^\Delta (\sigma (t)))^{\alpha +1}}{z^{\alpha +1}(\delta (\sigma (t)))}\left[ {\frac{a(\sigma (t))}{a(\delta (t))}} \right]^{1/\alpha }{}\\ & = &-k\varphi (t)q(t)+\frac{\varphi ^\Delta (t)}{\varphi (\sigma (t))}W(\sigma (t))-\frac{\alpha {\kern 1pt}\varphi (t)\delta ^\Delta (t)}{a^{1/\alpha }(\delta (t))\varphi ^{(\alpha +1)/\alpha }(\sigma (t))}W^{\frac{\alpha +1}{\alpha }}(\sigma (t)). \end{eqnarray} $

$ 0<\alpha \le 1 $时, 利用完全相同的方法, 可得到相同的(3.8)式.

现将引理2.4中的不等式用于(3.8)式, 则可导出

于是

$ \begin{eqnarray} &&\int_{t_1 }^t \left\{ {k\varphi (s)q(s)-\frac{a(\delta (s))\vert \varphi ^\Delta (s)\vert ^{\alpha +1}}{(\alpha +1)^{\alpha +1}[\varphi (s)\delta ^\Delta (s)]^\alpha }} \right\}\Delta s{}\\ &\le& -\int _{t_1 }^t W^\Delta (s)\Delta s = W(t_1 )-W(t)\le W(t_1 ), \end{eqnarray} $

这与条件(3.1)矛盾.证毕.

若定理3.1中的条件(3.1)不成立, 则有如下定理.

定理3.2  设条件(H$ _{1} $)–(H$ _{5} $)及(1.2)式成立, 如果存在函数$ \varphi \in C_{rd}^1 ({\rm {\bf T}}, (0, \infty ) $)$ \zeta _1 , $$ \zeta _2 \in C_{rd} ({\rm {\bf T}}, {\rm {\bf R}} $)使得

$ \begin{equation} \mathop {\limsup }\limits_{t\to \infty } \int _u^t \varphi (s)q(s)\Delta s\ge \zeta _1 (u), \end{equation} $

$ \begin{equation} \mathop {\limsup }\limits_{t\to \infty } \int _u^t \frac{a(\delta (s))\vert \varphi ^\Delta (s)\vert ^{\alpha +1}}{[\varphi (s)\delta ^\Delta (s)]^\alpha }\Delta s\le \zeta _2 (u) \end{equation} $

对一切$ u\ge t_1 \ge t_0 $成立, 并且函数$ \zeta _1 $$ \zeta _2 $满足

$ \begin{equation} \mathop {\liminf}\limits_{t\to \infty } \int _{t_1 }^t \frac{{\kern 1pt}\varphi (s)\delta ^\Delta (s)[\zeta _1^\sigma (s)-\omega \zeta _2^\sigma (s)]_+^{(\alpha +1)/\alpha } }{a^{1/\alpha }(\delta (s))\varphi ^{(\alpha +1)/\alpha }(\sigma (s))}\Delta s = \infty , \end{equation} $

常数$ t_1 \ge t_0 $充分大, $ \omega = \frac{1}{k(\alpha +1)^{\alpha +1}} $, 而函数$ \zeta _+ (t) = \max \{\zeta (t), 0\} $.则在$ [t_0 , \infty )_{\rm {\bf T}} $上方程(1.1)的每一个解$ x(t $)或者振动或者$ \mathop {\lim }\limits_{t\to \infty } x(t) = 0 $.

  证明的前面部分与定理3.1完全相同, 可得(3.8)和(3.9)式.将(3.8)式中的$ t $改成$ s $, 再两边从$ t_{1} $$ t $积分, 得

注意到条件(3.10), 由上式就可导出

$ \begin{equation} \mathop {\liminf}\limits_{t\to \infty } \int _{t_1 }^t \frac{\alpha {\kern 1pt}\varphi (s)\delta ^\Delta (s)W^{\frac{\alpha +1}{\alpha }}(\sigma (s))}{a^{1/\alpha }(\delta (s))\varphi ^{(\alpha +1)/\alpha }(\sigma (s))}\Delta s-\mathop {\liminf}\limits_{t\to \infty } \int _{t_1 }^t \frac{\vert \varphi ^\Delta (s)\vert }{\varphi (\sigma (s))}W(\sigma (s))\Delta s\le C_0 , \end{equation} $

($ C_0 = W(t_1 )-k\zeta _1 (t_1 $)为常数).于是, 根据上式, 我们可进一步推出

$ \begin{equation} \mathop {\liminf}\limits_{t\to \infty } \int _{t_1 }^t \frac{\varphi (s)\delta ^\Delta (s)W^{(\alpha +1)/\alpha }(\sigma (s))}{a^{1/\alpha }(\delta (s))\varphi ^{(\alpha +1)/\alpha }(\sigma (s))}\Delta s<\infty . \end{equation} $

事实上, 如果(3.14)式不成立, 则存在数列{$ a_{n} $}: $ a_n \in [t_1 , \infty )_{\rm {\bf T}}\ (n = 1, 2, 3, \cdots $), 满足$ \mathop {\lim }\limits_{n\to \infty } a_n = \infty $, 并且使得

$ \begin{equation} \mathop {\lim }\limits_{n\to \infty } \int _{t_1 }^{a_n } \frac{\varphi (s)\delta ^\Delta (s)W^{(\alpha +1)/\alpha }(\sigma (s))}{a^{1/\alpha }(\delta (s))\varphi ^{(\alpha +1)/\alpha }(\sigma (s))}\Delta s = \infty , \end{equation} $

结合(3.13)和(3.15)式, 则可推得

$ \begin{equation} \mathop {\lim }\limits_{n\to \infty } \int _{t_1 }^{a_n } \frac{\vert \varphi ^\Delta (s)\vert }{\varphi (\sigma (s))}W(\sigma (s))\Delta s = \infty . \end{equation} $

综合(3.13), (3.15)及(3.16)式知, 存在充分大的正数$ N $, 使得当$ n>N $时就有

因此, 对$ 0<\varepsilon <1 $$ n>N $, 由上式可进一步导出

$ \begin{equation} \frac{\int _{t_1 }^{a_n } \frac{\vert \varphi ^\Delta (s)\vert W(\sigma (s))}{\varphi (\sigma (s))}\Delta s}{\int _{t_1 }^{a_n } \frac{\varphi (s)\delta ^\Delta (s)W^{(\alpha +1)/\alpha }(\sigma (s))}{a^{1/\alpha }(\delta (s))\varphi ^{(\alpha +1)/\alpha }(\sigma (s))}\Delta s}>1-\varepsilon >0. \end{equation} $

于是, 利用由引理2.5, 可得

$ \begin{eqnarray} &&\int _{t_1 }^{a_n } \frac{\vert \varphi ^\Delta (s)\vert W(\sigma (s))}{\varphi (\sigma (s))}\Delta s{}\\ & = &\int _{t_1 }^{a_n } \left[ {\frac{\varphi (s)\delta ^\Delta (s)W^{(\alpha +1)/\alpha }(\sigma (s))}{a^{1/\alpha }(\delta (s))\varphi ^{(\alpha +1)/\alpha }(\sigma (s))}} \right]^{\alpha /(\alpha +1)}\cdot \frac{a^{1/(\alpha +1)}(\delta (s))\vert \varphi ^\Delta (s)\vert }{[\varphi (s)\delta ^\Delta (s)]^{\alpha /(\alpha +1)}}\Delta s{}\\ &\le& \left[ {\int _{t_1 }^{a_n } \frac{\varphi (s)\delta ^\Delta (s)W^{(\alpha +1)/\alpha }(\sigma (s))}{a^{1/\alpha }(\delta (s))\varphi ^{(\alpha +1)/\alpha }(\sigma (s))}\Delta s} \right]^{\alpha /(\alpha +1)}\cdot \left[ {\int _{t_1 }^{a_n } \frac{a(\delta (s))\vert \varphi ^\Delta (s)\vert ^{\alpha +1}}{[\varphi (s)\delta ^\Delta (s)]^\alpha }\Delta s} \right]^{1/(\alpha +1)}.{\qquad} \end{eqnarray} $

上式两边($ \alpha +1 $)次方, 利用(3.17)式, 就可推出

$ \begin{eqnarray} 0&<&(1-\varepsilon )^\alpha \int _{t_1 }^{a_n } \frac{\vert \varphi ^\Delta (s)\vert W(\sigma (s))}{\varphi (\sigma (s))}\Delta s{}\\ & = &\frac{\left[ {\int {_{t_1 }^{a_n } } \frac{\vert \varphi ^\Delta (s)\vert W(\sigma (s))}{\varphi (\sigma (s))}\Delta s} \right]^{\alpha +1}}{\left[ {\int {_{t_1 }^{a_n } } \frac{\varphi (s)\delta ^\Delta (s)W^{(\alpha +1)/\alpha }(\sigma (s))}{a^{1/\alpha }(\delta (s))\varphi ^{(\alpha +1)/\alpha }(\sigma (s))}\Delta s} \right]^\alpha }\le \int _{t_1 }^{a_n } \frac{a(\delta (s))\vert \varphi ^\Delta (s)\vert ^{\alpha +1}}{[\varphi (s)\delta ^\Delta (s)]^\alpha }\Delta s, \end{eqnarray} $

根据条件(3.11)知, 上式右边的积分是有界的, 从而

这与(3.16)式矛盾!这就证明(3.14)式.

另一方面, 由(3.9)式, 得

对一切$ t\ge u\ge t_1 \ge t_0 $成立.利用(3.10)和(3.11)式, 上式取上极限, 就有

也就是说

$ \begin{equation} \zeta _1 (u)-\omega \zeta _2 (u)\le k^{-1}w(u). \end{equation} $

于是, 分别注意到(3.20)式和(3.14)式, 则有

这就与条件(3.12)矛盾!证毕.

例3.1  考虑具非正中立项的二阶动力方程

$ \begin{equation} \Big\{ {t\Big| {[ {x(t)-(\frac{1}{2}+\frac{1}{t})x(\frac{t}{2})} ]^\Delta } \Big|^{4/3}[ {x(t)-(\frac{1}{2}+\frac{1}{t})x(\frac{t}{2})} ]^\Delta } \Big\}^\Delta +\frac{1}{t^2}\Big| {x^{4/3}(\frac{t}{2})} \Big|x(\frac{t}{2}) = 0, \;t\in [2, \infty )_{\rm {\bf T}} , \end{equation} $

这相当于方程(1.1)中$ a(t) = t $, $ p(t) = \frac{1}{2}+\frac{1}{t} $, $ q(t) = \frac{1}{t^2} $, $ \tau (t) = \delta (t) = \frac{t}{2} $, $ f(u) = u $$ \alpha = \frac{7}{3} $的情形.由于

显然, 条件(H$ _{1} $)–(H$ _{5} $)及(1.2)式都满足.现在定理3.1中取$ \varphi (t) = t $, 则

根据定理3.1, 方程(3.21)的每一个解$ x(t $)或者振动或者满足$ \mathop {\lim }\limits_{t\to \infty } x(t) = 0 $.

注3.1  由例3.1看出, 本文定理的条件验证起来非常简单且方便.另一方面, 由于方程()是具有非正中立项的, 因此文献[1-7, 10-12]中的定理都不能用于方程(3.21).

例3.2  考虑具负中立项的二阶动力方程

$ \begin{equation} [t^{\frac{2}{5}}(x(t)-\frac{1}{2}x(\frac{t}{2}))^\Delta ]^\Delta +t^{-\frac{11}{10}}x(\frac{t}{2}) = 0, t\in {\rm {\bf T}} = 2^{\rm {\bf Z}}, t\ge t_0 = 2, \end{equation} $

这是具非正中立项的二阶非线性的- 2差分方程, 相当于方程(1.1)中$ \tau (t) = \delta (t) = \frac{t}{2} $, $ a(t) = t^{\frac{2}{5}} $, $ p(t) = -\frac{1}{2} $, $ q(t) = t^{-\frac{11}{10}} $, $ \alpha = 1 $, $ k = 1 $.可以验证

若取$ \varphi (t) = 1 $, 则当$ t\ge 2 $时, 有

且有

以上三式说明, 条件(3.10)–(3.12)均满足, 因此, 由定理3.2, 方程(3.22)的每一个解$ x(t $)或者振动或者满足$ \mathop {\lim }\limits_{t\to \infty } x(t) = 0 $.

注3.2  因为(取$ \varphi (t) = 1 $)

所以定理3.1的条件(3.1)不满足, 因此定理3.1不能用于方程(3.1).此外, 由于方程(3.22)是具有非正中立项的, 因此, 现有文献如[1-12]中定理都不能应用于方程(3.22).

参考文献

Bohner M , Peterson A . Dynamic Equations on Time Scales:An Introduction with Applications. Boston: Birkhauser, 2001

[本文引用: 4]

孙玉虹, 李德生, 李玉双.

具有阻尼项的二阶非线性时滞中立型动力方程的振动性

浙江大学学报(理学版), 2018, 45 (2): 131- 135

URL     [本文引用: 1]

Sun Y H , Li D S , Li Y S .

Oscillation of second-order nonlinear delay neutral dynamic equations with damping term

Journal of Zhejiang University (Science Edition), 2018, 45 (2): 131- 135

URL     [本文引用: 1]

杨甲山, 李同兴.

时间模上一类二阶阻尼Emden-Fowler型动态方程的振荡性

数学物理学报, 2018, 38A (1): 134- 155

DOI:10.3969/j.issn.1003-3998.2018.01.013      [本文引用: 1]

Yang J S , Li T X .

Oscillation for a class of second-order damped Emden-Fowler dynamic equations on time scales

Acta Mathematica Scientia, 2018, 38A (1): 134- 155

DOI:10.3969/j.issn.1003-3998.2018.01.013      [本文引用: 1]

杨甲山.

时间尺度上二阶Emden-Fowler型延迟动态方程的振动性

振动与冲击, 2018, 37 (16): 154- 161

URL     [本文引用: 3]

Yang J S .

Oscillation for a class of second-order Emden-Fowler-type delay dynamic equations on time scales

Journal of Vibration and Shock, 2018, 37 (16): 154- 161

URL     [本文引用: 3]

杨甲山.

时间模上一类二阶非线性延迟动力系统的振动性分析

应用数学学报, 2018, 41 (3): 388- 402

URL    

Yang J S .

Oscillation analysis of second-order nonlinear delay dynamic equations on time scales

Acta Mathematicae Applicatae Sinica, 2018, 41 (3): 388- 402

URL    

韩忠月.

二阶非线性中立型动力方程的振动定理

华中师范大学学报(自然科学版), 2014, 48 (5): 627- 631

URL    

Han Z Y .

Oscillation theorems for second-order nonlinear neutral dynamic equations

Journal of Central China Normal University (Natural Sciences), 2014, 48 (5): 627- 631

URL    

杨甲山, 覃桂茳, 覃学文, .

一类二阶Emden-Fowler型微分方程的若干振动条件

浙江大学学报(理学版), 2019, 46 (3): 302- 308

URL     [本文引用: 2]

Yang J S , Qin G J , Qin X W , et al.

New oscillatory conditions of a class of the second-order Emden-Fowler differential equations

Journal of Zhejiang University (Science Edition), 2019, 46 (3): 302- 308

URL     [本文引用: 2]

Bohner M , Li T X .

Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient

Applied Mathematics Letters, 2014, 37: 72- 76

DOI:10.1016/j.aml.2014.05.012      [本文引用: 2]

Zhang M , Chen W , El-Sheikh Mma , et al.

Oscillation criteria for second-order nonlinear delay dynamic equations of neutral type

Advances in Difference Equations, 2018, 2018: 26

DOI:10.1186/s13662-018-1474-5      [本文引用: 2]

Deng X H , Wang Q R , Zhou Z .

Oscillation criteria for second order neutral dynamic equations of Emden-Fowler type with positive and negative coefficients on time scales

Sci China Math, 2017, 60: 113- 132

DOI:10.1007/s11425-016-0070-y      [本文引用: 1]

邱仰聪, 王其如.

具可变号系数的二阶时标动态方程的振动准则

应用数学学报, 2016, 39 (1): 121- 129

URL    

Qiu Y C , Wang Q R .

Oscillation criteria for second-order dynamic equations with oscillatory coefficients on time scales

Acta Mathematicae Applicatae Sinica, 2016, 39 (1): 121- 129

URL    

覃桂茳, 杨甲山.

时标上一类二阶非线性动态方程振动性的新准则

安徽大学学报(自然科学版), 2019, 43 (1): 24- 31

URL     [本文引用: 3]

Qin G J , Yang J S .

New criteria for oscillation of certain second-order nonlinear dynamic equations on time scales

Journal of Anhui University (Natural Science Edition), 2019, 43 (1): 24- 31

URL     [本文引用: 3]

罗李平, 俞元洪, 曾云辉.

三阶非线性时滞微分方程振动性的新准则

应用数学和力学, 2013, 34 (9): 941- 947

URL    

Luo L P , Yu Y H , Zeng Y H .

New criteria for oscillation of third order nonlinear delay differential equations

Applied Mathematics and Mechanics, 2013, 34 (9): 941- 947

URL    

曾云辉, 罗李平, 俞元洪.

中立型Emden-Fowler时滞微分方程的振动性

数学物理学报, 2015, 35A (4): 803- 814

DOI:10.3969/j.issn.1003-3998.2015.04.016     

Zeng Y H , Luo L P , Yu Y H .

Oscillation for Emden-Fowler delay differential equations of neutral type

Acta Mathematica Scientia, 2015, 35A (4): 803- 814

DOI:10.3969/j.issn.1003-3998.2015.04.016     

覃桂茳, 杨甲山, 刘玉周.

一类具非线性中立项的二阶微分方程的振动性

安徽大学学报(自然科学版), 2020, 44 (1): 31- 36

URL     [本文引用: 1]

Qin G J , Yang J S , Liu Y Z .

Oscillation of certain second-order differential equations with nonlinear neutral term

Journal of Anhui University (Natural Science Edition), 2020, 44 (1): 31- 36

URL     [本文引用: 1]

/