数学物理学报, 2021, 41(1): 194-216 doi:

论文

多个偏正态总体共同位置参数的Bootstrap置信区间

叶仁道,1, 王仲池1, 罗堃2, 林雅1

Bootstrap Confidence Intervals for the Common Location Parameter of Several Skew-Normal Populations

Ye Rendao,1, Wang Zhongchi1, Luo Kun2, Lin Ya1

通讯作者: 叶仁道, E-mail: yerendao2003@163.com

收稿日期: 2019-11-22  

基金资助: 教育部人文社会科学研究项.  19YJA910006
浙江省自然科学基金.  LY20A010019
浙江省属高校基本科研业务费专项资金.  GK199900299012-204
国家自然科学基金.  11401148

Received: 2019-11-22  

Fund supported: the Humanities and Social Science Projects of the Ministry of Education.  19YJA910006
the NSF of Zhejiang Province.  LY20A010019
the Fundamental Research Funds for the Provincial Universities of Zhejiang.  GK199900299012-204
NSFC.  11401148

Abstract

In this paper, we consider the interval estimation and hypothesis testing problems for the common location parameter of several skew-normal populations when the scale parameters and skewness parameters are unknown. Firstly, we estimate the unknown parameters using the methods of moment estimation and maximum likelihood estimation. Secondly, the Bootstrap confidence intervals and Bootstrap test statistics are constructed, which generalize the results given by Xu [1] under several normal populations. Thirdly, the Monte Carlo simulation results indicate that the Bootstrap confidence intervals based on the methods of moment estimation and maximum penalized likelihood estimation perform better than other four confidence intervals. Finally, the above approaches are applied to the real data examples of regional gross domestic product of China and bioavailability in order to verify the reasonableness and effectiveness of the proposed approaches.

Keywords: Skew-normal population ; Common location parameter ; Moment estimation ; Maximum likelihood estimation ; Bootstrap confidence interval

PDF (496KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

叶仁道, 王仲池, 罗堃, 林雅. 多个偏正态总体共同位置参数的Bootstrap置信区间. 数学物理学报[J], 2021, 41(1): 194-216 doi:

Ye Rendao, Wang Zhongchi, Luo Kun, Lin Ya. Bootstrap Confidence Intervals for the Common Location Parameter of Several Skew-Normal Populations. Acta Mathematica Scientia[J], 2021, 41(1): 194-216 doi:

1 引言

近年来, 诸多领域的实际数据呈现出单峰、非对称等偏正态特征.为此, Azzalini[2, 3]首次提出偏正态分布的概念, 并且给出其密度函数表达式.设随机变量$ Y \sim SN(\xi , {\eta ^2}, \lambda ) $, 其中位置参数为$ \xi \in R $, 尺度参数为$ {\eta ^2} \in {R^ + } $, 偏度参数为$ \lambda \in R $, 则$ Y $的密度函数可表示为

$ \begin{equation} f(y;\xi , {\eta ^2}, \lambda ){\rm{ = }}2\phi (y;\xi , {\eta ^2})\Phi [\lambda {\eta ^{ - 1}}(y - \xi )], \end{equation} $

其中$ \phi ( \cdot ) $$ \Phi ( \cdot ) $分别表示标准正态分布的密度函数和分布函数.若$ \lambda = 0 $, 则(1.1)式退化成均值为$ \xi $, 方差为$ {\eta ^2} $的正态分布.鉴于偏正态分布应用的广泛性, 学者们已经对其性质进行了深入的研究, 包括分布特征[4]、特征函数[5]、二次型分布[6]、偏度度量[7]、极值矩的近似表达式[8]和独立变量和的精确密度[9]等.

进一步, 针对单个偏正态总体, Wang等[10]探讨了在变异系数和偏度参数已知时, 位置参数的区间估计问题. Gui和Guo[11]基于近似似然方程, 给出位置参数和尺度参数的显式估计. Ma等[12]在尺度参数和偏度参数已知时, 研究了位置参数的区间估计和假设检验问题.但是在实际应用中, 对多个偏正态总体的共同位置参数进行研究是无法回避的.例如, 在可靠性和寿命测试的层面中, 对多个偏正态总体的共同位置参数研究就等同于对共同保修期限的估计.然而, 目前对共同位置参数的研究主要集中在高斯分布、逆高斯分布、对数正态分布以及指数分布中[13-22].但实际数据更符合偏正态分布特征.鉴于此, 本文针对多个尺度参数和偏度参数未知的偏正态总体, 基于Bootstrap方法构造其共同位置参数的置信区间.

本文安排如下.第2小节针对多个偏正态总体, 分别给出未知参数的矩估计和极大似然估计.第3小节将徐礼文[1]对多个正态总体共同均值的探讨推广到多个偏正态总体, 进而构造共同位置参数的Bootstrap置信区间和Bootstrap检验统计量.第4小节给出上述方法的Monte Carlo模拟结果, 以验证上述方法的统计优良性.第5小节将本文所给方法应用于中国区域生产总值和生物利用度数据的案例分析.第6小节给出本文小结.第4小节中的模拟结果在附录7中.

2 多个总体的参数估计

首先, 本小节考虑单个偏正态总体参数的估计问题.设$ {Y_1}, \cdots , {Y_n} $是取自偏正态总体$ SN(\xi, \eta^2, \lambda) $的一组样本.则样本均值、样本二阶中心距和样本三阶中心距可分别表示为

$ \begin{equation} \bar{Y} = \frac{1}{n}\sum\limits_{i = 1}^n Y_i, \;S_2 = \frac{1}{n}\sum\limits_{i = 1}^n (Y_i- \bar{Y})^2, \;S_3 = \frac{1}{n}\sum\limits_{i = 1}^n (Y_i-\bar{Y})^3. \end{equation} $

定理2.1  设$ \delta = \lambda /{(1 + {\lambda ^2})^{1/2}} $.$ Y \sim SN(\xi , {\eta ^2}, \lambda ) $, 则参数$ (\xi , {\eta ^2}, \lambda ) $的矩估计可表示为

$ \begin{equation} \hat{\xi} = \bar{Y} - c{S_3}^{1/3}, \;\hat{\eta}^2 = S_2 + {c^2}{S_3}^{2/3}, \;\hat{\lambda} = \hat{\delta}/(1-\hat{\delta}^2)^{1/2}, \end{equation} $

其中$ b = {{(2/\pi )}^{1/2}} $, $ c = {{[2/(4-\pi )]}^{1/3}} $, $ \hat{\delta } = \frac{cS_{3}^{1/3}}{b{{\left( {{S}_{2}}+{{c}^{2}}S_{3}^{2/3} \right)}^{1/2}}} $.

  令$ (\bar y, {s_2}, {s_3}) $表示$ (\bar Y, {S_2}, {S_3}) $的观测值.令$ {X_i} = ({Y_i} - \bar y)/\sqrt {{s_2}} $, 则$ {X_1}, \cdots , {X_n} $是来自于$ X \sim SN({\xi _s}, \eta _s^2, \lambda ) $的一组样本.其中

$ \begin{equation} {\xi _s}{\rm{ = (}}\xi - {\kern 1pt} {\kern 1pt} \bar y{\rm{)}}/\sqrt {{s_2}} , \; {\eta _s} = \eta /\sqrt {{s_2}}. \end{equation} $

易见, $ X $的矩生成函数为

$ \begin{equation} {M_X}(t) = 2\exp \left( {t{\xi _s} + \frac{{{t^2}\eta _s^2}}{2}} \right)\Phi \left( {t{\eta _s}\delta } \right), \end{equation} $

则由(2.4)式可得

$ \begin{eqnarray} M_X'(t)|_{(t = 0)}& = &\xi_s + b\eta_s\delta = 0, \\ M_X''(t)|_{(t = 0)}& = &\xi_s^2 + 2b\xi_s\eta_s\delta + \eta_s^2 = 1, \\ M_X'''(t)|_{(t = 0)}& = &\xi_s^3 + 3b\xi_s^2\eta_s\delta + 3\xi_s\eta_s^2 + 3b\eta_s^3\delta - b\eta_s^3\delta^3 = s_2^{-3/2}s_3. \end{eqnarray} $

根据(2.3)和(2.5)式, 可得$ (\xi, \eta^2, \lambda) $的矩估计值为

其中$ {{\hat{\delta }}^{*}} = \frac{cs_{3}^{1/3}}{b{{\left( {{s}_{2}}+{{c}^{2}}s_{3}^{2/3} \right)}^{1/2}}} $.参数$ (\xi, \eta^2, \lambda) $的矩估计由(2.1)式给出.证毕.

接下来, 我们考虑总体参数的极大似然估计.研究表明, 偏正态总体中直接参数$ (\xi, \eta^2, \lambda) $的似然方程不存在唯一解.为此, 本文基于中心参数化思想, 给出未知参数的极大似然估计[23-25].令

其中$ S{N_C}(\mu , {\sigma ^2}, \gamma ) $表示均值为$ \mu \in R $, 方差为$ {\sigma ^2} \in {R^ + } $, 偏度系数为$ \gamma $的偏正态分布. Pewsey[23]给出直接参数$ (\xi, \eta^2, \lambda) $与中心化参数$ (\mu , {\sigma ^2}, \gamma ) $之间的关系如下

$ \begin{equation} \xi = \mu - c{\gamma ^{1/3}}\sigma, \;{\eta ^2} = {\sigma ^2}(1 + {c^2}{\gamma ^{2/3}}), \;\lambda = \frac{{c{\gamma ^{1/3}}}}{{\sqrt {{b^2} + {c^2}({b^2} - 1){\gamma ^{2/3}}} }}{\kern 1pt} {\kern 1pt} {\kern 1pt}. \end{equation} $

$ {Y_{C1}}, \cdots , {Y_{Cn}} $是取自于偏正态总体$ Y_C \sim SN_C (\mu, {\sigma^2}, \gamma) $的一组样本, 则其样本均值、样本二阶中心矩和样本三阶中心矩可分别表示为

定理2.2  设$ Y \sim SN(\xi, \eta^2, \lambda) $, 令$ W = \frac {Y - \xi}{\eta} \;{\kern 1pt}{\kern 1pt} $, $ {\kern 1pt}{\kern 1pt} \; {Y_C} = \mu + \sigma \big( {\frac{{W - E(W)}}{{\sqrt {{\mathop D}(W)} }}} \big), $$ Y_c = Y $.

  首先, 对$ Y $的矩生成函数$ {{M}_{Y}}(t) $求前三阶导数

$ Y $的偏度系数$ \gamma $可表示为

$ \begin{equation} \gamma {\rm{ = }}\frac{{E{{\left[ {Y - E\left( Y \right)} \right]}^3}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} }}{{{{\left\{ {E{{\left[ {Y - E\left( Y \right)} \right]}^2}} \right\}}^{3/2}}}}{\rm{ = }}\frac{{{b^3}{\delta ^3}}}{{{c^3}{{(1 - {b^2}{\delta ^2})}^{3/2}}}}. \end{equation} $

由(2.6)和(2.7)式可得

$ \begin{equation} \sigma = \frac{\eta }{{\sqrt {1 + {c^2}{\gamma ^{2/3}}} }}{\kern 1pt} {\rm{ = }}{\kern 1pt} \eta {\kern 1pt} {\kern 1pt} \sqrt {1 - {b^2}{\delta ^2}} , \;\mu = \xi + c{\gamma ^{1/3}}\sigma {\kern 1pt} {\kern 1pt} {\kern 1pt} = \xi + b\eta \delta. \end{equation} $

由于$ W \sim SN(\lambda) $, 易得$ E(W) = b\delta, \;D(W) = 1-b^2{\delta}^2. $于是有

定理2.2证毕.

注2.1  由(2.2)式可知, 若偏度参数$ \left| \lambda \right| \to \infty $, 则$ \left| \delta \right| \to 1 $.进而, 由(2.7)式可知$ \gamma \in (-0.99527, 0.99527) $, 更多细节见Pewsey [25].

下面进一步考虑中心化参数$ (\mu , {\sigma ^2}, \gamma ) $的极大似然估计.令$ ({\bar y_{_C}}, {s_{_{C2}}}, {s_{_{C3}}}) $分别表示$ ({\bar Y_C}, $$ {S_{C2}}, {S_{C3}}) $的观测值.类似地, 对$ {Y_{Ci}} $进行标准化, 即$ {Y_{si}} = ({Y_{Ci}} - {\bar y_{_C}})/\sqrt {{s_{_{C2}}}} $, $ i = 1, \cdots , n $.易见, $ {Y_{s1}}, \cdots , {Y_{sn}} $是来自于$ {Y_s} \sim S{N_C}({\mu _s}, \sigma _s^2, \gamma ) $的一组样本, 其中, $ {\mu _s}{\rm{ = (}}\mu - {\kern 1pt} {\kern 1pt} {\bar y_{_C}}{\rm{)}}/\sqrt {{s_{_{C2}}}} {\rm{ }} $, $ {\sigma _s} = \sigma /\sqrt {{s_{_{C2}}}} $.这里$ {Y_s} $的密度函数为

$ \begin{eqnarray} f\left( {{y_s};{\mu _s}, \sigma _s^2, \gamma } \right)&{\rm{ = }}&\frac{2}{{{\sigma _s}\sqrt {{s_{_{C2}}}\left( {1 + {c^2}{\gamma ^{2/3}}} \right)} }}\phi \left[ {\left( {\frac{{{y_s} - {\mu _s}}}{{{\sigma _s}}} + c{\gamma ^{1/3}}} \right)\frac{1}{{\sqrt {1 + {c^2}{\gamma ^{2/3}}} }}} \right]{}\\ & &{\kern 1pt} \times \Phi \left\{ {\left( {\frac{{{y_s} - {\mu _s}}}{{{\sigma _s}}} + c{\gamma ^{1/3}}} \right)\frac{{c{\gamma ^{1/3}}}}{{\sqrt {\left( {1 + {c^2}{\gamma ^{2/3}}} \right)\left[ {{b^2} + {c^2}{\gamma ^{2/3}}\left( {{b^2} - 1} \right)} \right]} }}} \right\}. \end{eqnarray} $

由(2.9)式可得对数似然函数为

$ \begin{eqnarray} l\left( {{y_{s1}}, \cdots , {y_{sn}};{\mu _s}, \sigma _s^2, \gamma } \right) & = &- n\log {\sigma _s} - \frac{n}{2}\log \left( {1 + {c^2}{\gamma ^{2/3}}} \right){}\\ & & + \sum\limits_{i = 1}^n {\log \phi \left[ {\left( {\frac{{{y_{si}} - {\mu _s}}}{{{\sigma _s}}} + c{\gamma ^{1/3}}} \right)\frac{1}{{{{\left( {1 + {c^2}{\gamma ^{2/3}}} \right)}^{{\rm{1/2}}}}}}} \right]}{}\\ & & + \sum\limits_{i = 1}^n {\log \Phi \left\{ {\frac{{\frac{{\left( {{y_{si}} - {\mu _s}} \right)c{\gamma ^{1/3}}}}{{{\sigma _s}}} + {c^2}{\gamma ^{2/3}}}}{{{{\left( {1 + {c^2}{\gamma ^{2/3}}} \right)}^{{\rm{1/2}}}}{{\left[ {{b^2} + {c^2}{\gamma ^{2/3}}\left( {{b^2} - 1} \right)} \right]}^{{\rm{1/2}}}}}}} \right\}}. \end{eqnarray} $

于是, 令$ (\tilde \mu _s^*, \tilde \sigma _s^{{*^2}}, {\tilde \gamma ^*}) $为来自(2.10)式的$ ({\mu _s}, \sigma _s^2, \gamma ) $极大似然估计值, 其初始值可取$ ({\mu _s}, \sigma _s^2, \gamma ) $的矩估计, 即

$ \begin{equation} \hat \mu _s^* = - cs_{_{C2}}^{ - 1/2}s_{_{C3}}^{1/3}, \; \hat \sigma _s^{{*^2}} = 1 + cs_{_{C2}}^{ - 1/2} s_{_{C3}}^{2/3}{\kern 1pt} , {\kern 1pt} \;{\hat \gamma ^*} = \frac{{b{{\hat \delta }^{{{\rm{*}}^3}}}\big( {2{b^2} - 1} \big)}}{{{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\big( {1 - {b^2}{{\hat \delta }^{{{\rm{*}}^2}}}} \big)}^{3/2}}}}{\kern 1pt} {\kern 1pt} {\kern 1pt}. \end{equation} $

进一步, 可得$ (\mu , \sigma ^2) $的极大似然估计值为

$ \begin{equation} {\tilde \mu ^*} = {\bar y_{_C}} + s_{_{{\rm{C2}}}}^{1/2}\tilde \mu _s^*, {\kern 1pt} \;{\tilde \sigma ^{{*^2}}} = {s_{_{C2}}}\tilde \sigma _s^{*^2}. \end{equation} $

由(2.6)式可得直接参数$ (\xi, \eta^2, \lambda) $的极大似然估计值分别为

$ \delta $的极大似然估计值为$ {\tilde \delta ^*} = {\tilde \lambda ^*}/{(1 + {\tilde \lambda ^{{{\rm{*}}^2}}})^{1/2}} $.于是, 未知参数$ (\xi, \eta^2, \lambda) $的极大似然估计由下述定理给出.

定理2.3  令$ ({\tilde \mu _s}, \tilde \sigma _s^2, \tilde \gamma ) $是对应于$ (\tilde \mu _s^*, \tilde \sigma _s^{{*^2}}, {\tilde \gamma ^*}) $的极大似然估计, 则直接参数$ (\xi, \eta^2, \lambda) $的极大似然估计分别为

$ \begin{equation} \tilde \xi = \tilde \mu - c{\tilde \gamma ^{1/3}}\tilde \sigma {\kern 1pt} , \;{\tilde \eta ^2} = {\tilde \sigma ^2}(1 + {c^2}{\tilde \gamma ^{2/3}}), \; \tilde \lambda = \frac{{c{{\tilde \gamma }^{1/3}}}}{{\sqrt {{b^2} + {c^2}\left( {{b^2} - 1} \right){{\tilde \gamma }^{2/3}}} }}, \end{equation} $

其中, $ ({\tilde \mu}, \tilde \sigma^2) $是对应于$ ({\tilde \mu ^* }, \tilde \sigma ^{{*^2}}) $的极大似然估计.进而, $ \delta $的极大似然估计为

现将一个偏正态总体拓展至多个具有共同位置参数且相互独立的偏正态总体.设$ {Y_{i1}}, $$ \cdots , {Y_{i{n_i}}} $是来自偏正态总体$ SN(\xi, \eta_i^2, \lambda_i) $的一组样本, $ i = 1, \cdots , k $.则样本均值、样本二阶中心矩和样本三阶中心矩可分别表示为

$ \begin{equation} \bar{Y_i} = \frac{1}{n_i}\sum\limits_{j = 1}^{n_i} Y_{ij}, \;S_{2i} = \frac{1}{n_i}\sum\limits_{j = 1}^{n_i} (Y_{ij}- \bar{Y_i})^2, \;S_{3i} = \frac{1}{n_i}\sum\limits_{j = 1}^{n_i} (Y_{ij}-\bar{Y_i})^3, \; i = 1, \cdots , k. \end{equation} $

类似于一个总体的情况, 我们考虑多个偏正态总体中未知参数$ (\eta_i^2, \lambda_i) $的估计问题, $ i = 1, $$ \cdots , k $.由定理2.1, 可得$ (\eta_i^2, \lambda_i) $的矩估计为

$ \begin{equation} \hat{\eta}_{i}^2 = S_{2i} + {c^2}{S}_{{3i}}^{2/3}, \;\hat{\lambda}_{i} = \hat{\delta}_{i}/(1-\hat{\delta}_i^2)^{1/2}, \;i = 1, \cdots , k, \end{equation} $

其中$ {{\hat{\delta }}_{i}} = \frac{cS_{3i}^{1/3}}{b\sqrt{{{S}_{2i}}+{{c}^{2}}S_{3i}^{2/3}}} $.$ {{\bar{Y}}_{i}} $的期望和方差分别为

$ \begin{equation} E({{\bar{Y}}_{i}}) = \xi +b{{\eta }_{i}}{{\delta }_{i}}, \;D({{\bar{Y}}_{i}}) = \frac{\eta _{i}^{2}(1-{{b}^{2}}\delta _{i}^{2})}{{{n}_{i}}}, \;i = 1, \cdots , k. \end{equation} $

$ (\eta_i^2, \delta_i) $已知, 基于第$ i $个样本可得共同位置参数$ \xi $的估计

借鉴Graybill-Deal估计的思想[26], 可得

$ \begin{equation} \hat{\xi } = \frac{\sum\limits_{i = 1}^{k}{\frac{1}{D({{{\hat{\xi }}}^{i}}{{|}_{({{\eta }_{i}}, {{\delta }_{i}})}})}}{{{\hat{\xi }}}^{i}}{{|}_{({{\eta }_{i}}, {{\delta }_{i}})}}}{\sum\limits_{i = 1}^{k}{\frac{1}{D({{{\hat{\xi }}}^{i}}{{|}_{({{\eta }_{i}}, {{\delta }_{i}})}})}}} = {{\bar{Y}}_{G}}-\frac{\sum\limits_{i = 1}^{k}{\frac{b{{n}_{i}}{{\delta }_{i}}}{{{\eta }_{i}}(1-{{b}^{2}}\delta _{i}^{2})}}}{\sum\limits_{i = 1}^{k}{\frac{{{n}_{i}}}{\eta _{i}^{2}(1-{{b}^{2}}\delta _{i}^{2})}}}, \end{equation} $

其中$ {{\bar{Y}}_{G}} = \frac{\sum\limits_{i = 1}^{k}{\frac{{{n}_{i}}}{\eta _{i}^{2}(1-{{b}^{2}}\delta _{i}^{2})}}{{{\bar{Y}}}_{i}}}{\sum\limits_{i = 1}^{k}{\frac{{{n}_{i}}}{\eta _{i}^{2}(1-{{b}^{2}}\delta _{i}^{2})}}}. $$ (\hat{\eta}_i^{*^{2}}, \hat{\delta}_i^{*}, \hat{\lambda}_i^{*}) $是对应于$ ({\hat{\eta}_{i}}^2, \hat{\delta}_{i}, \hat{\lambda}_i) $的矩估计值, $ i = 1, \cdots , k $, 将$ ({\eta}_{i}^2, {\delta}_{i}) $的矩估计值代入(2.17)式, 可得$ {\xi} $的估计值为

$ \begin{equation} {{\hat{\xi }}^{*}} = {{\bar{y}}_{G1}}-\frac{\sum\limits_{i = 1}^{k}{\frac{b{{n}_{i}}\hat{\delta }_{i}^{*}}{\hat{\eta }_{i}^{*}(1-{{b}^{2}}\hat{\delta }_{i}^{*2})}}}{\sum\limits_{i = 1}^{k}{\frac{{{n}_{i}}}{\hat{\eta }_{i}^{*2}(1-{{b}^{2}}\hat{\delta }_{i}^{*2})}}}, \end{equation} $

其中$ {\bar{y}}_{G1} $$ {\bar{Y}}_{G1} $的观测值, $ {\bar{Y}}_{G1} $是将$ ({\eta}_{i}^2, {\delta}_{i}) $的矩估计代入$ {\bar{Y}}_{G} $所得.由定理2.3可得, 参数$ ({\eta }_{i}^{2}, {{{\delta }}_{i}}, {{{\lambda }}_{i}}) $的极大似然估计为$ (\tilde{\eta }_{i}^{2}, {{\tilde{\delta }}_{i}}, {{\tilde{\lambda }}_{i}}) $, $ i = 1, \cdots , k $.$ (\tilde{\eta }_{i}^{*^2}, {{\tilde{\delta }}^{*}}_{i}, {{\tilde{\lambda }}^{*}}_{i}) $是对应于$ ({\tilde{\eta }_{i}^{2}}, {{\tilde{\delta }}_{i}}, {{\tilde{\lambda }}_{i}}) $的极大似然估计值, $ i = 1, \cdots , k $, 可得

$ \begin{equation} {{\tilde{\xi }}^{*}} = {{\bar{y}}_{G2}}-\frac{\sum\limits_{i = 1}^{k}{\frac{b{{n}_{i}}\tilde{\delta }_{i}^{*}}{\tilde{\eta }_{i}^{*}(1-{{b}^{2}}\tilde{\delta }_{i}^{*2})}}}{\sum\limits_{i = 1}^{k}{\frac{{{n}_{i}}}{\tilde{\eta }_{i}^{*2}(1-{{b}^{2}}\tilde{\delta }_{i}^{*2})}}}, \end{equation} $

其中$ {\bar{y}}_{G2} $$ {\bar{Y}}_{G2} $的观测值, $ {\bar{Y}}_{G2} $是将$ ({\eta}_{i}^2, {\delta}_{i}) $的极大似然估计代入$ {\bar{Y}}_{G} $所得.

3 Bootstrap置信区间和Bootstrap检验

本小节利用Bootstrap方法探讨共同位置参数$ {\xi} $的区间估计和假设检验问题.由中心极限定理可得

$ \begin{equation} Z = \sqrt{\sum\limits_{i = 1}^{k}{\frac{{{n}_{i}}}{\eta _{i}^{2}(1-{{b}^{2}}\delta _{i}^{2})}}}\left( {{{\bar{Y}}}_{G}}-\xi -\frac{\sum\limits_{i = 1}^{k}{\frac{b{{n}_{i}}{{\delta }_{i}}}{{{\eta }_{i}}(1-{{b}^{2}}\delta _{i}^{2})}}}{\sum\limits_{i = 1}^{k}{\frac{{{n}_{i}}}{\eta _{i}^{2}(1-{{b}^{2}}\delta _{i}^{2})}}} \right). \end{equation} $

众所周知, 当$ n_i \rightarrow \infty , i = 1, \cdots , k $时, $ Z\sim N(0, 1) $.$ U(\beta) $表示标准正态分布的第$ 100\beta $分位点, 可得$ \xi $的一个置信水平近似为$ 100(1-\alpha)\% $的置信区间

然而, 在实际问题中$ (\eta_i, \delta_i) $往往是未知的.因此, 可将其矩估计和极大似然估计分别代入(3.1)式, $ i = 1, \cdots , k $.则有

$ \begin{equation} {{Z}_{1}} = \sqrt{\sum\limits_{i = 1}^{k}{\frac{{{n}_{i}}}{\hat{\eta }_{i}^{2}(1-{{b}^{2}}\hat{\delta }_{i}^{2})}}}\left( {{{\bar{Y}}}_{G1}}-\xi -\frac{\sum\limits_{i = 1}^{k}{\frac{b{{n}_{i}}{{{\hat{\delta }}}_{i}}}{{{{\hat{\eta }}}_{i}}(1-{{b}^{2}}\hat{\delta }_{i}^{2})}}}{\sum\limits_{i = 1}^{k}{\frac{{{n}_{i}}}{\hat{\eta }_{i}^{2}(1-{{b}^{2}}\hat{\delta }_{i}^{2})}}} \right), \end{equation} $

$ \begin{equation} {{Z}_{2}} = \sqrt{\sum\limits_{i = 1}^{k}{\frac{{{n}_{i}}}{\tilde{\eta }_{i}^{2}(1-{{b}^{2}}\tilde{\delta }_{i}^{2})}}}\left( {{{\bar{Y}}}_{G2}}-\xi -\frac{\sum\limits_{i = 1}^{k}{\frac{b{{n}_{i}}{{{\tilde{\delta }}}_{i}}}{{{{\tilde{\eta }}}_{i}}(1-{{b}^{2}}\tilde{\delta }_{i}^{2})}}}{\sum\limits_{i = 1}^{k}{\frac{{{n}_{i}}}{\tilde{\eta }_{i}^{2}(1-{{b}^{2}}\tilde{\delta }_{i}^{2})}}} \right). \end{equation} $

显然, 枢轴量$ Z_1 $$ Z_2 $的精确分布是未知的, 故无法找到其分位点的精确值.于是, 本文将基于Bootstrap方法构造共同位置参数$ \xi $的置信区间.令$ Y_{BMij}\sim SN({{\hat{\xi }}^{*}}, \hat{\eta }{{_{i}^{*}}^{^{2}}}, \hat{\lambda }_{i}^{*}), $$ i = 1, \cdots , k $, $ j = 1, \cdots , n_i $.则其样本均值、样本二阶中心矩和样本三阶中心矩分别为$ ({{\bar{Y}}_{BMi}}, $$ {{S}_{BM2i}}, $$ {{S}_{BM3i}}) $.由定理2.1可得, $ (\eta_{i}^2, \delta_{i}) $的矩估计为

$ \begin{equation} \hat{\eta }_{BMi}^{2} = {{S}_{BM2i}}+{{c}^{2}}S_{BM3i}^{2/3}, \;{{\hat{\delta }}_{BMi}} = \frac{cS_{BM3i}^{1/3}}{b\sqrt{{{S}_{BM2i}}+{{c}^{2}}S_{BM3i}^{2/3}}}, \;i = 1, \cdots , k. \end{equation} $

$ (\hat{\eta }_{BMi}^{*^2}, \hat{\delta }_{BMi}^{*}) $是对应于$ (\hat{\eta }_{BMi}^{2}, \hat{\delta }_{BMi}) $的矩估计值.同理, 令$ Y_{BLij}\sim SN({{\tilde{\xi }}^{*}}, \tilde{\eta }{{_{i}^{*}}^{^{2}}}, \tilde{\lambda }_{i}^{*}) $. $ ({{\bar{Y}}_{BLi}}, {{S}_{BL2i}}, {{S}_{BL3i}}) $分别表示$ Y_{BLij} $的样本均值、样本二阶中心矩和样本三阶中心矩.由定理2.3, 则$ (\eta_{i}^2, \delta_{i}) $的极大似然估计可表示为$ (\tilde{\eta }_{BLi}^{2}, {{\tilde{\delta }}_{BLi}}) $, $ i = 1, \cdots , k $.基于$ (\hat{\eta }_{BMi}^{2}, \hat{\delta }_{BMi}) $$ (\tilde{\eta }_{BLi}^{2}, {{\tilde{\delta }}_{BLi}}) $, 分别定义

$ \begin{equation} {{\bar{Y}}_{GB1}} = \frac{\sum\limits_{i = 1}^{k}{\frac{{{n}_{i}}}{\hat{\eta }_{BMi}^{2}(1-{{b}^{2}}\hat{\delta }_{BMi}^{2})}{{{\bar{Y}}}_{BMi}}}}{\sum\limits_{i = 1}^{k}{\frac{{{n}_{i}}}{\hat{\eta }_{BMi}^{2}(1-{{b}^{2}}\hat{\delta }_{BMi}^{2})}}}, \end{equation} $

$ \begin{equation} {{\bar{Y}}_{GB2}} = \frac{\sum\limits_{i = 1}^{k}{\frac{{{n}_{i}}}{\tilde{\eta }_{BLi}^{2}(1-{{b}^{2}}\tilde{\delta }_{BLi}^{2})}{{{\bar{Y}}}_{BLi}}}}{\sum\limits_{i = 1}^{k}{\frac{{{n}_{i}}}{\tilde{\eta }_{BLi}^{2}(1-{{b}^{2}}\tilde{\delta }_{BLi}^{2})}}}. \end{equation} $

进而, 类似于(3.2)和(3.3)式, 分别构造Bootstrap枢轴量

$ \begin{equation} {{Z}_{B1}} = \sqrt{\sum\limits_{i = 1}^{k}{\frac{{{n}_{i}}}{\hat{\eta }_{BMi}^{2} (1-{{b}^{2}}\hat{\delta }_{BMi}^{2})}}} \left( {{{\bar{Y}}}_{GB1}}-\frac{\sum\limits_{i = 1}^{k}{\frac{b{{n}_{i}}{{{\hat{\delta }}}_{BMi}}}{{{{\hat{\eta }}}_{BMi}}(1-{{b}^{2}}\hat{\delta }_{BMi}^{2})}}}{\sum\limits_{i = 1}^{k}{\frac{{{n}_{i}}}{\hat{\eta }_{BMi}^{2}(1-{{b}^{2}}\hat{\delta }_{BMi}^{2})}}}-\big( {{{\bar{y}}}_{G1}}-\frac{\sum\limits_{i = 1}^{k}{\frac{b{{n}_{i}}\hat{\delta }_{i}^{*}}{\hat{\eta }_{i}^{*}(1-{{b}^{2}}\hat{\delta }_{i}^{*2})}}}{\sum\limits_{i = 1}^{k}{\frac{{{n}_{i}}}{\hat{\eta }_{i}^{*2}(1-{{b}^{2}}\hat{\delta }_{i}^{*2})}}} \big) \right), \end{equation} $

$ \begin{equation} {{Z}_{B2}} = \sqrt{\sum\limits_{i = 1}^{k}{\frac{{{n}_{i}}}{\tilde{\eta }_{BLi}^{2} (1-{{b}^{2}}\tilde{\delta }_{BLi}^{2})}}} \left( {{{\bar{Y}}}_{GB2}}-\frac{\sum\limits_{i = 1}^{k}{\frac{b{{n}_{i}}{{{\tilde{\delta }}}_{BLi}}}{{{{\tilde{\eta }}}_{BLi}}(1-{{b}^{2}}\tilde{\delta }_{BLi}^{2})}}}{\sum\limits_{i = 1}^{k}{\frac{{{n}_{i}}}{\tilde{\eta }_{BLi}^{2}(1-{{b}^{2}}\tilde{\delta }_{BLi}^{2})}}}-\big( {{{\bar{y}}}_{G2}}-\frac{\sum\limits_{i = 1}^{k}{\frac{b{{n}_{i}}\tilde{\delta }_{i}^{*}}{\tilde{\eta }_{i}^{*}(1-{{b}^{2}}\tilde{\delta }_{i}^{*2})}}}{\sum\limits_{i = 1}^{k}{\frac{{{n}_{i}}}{\tilde{\eta }_{i}^{*2}(1-{{b}^{2}}\tilde{\delta }_{i}^{*2})}}} \big) \right). \end{equation} $

$ Z_{B1}(\beta) $表示$ Z_{B1} $的第$ 100\beta $分位点, 可得$ \xi $的一个置信水平近似为$ 100(1-\alpha)\% $的Bootstrap置信区间

同理可得基于$ Z_{B2} $的一个置信水平近似为$ 100(1-\alpha)\% $的Bootstrap置信区间.

注3.1  对于$ i = 1, \cdots , k $, 当$ {{\lambda }_{i}} = 0 $时, 则$ \eta _{i}^{2} $的矩估计和极大似然估计相等, 即为$ S_{2i} $.于是, (2.17)式中$ \hat{\xi} $$ \xi $的Graybill-Deal估计.此时, $ \xi $的Bootstrap置信区间退化为徐礼文[1]的结果.综上所述, 本文将徐礼文[1]结果从多个正态总体推广到多个偏正态总体.

进一步, 我们考虑共同位置参数$ \xi $的假设检验问题

$ \begin{equation} {H_0}:\xi = {\xi _0}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} vs{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {H_1}:\xi \ne {\xi _0}{\kern 1pt} {\kern 1pt}, {\kern 1pt} \end{equation} $

其中$ \xi_0 $为预先给定值.在原假设成立的情况下, 由中心极限定理可得

$ \begin{equation} {{Z}^{*}} = \sqrt{\sum\limits_{i = 1}^{k}{\frac{{{n}_{i}}}{\eta _{i}^{2}(1-{{b}^{2}}\delta _{i}^{2})}}}\left( {{{\bar{Y}}}_{G}}-{{\xi }_{0}}-\frac{\sum\limits_{i = 1}^{k}{\frac{b{{n}_{i}}{{\delta }_{i}}}{{{\eta }_{i}}(1-{{b}^{2}}\delta _{i}^{2})}}}{\sum\limits_{i = 1}^{k}{\frac{{{n}_{i}}}{\eta _{i}^{2}(1-{{b}^{2}}\delta _{i}^{2})}}} \right). \end{equation} $

$ (\eta_i, \delta_i) $已知, 则$ {Z}^{*} $是假设检验问题(3.9)的近似检验统计量.然而, 在实际问题中, $ (\eta_i, \delta_i) $往往是未知的, 故可分别将$ (\eta_i, \delta_i) $的矩估计和极大似然估计代入(3.10)式, 则有

类似于$ Z_1 $$ Z_2 $, $ Z_{1}^{*} $$ Z_{2}^{*} $的精确分布亦是未知的, 故无法建立其检验方法.因此, 本文利用Bootstrap方法构造假设检验问题(3.9)的检验统计量

$ \begin{equation} \quad Z_{B1}^{*} = \sqrt{\sum\limits_{i = 1}^{k}{\frac{{{n}_{i}}}{\hat{\eta }_{BMi}^{2}(1-{{b}^{2}}\hat{\delta }_{BMi}^{2})}}}\left( {{{\bar{Y}}}_{GB1}}-{{\xi }_{0}}-\frac{\sum\limits_{i = 1}^{k}{\frac{b{{n}_{i}}{{{\hat{\delta }}}_{BMi}}}{{{{\hat{\eta }}}_{BMi}}(1-{{b}^{2}}\hat{\delta }_{BMi}^{2})}}}{\sum\limits_{i = 1}^{k}{\frac{{{n}_{i}}}{\hat{\eta }_{BMi}^{2}(1-{{b}^{2}}\hat{\delta }_{BMi}^{2})}}} \right), \end{equation} $

$ \begin{equation} \quad Z_{B2}^{*} = \sqrt{\sum\limits_{i = 1}^{k}{\frac{{{n}_{i}}}{\tilde{\eta }_{BLi}^{2}(1-{{b}^{2}}\tilde{\delta }_{BLi}^{2})}}}\left( {{{\bar{Y}}}_{GB2}}-{{\xi }_{0}}-\frac{\sum\limits_{i = 1}^{k}{\frac{b{{n}_{i}}{{{\tilde{\delta }}}_{BLi}}}{{{{\tilde{\eta }}}_{BLi}}(1-{{b}^{2}}\tilde{\delta }_{BLi}^{2})}}}{\sum\limits_{i = 1}^{k}{\frac{{{n}_{i}}}{\tilde{\eta }_{BLi}^{2}(1-{{b}^{2}}\tilde{\delta }_{BLi}^{2})}}} \right). \end{equation} $

分别基于$ Z_{B1}^{*} $$ Z_{B2}^{*} $可得

$ \begin{equation} {{p}_{i}} = 2\min \{P(Z_{Bi}^{*}>z_{i}^{*}), P(Z_{Bi}^{*}<z_{i}^{*})\}, \:i = 1, 2, \end{equation} $

其中, $ z_{1}^{*} $$ z_{2}^{*} $分别表示$ Z_{1}^{*} $$ Z_{2}^{*} $的观测值.若$ {{p}_{i}}<\alpha $, 则在名义显著性水平$ \alpha $下拒绝假设检验问题(3.9)中的原假设$ H_0 $, 即认为$ \xi $$ \xi_0 $具有显著性差异.

注3.2  当$ \lambda_1 = \lambda_2 = \cdots = \lambda_k = 0 $时, 可得$ p_1 = p_2 $.此时假设检验问题(3.9)的Bootstrap检验$ p $值退化成徐礼文[1]的结果.

此外, 本文基于不同权重给出第二种Bootstrap置信区间.令$ \bar{Y} = \sum\limits_{i = 1}^{k}{{{n}_{i}}{{{\bar{Y}}}_{i}}}/\tilde{n} $, 其中$ \tilde{n} = \sum\limits_{i = 1}^{k}{{{n}_{i}}} $.$ {{\bar{Y}}} $进行标准化, 可得

$ \begin{equation} T = \frac{\bar{Y}-\sum\limits_{i = 1}^{k}{{{{n}_{i}}(\xi +b{{\eta }_{i}}{{\delta }_{i}})}/{{\tilde{n}}}\;}}{\sqrt{\sum\limits_{i = 1}^{k}{{{{n}_{i}}\eta _{i}^{2}(1-{{b}^{2}}\delta _{i}^{2})}/{{{{\tilde{n}}}^{2}}}\;}}}. \end{equation} $

分别将$ ({\eta_i^2}, {\delta_i}) $的矩估计和极大似然估计代入(3.14)式, 可得

类似于$ Z_{B1} $$ Z_{B2} $, 分别构造Bootstrap枢轴量

$ \begin{equation} {{T}_{B1}} = \frac{{{{\bar{Y}}}_{B1}}-\sum\limits_{i = 1}^{k}{{{{n}_{i}}\left( \left( \sum\limits_{i = 1}^{k}{{{{n}_{i}}{{{\bar{y}}}_{i}}}/{{\tilde{n}}}\;-\sum\limits_{i = 1}^{k}{{b{{n}_{i}}\hat{\eta }_{i}^{*}\hat{\delta }_{i}^{*}}/{{\tilde{n}}}\;}} \right)+b{{{\hat{\eta }}}_{BMi}}{{{\hat{\delta }}}_{BMi}} \right)}/{{\tilde{n}}}\;}}{\sqrt{\sum\limits_{i = 1}^{k}{{{{n}_{i}}\hat{\eta }_{BMi}^{2}(1-{{b}^{2}}\hat{\delta }_{BMi}^{2})}/{{{{\tilde{n}}}^{2}}}\;}}}, \end{equation} $

$ \begin{equation} {{T}_{B2}} = \frac{{{{\bar{Y}}}_{B2}}-\sum\limits_{i = 1}^{k}{{{{n}_{i}}\left( \left( \sum\limits_{i = 1}^{k}{{{{n}_{i}}{{{\bar{y}}}_{i}}}/{{\tilde{n}}}\;-\sum\limits_{i = 1}^{k}{{b{{n}_{i}}\tilde{\eta }_{i}^{*}\tilde{\delta }_{i}^{*}}/{{\tilde{n}}}\;}} \right)+b{{{\tilde{\eta }}}_{BLi}}{{{\tilde{\delta }}}_{BLi}} \right)}/{{\tilde{n}}}\;}}{\sqrt{\sum\limits_{i = 1}^{k}{{{{n}_{i}}\tilde{\eta }_{BLi}^{2}(1-{{b}^{2}}\tilde{\delta }_{BLi}^{2})}/{{{{\tilde{n}}}^{2}}}\;}}}. \end{equation} $

$ {{T}_{B1}}(\beta ) $表示$ T_{B1} $的第$ 100\beta $分位点, 可得$ \xi $的一个置信水平近似为$ 100(1-\alpha)\% $的Bootstrap置信区间

同理可得, 基于$ {{T}_{B2}} $的一个置信水平近似为$ 100(1-\alpha)\% $的Bootstrap置信区间.

在假设检验问题(3.9)成立的条件下, 类似于(3.14)式构造检验统计量为

类似于$ Z_{B1}^{*} $$ Z_{B2}^{*} $, 构造假设检验问题(3.9)的Bootstrap检验统计量, 分别记为$ T_{B1}^{*} $$ T_{B2}^{*} $.基于$ T_{B1}^{*} $$ T_{B2}^{*} $可得

$ \begin{equation} p_{i}^{*} = 2\min \{P(T_{_{Bi}}^{*}>{{t}_{i}}), P(T_{_{Bi}}^{*}<{{t}_{i}})\}, \: i = 1, 2, \end{equation} $

同样地, $ t_1 $$ t_2 $分别表示$ T_{1}^{*} $$ T_{2}^{*} $的观测值.若$ p_{i}^{*}<\alpha , i = 1, 2 $, 则在名义显著性水平$ \alpha $下拒绝假设检验问题(3.9)中的原假设$ H_0 $, 即认为$ \xi $$ \xi_0 $具有显著性差异.

4 Monte Carlo模拟

本小节通过Monte Carlo模拟, 从数值上研究上述置信区间的覆盖概率和区间长度的统计性质.为方便起见, 本小节针对共同位置参数$ \xi $的区间估计问题, 仅给出基于矩估计的Bootstrap置信区间的覆盖概率和区间长度的算法.

Step 1  对于给定的$ ({{\xi }}, {{n}_{i}}, \eta _{i}^{2}, {{\lambda }_{i}}) $, 生成一组样本$ {{Y}_{ij}}\sim SN({{\xi }}, \eta _{i}^{2}, {{\lambda }_{i}}) $, 由(2.14)式计算$ ({{\bar{Y}}_{i}}, {{S}_{2i}}, {{S}_{3i}}) $, $ i = 1, \cdots , k $, $ j = 1, \cdots , {{n}_{i}} $.

Step 2  由(2.15)和(2.17)式, 可得$ (\xi , \eta _{i}^{2}, {{\lambda }_{i}}) $, $ i = 1, \cdots , k $的矩估计值$ ({{\hat{\xi }}^{*}}, \hat{\eta }_{i}^{*^2}, \hat{\lambda }_{i}^{*}) $, $ i = 1, \cdots , k $.

Step 3  生成Bootstrap样本$ {{Y}_{BMij}}\sim SN({{\hat{\xi }}^{*}}, \hat{\eta }{{_{i}^{*}}^{^{2}}}, \hat{\lambda }_{i}^{*}) $, 并计算$ ({{\bar{Y}}_{BMi}}, {{S}_{2BMi}}, {{S}_{3BMi}}) $, $ i = 1, \cdots , k $, $ j = 1, \cdots , {{n}_{i}} $.

Step 4  由(2.15)式, 利用Bootstrap样本计算矩估计值$ (\hat{\eta }_{BMi}^{*^2}, \hat{\lambda }_{BMi}^{*}) $, $ i = 1, \cdots , k $.进一步, 分别由(3.7)和(3.15)式计算$ {{Z}_{B1}} $$ {{T}_{B1}} $.

Step 5  将步骤3和步骤4重复$ {{n}_{1}} $次, 可得$ n_1 $$ {{Z}_{B1}} $$ {{T}_{B1}} $.进而, 分别给出$ \xi $的置信水平近似为$ 100(1-\alpha )\% $的Bootstrap置信区间.

Step 6  将步骤1和步骤5重复$ {{n}_{2}} $次, 可得$ {{n}_{2}} $$ \xi $的置信水平近似为$ 1-\alpha $的Bootstrap置信区间.由上述$ {{n}_{2}} $个置信区间中包含$ \xi $的比例, 可得其覆盖概率的Monte Carlo模拟值; 而这$ {{n}_{2}} $个置信区间的平均长度即为Bootstrap区间长度的Monte Carlo模拟值.

在模拟研究中, 令名义置信水平为95%, 内循环数$ {{n}_{1} = 2500} $, 外循环数$ {{n}_{2} = 2500} $.对于两个总体, 设尺度参数$ \eta _{1}^{2} = ({{0.1}^{2}}, {{1}^{2}}), \eta _{2}^{2} = ({{0.3}^{2}}, {{2.5}^{2}}), \eta _{3}^{2} = ({{0.5}^{2}}, {{4}^{2}}), \eta _{4}^{2} = ({{0.7}^{2}}, {{7}^{2}}), $$ \eta _{5}^{2} = ({{0.9}^{2}}, {{10}^{2}}) $; 偏度参数$ ({{\lambda }_{1}}, {{\lambda }_{2}}) = (3, 4), (5, 6), (8, 9) $; 样本量$ ({{n}_{1}}, {{n}_{2}}) = (30, 40), (40, 60), $$ (60, 80), (90, 120), (120, 150), (150, 200) $.

对于三个总体, 设尺度参数$ \eta _{1}^{2} = ({{0.3}^{2}}, {{0.9}^{2}}, {{3}^{2}}), \eta _{2}^{2} = ({{0.4}^{2}}, {{1.1}^{2}}, {{4}^{2}}), \eta _{3}^{2} = ({{0.5}^{2}}, {{1.2}^{2}}, {{5}^{2}}) $, $ \eta _{4}^{2} = ({{0.7}^{2}}, {{1.5}^{2}}, {{7}^{2}}), \eta _{5}^{2} = ({{0.9}^{2}}, {{2.1}^{2}}, {{9}^{2}}) $; 偏度参数$ ({{\lambda }_{1}}, {{\lambda }_{2}}, {{\lambda }_{3}}) = (3, 3, 4), (5, 5, 6), (6, 8, 9) $; 样本量$ ({{n}_{1}}, {{n}_{2}}, {{n}_{3}}) = (30, 40, 40), (40, 50, 60), (60, 80, 90), (90, 100, 120), (120, 150, 180), (150, 200, $$ 240). $

对于五个总体, 设尺度参数$ \eta _{1}^{2} = ({{0.3}^{2}}, {{0.9}^{2}}{{2}^{2}}, {{3}^{2}}, {{3}^{2}}), $$ \eta _{2}^{2} = ({{0.4}^{2}}, {{1.2}^{2}}, {{4}^{2}}, {{4}^{2}}, {{5}^{2}}), $$ \eta _{3}^{2} = ({{0.5}^{2}}, $$ {{1.8}^{2}}, {{6}^{2}}, {{5}^{2}}, {{7}^{2}}), $$ \eta _{4}^{2} = ({{0.7}^{2}}, {{3}^{2}}, {{8}^{2}}, {{7}^{2}}, {{9}^{2}}), $$ \eta _{5}^{2} = ({{0.9}^{2}}, {{5.4}^{2}}, {{10}^{2}}, {{9}^{2}}, {{11}^{2}}) $; 偏度参数$ ({{\lambda }_{1}}, {{\lambda }_{2}}, $$ {{\lambda }_{3}}, {{\lambda }_{4}}, $$ {{\lambda }_{5}}) = (3, 3, 4, 4, 5), (4, 4, 5, 5, 6), (7, 7, 8, 8, 9) $; 样本量$ ({{n}_{1}}, {{n}_{2}}, {{n}_{3}}, {{n}_{4}}, {{n}_{5}}) = (30, 40, 40, 50, $$ 50), $$ (50, 50, 60, 60, 80), $$ (70, 70, 90, 90, 100), $$ (90, 90, 90, 120, 120), $$ (100, 120, 120, 150, 150), $$ (150, $$ 150, 200, 200, 200) $.

类似于第3节中给出的方法, 我们在模拟中增加两种基于惩罚极大似然方法的Bootstrap置信区间[27], 分别记作$ Z_{mple} $$ T_{mple} $.

对于两个总体, 表 1表 4分别给出六种Bootstrap置信区间的模拟覆盖概率和区间长度.就覆盖概率而言, 当偏度参数较小时, $ Z_{mple} $$ Z_{mle} $$ Z_{mm} $表现较为自由.随着样本量和偏度参数的增加, 这种现象得到明显改善. $ T_{mple} $$ T_{mle} $$ T_{mm} $的实际置信水平接近于95%名义置信水平, 表现较好, 但随着偏度参数的增加, 它们略显保守.就区间长度而言, 六种Bootstrap置信区间的区间长度随着尺度参数的增加而增加, 而随着样本量的增加而减少.然而, 无论是基于矩估计还是极大似然估计, $ Z_{mple} $$ Z_{mle} $$ Z_{mm} $在区间长度方面均明显优于$ T_{mple} $$ T_{mle} $$ T_{mm} $.

表 1   两个总体时六种Bootstrap置信区间的模拟覆盖概率

(λ1, λ2) = (3, 4)
N1N2
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.86160.85520.87400.94880.95320.94600.90120.89840.89800.95000.95400.9548
$\eta _{2}^{2}$0.86360.85640.87480.94920.95280.94640.90080.89680.89800.95080.95360.9548
$\eta _{3}^{2}$0.86360.85640.87520.94920.95240.94720.90120.89480.89880.95080.95360.9548
$\eta _{4}^{2}$0.86160.85520.87400.94880.95320.94600.90120.89840.89800.95000.95400.9548
$\eta _{5}^{2}$0.86120.85520.87360.94840.95320.94600.90080.90000.89800.95000.95480.9536
N3N4
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.93880.92240.92480.94640.95440.95880.92600.93240.93960.94920.95440.9532
$\eta _{2}^{2}$0.93920.91960.92560.94640.95360.96000.92600.92920.94000.94920.95320.9532
$\eta _{3}^{2}$0.93960.91960.92600.94640.95360.96000.92600.92840.94040.94880.95280.9532
$\eta _{4}^{2}$0.93880.92240.92480.94640.95440.95880.92600.93240.93960.94920.95440.9532
$\eta _{5}^{2}$0.93880.92240.92520.94640.95480.95880.92600.93320.93960.94920.95440.9532
N5N6
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.92360.93760.94040.94120.94920.95200.92840.93360.94000.94720.95360.9576
$\eta _{2}^{2}$0.92400.93480.94040.94080.94720.95120.92880.93000.94080.94680.95360.9576
$\eta _{3}^{2}$0.92440.93360.94040.94080.94720.95120.92880.92920.94080.94720.95280.9576
$\eta _{4}^{2}$0.92360.93760.94040.94120.94920.95200.92840.93360.94000.94720.95360.9576
$\eta _{5}^{2}$0.92280.93920.94040.94120.94960.95200.92840.93480.94000.94720.95400.9576
(λ1, λ2) = (5, 6)
N1N2
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.93120.93120.94000.96520.96880.96560.95480.95320.95840.96560.96840.9724
$\eta _{2}^{2}$0.93200.93120.94080.96520.96880.96600.95560.95040.95920.96560.96800.9724
$\eta _{3}^{2}$0.93280.93040.94080.96520.96880.96600.95560.94960.95960.96560.96800.9728
$\eta _{4}^{2}$0.93120.93120.94000.96520.96880.96560.95480.95320.95840.96560.96840.9724
$\eta _{5}^{2}$0.93120.93240.94000.96520.96880.96560.95480.95360.95800.96600.96840.9720
N3N4
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.96800.95720.96600.96120.96520.97240.95840.95840.96800.96480.96960.9716
$\eta _{2}^{2}$0.96800.95480.96600.96200.96400.97240.95880.95520.96800.96480.96840.9716
$\eta _{3}^{2}$0.96760.95440.96640.96160.96400.97240.95880.95440.96800.96480.96840.9716
$\eta _{4}^{2}$0.96800.95720.96600.96120.96520.97240.95840.95840.96800.96480.96960.9716
$\eta _{5}^{2}$0.96760.95920.96560.96120.96520.97280.95760.95880.96800.96480.97040.9716
N5N6
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.95320.96680.96800.96200.96760.97240.95640.95600.96680.95880.97080.9692
$\eta _{2}^{2}$0.95240.96400.96800.96160.96720.97240.95680.95240.96640.95880.96880.9692
$\eta _{3}^{2}$0.95240.96360.96800.96160.96720.97280.95640.95200.96680.95880.96800.9692
$\eta _{4}^{2}$0.95320.96680.96800.96200.96760.97240.95640.95600.96680.95880.97080.9692
$\eta _{5}^{2}$0.95360.96720.96760.96200.96840.97200.95640.95800.96720.95880.97160.9692
(λ1, λ2) = (8, 9)
N1N2
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.95480.95640.96200.97360.97520.97200.96800.96640.97200.97240.97440.9776
$\eta _{2}^{2}$0.95480.95560.96280.97360.97520.97160.96840.96560.97280.97240.97440.9776
$\eta _{3}^{2}$0.95480.95520.96280.97360.97520.97160.96840.96560.97360.97240.97440.9780
$\eta _{4}^{2}$0.95480.95640.96200.97360.97520.97200.96800.96640.97200.97240.97440.9776
$\eta _{5}^{2}$0.95480.95760.96240.97360.97560.97200.96800.96640.97200.97240.97480.9776
N3N4
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.97640.96760.97640.96680.97080.97760.97160.96800.97720.97040.97640.9796
$\eta _{2}^{2}$0.97640.96600.97640.96720.97040.97720.97200.96480.97760.97000.97560.9800
$\eta _{3}^{2}$0.97640.96560.97640.96720.97040.97720.97160.96400.97760.97000.97520.9800
$\eta _{4}^{2}$0.97640.96760.97640.96680.97080.97760.97160.96800.97720.97040.97640.9796
$\eta _{5}^{2}$0.97600.96840.97640.96680.97160.97760.97040.96960.97720.97040.97680.9796
N5N6
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.96920.97480.97800.97040.97480.97720.96920.97720.98360.96840.97880.9736
$\eta _{2}^{2}$0.96960.97320.97840.97000.97360.97720.96560.97600.98760.96800.97680.9736
$\eta _{3}^{2}$0.96960.97320.97840.97040.97360.97720.96560.97640.98090.96800.97680.9736
$\eta _{4}^{2}$0.96920.97480.97800.97040.97480.97720.96920.97720.98630.96840.97880.9736
$\eta _{5}^{2}$0.96960.97560.97840.97040.97560.97720.97000.97720.98680.96840.98000.9732

注: $ \eta _{1}^{2} = ({{0.1}^{2}}, {{1}^{2}}), \eta _{2}^{2} = ({{0.3}^{2}}, {{2.5}^{2}}), $$ \eta _{3}^{2} = ({{0.5}^{2}}, {{4}^{2}}), $$ \eta _{4}^{2} = ({{0.7}^{2}}, {{7}^{2}}), $$ \eta _{5}^{2} = ({{0.9}^{2}}, {{10}^{2}}); $$ N1 = (30, 40), $$ N2 = (40, 60), $$ N3 = (60, 80), N4 = (90, 120), N5 = (120, 150), N6 = (150, 200). $

新窗口打开| 下载CSV


表 2   三个总体时六种Bootstrap置信区间的模拟覆盖概率

(λ1, λ2, λ3) = (3, 3, 4)
N1N2
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.86550.83960.86680.93300.91440.94280.90850.87440.90800.95800.93880.9620
$\eta _{2}^{2}$0.86750.83800.86680.93350.91800.94240.90800.87240.90760.95650.94320.9608
$\eta _{3}^{2}$0.86850.83480.86680.93100.92160.94080.90650.87080.90840.95600.94800.9620
$\eta _{4}^{2}$0.86900.83400.86720.93200.92480.93960.90800.87080.91040.95500.94920.9620
$\eta _{5}^{2}$0.86900.83360.86760.93150.92280.94120.90600.87120.90880.95600.94840.9620
N3N4
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.92300.88040.93240.95800.93200.96240.94000.89880.94160.96150.93360.9664
$\eta _{2}^{2}$0.92050.87360.93440.95700.93800.96240.94150.89760.94120.96050.93520.9664
$\eta _{3}^{2}$0.92750.87080.93400.95600.94360.96240.94200.89640.94200.96050.94360.9676
$\eta _{4}^{2}$0.92950.86960.93400.95450.94640.96200.94450.89440.94320.95900.94840.9672
$\eta _{5}^{2}$0.92750.87200.93360.95600.94480.96200.94350.89640.94280.96050.94520.9672
N5N6
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.94150.89040.94480.93450.90000.94560.94500.87520.94200.93800.89240.9448
$\eta _{2}^{2}$0.94300.88440.94520.93350.90880.94480.94500.86840.94200.93850.90160.9452
$\eta _{3}^{2}$0.94500.87720.94480.93350.92000.94560.94650.86040.94240.94000.91120.9452
$\eta _{4}^{2}$0.94400.87400.94480.93400.92520.94520.94450.85280.94240.94100.91880.9448
$\eta _{5}^{2}$0.94450.87680.94400.93350.92280.94520.94600.85880.94240.94050.91360.9448
(λ1, λ2, λ3) = (5, 5, 6)
N1N2
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.94100.90360.94440.95950.93880.96640.95500.91280.95880.96700.95400.9756
$\eta _{2}^{2}$0.94150.90040.94400.95950.94360.96640.95600.90720.95960.96650.95760.9756
$\eta _{3}^{2}$0.94150.89360.94480.95900.94760.96560.95800.90160.96080.96700.96160.9752
$\eta _{4}^{2}$0.93950.88920.94520.95800.95160.96440.95650.89480.96160.96700.96200.9744
$\eta _{5}^{2}$0.94150.89200.94440.95900.94840.96520.95750.90160.96120.96700.96160.9752
N3N4
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.96300.89640.97040.97350.94320.97960.96500.89760.97040.97350.94440.9796
$\eta _{2}^{2}$0.96350.88520.97040.97250.94920.98000.96550.89040.96880.97400.95160.9796
$\eta _{3}^{2}$0.96500.86720.97040.97300.95760.98040.96550.87600.96960.97450.95880.9792
$\eta _{4}^{2}$0.96250.86080.96920.97200.96200.98000.96500.86600.97080.97450.96280.9784
$\eta _{5}^{2}$0.96450.86520.96920.97300.96040.98000.96500.87440.96920.97450.96040.9788
N5N6
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.96650.86800.97160.95200.92000.96960.95950.83880.96720.95950.90600.9660
$\eta _{2}^{2}$0.96500.85360.97240.95100.92920.96960.95950.81960.96880.95850.91920.9660
$\eta _{3}^{2}$0.96500.83360.97120.95150.93640.96880.96200.79440.96880.95850.93120.9656
$\eta _{4}^{2}$0.96600.82480.96880.95200.94040.96880.96250.77840.96760.95850.93800.9668
$\eta _{5}^{2}$0.96550.83120.97000.95200.93800.96920.96200.79000.96840.95850.93200.9664
(λ1, λ2, λ3) = (6, 8, 9)
N1N2
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.95100.91160.95680.96500.94840.97280.96250.91840.96560.97650.96200.9816
$\eta _{2}^{2}$0.95100.91040.95600.96500.95240.97320.96200.91080.96560.97550.96280.9812
$\eta _{3}^{2}$0.95250.90160.95520.96500.95720.97280.96400.90600.96600.97350.96600.9816
$\eta _{4}^{2}$0.95100.89520.95480.96550.96120.97240.96400.90000.96640.97300.96840.9800
$\eta _{5}^{2}$0.95300.90080.95480.96500.95880.97280.96450.90480.96640.97300.96600.9816
N3N4
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.96850.89640.97480.97800.95680.98200.97050.90360.97440.97850.95600.9828
$\eta _{2}^{2}$0.96950.88680.97560.97850.96040.98240.97050.89280.97400.97850.96160.9824
$\eta _{3}^{2}$0.96950.86600.97560.97750.96720.98200.97050.87440.97440.97800.96640.9824
$\eta _{4}^{2}$0.96950.85600.97600.97750.97040.98200.96950.86520.97560.97800.97040.9824
$\eta _{5}^{2}$0.96950.86440.97560.97750.96680.98200.97050.87280.97400.97800.96720.9828
N5N6
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.97200.86760.97760.96300.93240.97680.96650.83880.97360.96900.92240.9716
$\eta _{2}^{2}$0.97150.85160.97720.96300.93720.97680.96600.80680.97440.96900.93200.9708
$\eta _{3}^{2}$0.97050.83000.97760.96100.94680.97640.96800.78000.97320.96950.94280.9708
$\eta _{4}^{2}$0.97000.81560.97520.96200.95200.97680.96700.76040.97240.96850.94920.9696
$\eta _{5}^{2}$0.97000.82720.97720.96100.94760.97560.96750.77480.97280.96950.94520.9704

注:$ \eta _{1}^{2} = ({{0.3}^{2}}, {{0.9}^{2}}, {{3}^{2}}), $$ \eta _{2}^{2} = ({{0.4}^{2}}, {{1.1}^{2}}, {{4}^{2}}), $$ \eta _{3}^{2} = ({{0.5}^{2}}, {{1.2}^{2}}, {{5}^{2}}), $$ \eta _{4}^{2} = ({{0.7}^{2}}, {{1.5}^{2}}, {{7}^{2}}), $$ \eta _{5}^{2} = ({{0.9}^{2}}, {{2.1}^{2}}, {{9}^{2}}); $$ N1 = (30, 40, 40), $$ N2 = (40, 50, 60), $$ N3 = (60, 80, 90), $$ N4 = (90, 100, 120), $$ N5 = (120, 150, 180), $$ N6 = (150, 200, 240) $

新窗口打开| 下载CSV


表 3   五个总体时六种Bootstrap置信区间的模拟覆盖概率

(λ1, λ2, λ3, λ4, λ5) = (3, 3, 4, 4, 5)
N1N2
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.87200.83320.87000.96000.92800.95960.92100.87600.92200.96550.92200.9664
$\eta _{2}^{2}$0.86900.83680.86640.95450.91440.95600.91900.88360.91920.96150.91480.9656
$\eta _{3}^{2}$0.86700.84120.86440.95000.90880.95440.91650.88680.91880.96350.91120.9660
$\eta _{4}^{2}$0.86550.84400.86320.95250.91960.95520.91750.89000.91680.96400.92280.9648
$\eta _{5}^{2}$0.85950.85040.86440.95000.92800.95160.91350.89480.91440.96450.92240.9636
N3N4
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.93000.87840.93520.96300.91320.97280.94050.88880.94000.95350.90160.9608
$\eta _{2}^{2}$0.92900.88960.93240.96500.90560.97120.93900.89880.93880.95450.87960.9624
$\eta _{3}^{2}$0.92700.89640.93160.96550.89360.97000.93950.90320.93960.96250.86320.9644
$\eta _{4}^{2}$0.92600.89960.93160.96350.91520.97040.93900.90840.93760.96150.89160.9648
$\eta _{5}^{2}$0.92400.90960.92960.96400.91640.97120.93800.91640.93440.96150.89640.9652
N5N6
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.94800.87720.94440.96600.90400.96720.94500.86880.93800.96300.87320.9640
$\eta _{2}^{2}$0.94800.88440.94400.96700.87880.97000.94450.87800.93760.95800.84840.9620
$\eta _{3}^{2}$0.94550.89760.94200.96800.85880.96920.94200.89440.93760.95650.83280.9572
$\eta _{4}^{2}$0.94450.90480.94160.96850.88960.96920.94100.90160.93640.95650.87080.9580
$\eta _{5}^{2}$0.94500.91520.94120.96400.89280.96840.94100.90960.93640.95900.88160.9588
(λ1, λ2, λ3, λ4, λ5) = (4, 4, 5, 5, 6)
N1N2
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.92500.87640.92480.96450.92480.96680.95350.89480.95680.96950.91720.9740
$\eta _{2}^{2}$0.92350.88080.92320.95750.90960.96160.95300.90160.95520.96800.90880.9740
$\eta _{3}^{2}$0.92200.89000.92160.95650.90120.96080.95050.91240.95320.97100.90360.9736
$\eta _{4}^{2}$0.91950.89400.92120.95750.91440.96040.95150.91680.95160.96850.91640.9720
$\eta _{5}^{2}$0.91600.90160.92120.95700.91880.95880.95000.92520.95160.97050.91880.9720
N3N4
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.95400.88120.96080.96750.90520.97560.95550.88000.95960.96200.89120.9720
$\eta _{2}^{2}$0.95450.89680.96120.97000.89600.97800.95650.89240.95880.95800.87000.9672
$\eta _{3}^{2}$0.95250.90760.95960.97100.88360.97640.95450.90720.95720.96450.84960.9680
$\eta _{4}^{2}$0.94900.91400.95680.97000.90960.97720.95300.91560.95680.96400.88080.9704
$\eta _{5}^{2}$0.94500.92880.95640.97050.90760.97720.95300.92720.95360.96500.88800.9708
N5N6
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.96550.86280.96400.96950.89520.96920.95450.82840.95360.96450.85440.9684
$\eta _{2}^{2}$0.96400.87120.96320.97200.86480.97360.95400.85240.95320.96000.82640.9624
$\eta _{3}^{2}$0.96250.89480.96320.97150.84720.97480.95350.87800.95160.95800.80320.9584
$\eta _{4}^{2}$0.96250.90800.96200.97150.87520.97480.95300.88920.95280.95900.85320.9596
$\eta _{5}^{2}$0.96100.92560.96080.96900.87920.97440.95150.90640.95040.95700.86320.9608
(λ1, λ2, λ3, λ4, λ5) = (7, 7, 8, 8, 9)
N1N2
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.96150.90720.96560.97100.92280.97560.97400.90800.97640.97700.91760.9808
$\eta _{2}^{2}$0.95950.91520.96440.96800.90600.97120.97250.91720.97600.97600.91000.9804
$\eta _{3}^{2}$0.95850.92360.96160.96650.89720.96840.97100.93080.97520.97650.90480.9800
$\eta _{4}^{2}$0.95750.93080.96240.96600.91200.96920.96900.94000.97320.97700.91560.9800
$\eta _{5}^{2}$0.95600.93720.96200.96550.91320.97000.96700.95160.97160.97550.91680.9792
N3N4
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.97500.89560.98000.97550.90160.98200.97350.89240.97640.96750.88520.9780
$\eta _{2}^{2}$0.97350.91040.97920.97650.88880.98280.97350.90640.97680.96700.86640.9792
$\eta _{3}^{2}$0.97050.92680.97960.97500.87960.98200.97250.92520.97560.97250.84320.9780
$\eta _{4}^{2}$0.96950.93560.98000.97450.90400.98160.97150.93280.97400.97250.87520.9788
$\eta _{5}^{2}$0.96700.95320.97800.97500.90480.98160.96950.94360.97320.97250.87960.9808
N5N6
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.97800.86400.98000.97350.89160.97480.97200.83200.97640.96350.83200.9732
$\eta _{1}^{2}$0.97750.88080.98000.97350.85840.97680.97150.85800.97560.96600.81200.9696
$\eta _{1}^{2}$0.97700.91000.97920.97600.83520.98000.97050.89400.97480.96300.77880.9680
$\eta _{1}^{2}$0.97600.92440.97920.97650.86520.98120.97000.91480.97360.96350.83800.9692
$\eta _{1}^{2}$0.97600.94480.97760.97600.86480.98000.97050.93160.97280.96200.84960.9692

注: $ \eta _{1}^{2} = ({{0.3}^{2}}, {{0.9}^{2}}, {{2}^{2}}, {{3}^{2}}, {{3}^{2}}), \eta _{2}^{2} = ({{0.4}^{2}}, {{1.2}^{2}}, {{4}^{2}}, {{4}^{2}}, {{5}^{2}}), $$ \eta _{3}^{2} = ({{0.5}^{2}}, {{1.8}^{2}}, {{6}^{2}}, {{5}^{2}}, {{7}^{2}}), $$ \eta _{4}^{2} = ({{0.7}^{2}}, {{3}^{2}}, {{8}^{2}}, $$ {{7}^{2}}, {{9}^{2}}), \eta _{5}^{2} = ({{0.9}^{2}}, {{5.4}^{2}}, {{10}^{2}}, {{9}^{2}}, {{11}^{2}}); $$ N1 = (30, 40, 40, 50, 50), N2 = (50, 50, 60, 60, 80), N3 = (70, 70, 90, 90, 100), $$ N4 = (90, 90, 90, 120, 120), N5 = (100, 120, 120, 150, 150), N6 = (150, 150, 200, 200, 200). $

新窗口打开| 下载CSV


表 4   两个总体时六种Bootstrap置信区间的模拟区间长度

(λ1, λ2) = (3, 4)
N1N2
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.04110.02210.01541.29871.06540.69860.02750.02010.01371.07100.90180.5738
$\eta _{2}^{2}$0.18020.19910.13844.91696.65924.36650.15530.18080.12364.14425.63633.5863
$\eta _{3}^{2}$0.42840.55290.384513.979417.047811.17840.40680.50220.336010.837214.42929.1810
$\eta _{4}^{2}$0.88171.08380.753736.834952.206434.23200.89030.98450.672932.581044.187328.1151
$\eta _{5}^{2}$1.35951.79161.246074.1995106.542469.86031.44161.62751.112461.436790.177257.3771
N3N4
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.02520.01710.01120.85190.71780.46470.03830.01290.00830.55500.51600.3071
$\eta _{2}^{2}$0.14850.15390.10093.27474.48612.90440.11470.11640.07462.51893.22541.9195
$\eta _{3}^{2}$0.36260.42740.28029.631311.48477.43550.27740.32350.20726.44048.25714.9140
$\eta _{4}^{2}$0.56830.83770.549326.944735.170222.76990.58350.63400.406221.035225.285915.0482
$\eta _{5}^{2}$1.21081.38480.908048.526171.775046.46860.88321.04810.671532.166551.603330.7102
N5N6
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.03360.01100.00680.60140.39400.23790.03450.00920.00560.49080.34220.2053
$\eta _{2}^{2}$0.09350.09860.06151.85892.46261.48670.10760.08260.05031.74242.13911.2834
$\eta _{3}^{2}$0.20800.27400.17085.76276.30433.80610.20120.22950.13975.57265.47633.2856
$\eta _{4}^{2}$0.47370.53710.334913.829119.306511.65550.39020.44990.273913.528016.770110.0614
$\eta _{5}^{2}$0.80880.88780.553627.474039.400723.78630.63670.74370.452721.743834.224120.5332
(λ1, λ2) = (5, 6)
N1N2
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.03940.02100.01381.23601.00230.63750.02550.01830.01180.99320.80230.5009
$\eta _{2}^{2}$0.16460.18870.12434.52526.26453.98480.13720.16450.10643.65785.01433.1310
$\eta _{3}^{2}$0.38480.52420.345212.976716.037210.20120.35660.45680.29569.592012.83688.0154
$\eta _{4}^{2}$0.79641.02750.676633.764349.111831.23970.79170.89550.579528.767939.311124.5460
$\eta _{5}^{2}$1.21851.69851.118567.9331100.227163.75371.27861.48040.957953.654980.226050.0932
N3N4
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.02280.01430.00890.78570.62150.39570.03610.00980.00610.50660.43930.2632
$\eta _{2}^{2}$0.12750.12870.08032.86053.88482.47330.09520.08790.05452.21662.74571.6448
$\eta _{3}^{2}$0.30420.35750.22318.57099.94516.33160.22330.24410.15155.66657.02914.2107
$\eta _{4}^{2}$0.45370.70080.437323.697430.455419.38970.47740.47850.296918.665221.525512.8946
$\eta _{5}^{2}$1.02141.15850.722941.899062.153239.57040.70790.79110.490827.330043.928926.3153
N5N6
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.03190.00800.00490.57400.34370.21140.03310.00680.00420.47030.30050.1874
$\eta _{2}^{2}$0.07770.07240.04441.68752.14831.32150.09530.06160.03751.61461.87811.1713
$\eta _{3}^{2}$0.16420.20100.12335.32415.49973.38300.16700.17120.10425.24544.80792.9985
$\eta _{4}^{2}$0.38790.39390.241612.486116.842510.35980.32320.33550.204312.525714.72319.1822
$\eta _{5}^{2}$0.66700.65120.399424.733434.372221.14220.52590.55460.337719.698430.046618.7387
(λ1, λ2) = (8, 9)
N1N2
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.03860.02040.01311.20390.96760.60560.02460.01740.01090.96180.75910.4681
$\eta _{2}^{2}$0.15780.18370.11804.32486.04743.78490.12970.15630.09843.46124.74432.9255
$\eta _{3}^{2}$0.36600.51030.327912.463515.48159.68950.33570.43420.27339.088812.14567.4894
$\eta _{4}^{2}$0.75951.00020.642732.192947.410029.67270.75080.85110.535727.227137.194622.9350
$\eta _{5}^{2}$1.15741.65351.062564.726196.754260.55581.21101.40690.885650.510575.906646.8056
N3N4
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.02190.01310.00800.75700.57770.36430.03550.00880.00540.48920.40950.2485
$\eta _{2}^{2}$0.11900.11780.07212.68163.61092.27680.08970.07880.04862.10732.55951.5533
$\eta _{3}^{2}$0.28060.32720.20048.11299.24405.82870.20800.21880.13515.38696.55253.9764
$\eta _{4}^{2}$0.40760.64130.392722.295028.308317.84970.44730.42880.264817.809020.065812.1772
$\eta _{5}^{2}$0.94531.06010.649239.037057.771336.42750.65810.70890.437825.582640.950024.8510
N5N6
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.03140.00720.00450.56460.32610.20340.03290.00630.00390.46320.28550.1814
$\eta _{2}^{2}$0.07380.06510.04041.62892.03811.27130.09280.05640.03471.57021.78461.1336
$\eta _{3}^{2}$0.15350.18090.11235.17405.21763.25450.15990.15660.09655.13184.56862.9020
$\eta _{4}^{2}$0.36690.35460.220112.026315.97879.96640.30920.30690.189112.177913.99028.8866
$\eta _{5}^{2}$0.63220.58620.363923.795132.609420.33930.50280.50730.312618.988528.550718.1355

注: $ \eta _{1}^{2} = ({{0.1}^{2}}, {{1}^{2}}), \eta _{2}^{2} = ({{0.3}^{2}}, {{2.5}^{2}}), $$ \eta _{3}^{2} = ({{0.5}^{2}}, {{4}^{2}}), \eta _{4}^{2} = ({{0.7}^{2}}, {{7}^{2}}), $$ \eta _{5}^{2} = ({{0.9}^{2}}, {{10}^{2}}); $$ N1 = (30, 40), $$ N2 = (40, 60), $$ N3 = (60, 80), N4 = (90, 120), N5 = (120, 150), N6 = (150, 200). $

新窗口打开| 下载CSV


表 2表 3分别给出六种Bootstrap置信区间在三个和五个总体情况下的模拟覆盖概率. 表 5表 6分别给出六种Bootstrap置信区间在三个和五个总体情况下的模拟区间长度.就覆盖概率而言, 当偏度参数和样本量较小时, $ Z_{mple} $$ Z_{mle} $$ Z_{mm} $$ T_{mle} $四种方法均呈现出自由的现象.随着样本量和偏度参数的增加, 无论是三个总体还是五个总体, $ Z_{mple} $$ Z_{mm} $的实际置信水平得到明显改善, 逐渐接近于95%名义置信水平.对于$ T_{mle} $, 仅在三个总体时呈现出$ Z_{mm} $的类似特征. $ T_{mple} $$ T_{mm} $整体表现较好, 然而, 随着偏度参数的增加略显保守.此外, 四种Bootstrap置信区间长度在三个和五个总体下的模拟结果类似于两个总体.

表 5   三个总体时六种Bootstrap置信区间的模拟区间长度

(λ1, λ2, λ3) = (3, 3, 4)
N1N2
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.15580.19790.13654.37216.23734.08770.13250.17940.12153.70235.26253.3734
$\eta _{2}^{2}$0.30060.35120.24187.713911.07647.25510.24950.31820.21546.49179.34785.9910
$\eta _{3}^{2}$0.44330.54650.375113.332517.288111.31680.40460.49490.334312.229614.59359.3507
$\eta _{4}^{2}$1.01541.06650.729026.796233.865222.16170.78060.96490.649724.472228.590718.3170
$\eta _{5}^{2}$1.52711.76881.213040.042856.004036.65711.34461.60151.081235.880447.276930.2912
N3N4
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.11000.15270.09943.00123.91812.45160.09060.11590.07332.39373.05321.8877
$\eta _{2}^{2}$0.23720.27080.17614.75566.95954.35250.18820.20570.13003.82125.42453.3539
$\eta _{3}^{2}$0.33790.42090.27299.175210.86466.79140.27530.32040.20196.82048.47055.2370
$\eta _{4}^{2}$0.54510.82010.529516.666521.285213.30200.53760.62610.392912.820916.597710.2607
$\eta _{5}^{2}$1.24051.36190.882325.604835.196721.99960.87501.03740.653219.894127.442216.9660
N5N6
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.07700.09810.06081.98922.35611.42620.06870.08220.04941.81762.03901.2296
$\eta _{2}^{2}$0.16580.17400.10772.81754.18682.53270.12980.14590.08752.73343.62252.1837
$\eta _{3}^{2}$0.24160.27080.16685.65256.53863.95250.18590.22700.13565.18625.65673.4092
$\eta _{4}^{2}$0.45890.52810.323510.348112.81137.74210.41020.44240.263110.029711.08416.6801
$\eta _{5}^{2}$0.86590.87640.539213.480821.183012.80390.61020.73450.438514.627018.326111.0449
(λ1, λ2, λ3) = (5, 5, 6)
N1N2
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.14070.18780.12224.02485.89833.74400.11510.16320.10413.23684.66612.9283
$\eta _{2}^{2}$0.27390.33320.21657.097410.47546.64480.21850.28940.18455.66538.28915.2006
$\eta _{3}^{2}$0.40170.51820.335712.371516.351910.36460.35630.44980.286410.940612.94158.1174
$\eta _{4}^{2}$0.93411.01010.651924.914832.033320.29670.68660.87630.556521.947925.354915.9014
$\eta _{5}^{2}$1.39241.67711.085436.930052.972333.57251.18861.45540.926231.705141.925426.2962
N3N4
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.08870.12790.07882.61803.35532.07510.07000.08750.05322.10902.60201.6216
$\eta _{2}^{2}$0.19930.22690.13964.07535.96083.68410.15170.15520.09433.31514.62282.8811
$\eta _{3}^{2}$0.27920.35240.21638.11319.30725.74880.21850.24190.14636.02987.21864.4990
$\eta _{4}^{2}$0.43090.68600.419214.585318.236111.26040.42690.47280.284411.271514.14548.8144
$\eta _{5}^{2}$1.05061.14000.699322.163830.152318.62260.69140.78320.473217.332623.386814.5749
N5N6
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.05930.07200.04371.85132.06021.27810.05580.06140.03691.70591.80711.1257
$\eta _{2}^{2}$0.13450.12770.07742.57303.66152.26970.10690.10890.06542.53553.21111.9992
$\eta _{3}^{2}$0.19320.19880.11975.27135.71933.54230.15030.16950.10134.87785.01493.1219
$\eta _{4}^{2}$0.36510.38790.23199.601911.20656.93870.34100.33040.19639.42619.82716.1179
$\eta _{5}^{2}$0.70960.64360.386912.246118.529211.47490.49510.54840.327613.628316.247110.1146
(λ1, λ2, λ3) = (6, 8, 9)
N1N2
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.13740.18510.11903.83285.69343.56170.11150.15950.10063.04614.40632.7456
$\eta _{2}^{2}$0.26790.32830.21076.756510.11206.32090.21220.28280.17835.32677.82794.8761
$\eta _{3}^{2}$0.39220.51040.326511.839515.78559.85870.34640.43950.276710.412312.22217.6110
$\eta _{4}^{2}$0.91540.99430.633623.873330.924219.30570.66690.85580.537520.913023.946014.9098
$\eta _{5}^{2}$1.36171.65161.055735.207251.137631.93391.15641.42200.894829.993639.595224.6560
N3N4
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.08460.12260.07482.46653.12071.93020.06710.08270.05032.02032.45021.5399
$\eta _{1}^{2}$0.19220.21750.13243.80635.54483.42700.14650.14680.08903.15754.35322.7361
$\eta _{1}^{2}$0.26800.33770.20517.69328.65885.34760.21040.22860.13815.78366.79794.2725
$\eta _{1}^{2}$0.40910.65710.397313.762516.967010.47450.41090.44660.268510.788813.32148.3705
$\eta _{1}^{2}$1.01451.09230.663020.803328.052317.32300.66510.74030.446716.534722.024013.8411
N5N6
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.05710.06800.04151.80261.96171.23300.05430.05860.03551.66611.72711.0921
$\eta _{2}^{2}$0.13060.12070.07342.48663.48662.18960.10430.10400.06302.46483.06921.9394
$\eta _{3}^{2}$0.18710.18790.11365.13675.44663.41720.14620.16180.09764.76774.79363.0287
$\eta _{4}^{2}$0.35310.36660.21989.338510.67226.69370.33290.31550.18899.21059.39395.9356
$\eta _{5}^{2}$0.68970.60830.366911.810117.645811.06990.48180.52370.315413.271515.53049.8127

注: $ \eta _{1}^{2} = ({{0.3}^{2}}, {{0.9}^{2}}, {{2}^{2}}, {{3}^{2}}, {{3}^{2}}), $$ \eta _{2}^{2} = ({{0.4}^{2}}, {{1.2}^{2}}, {{4}^{2}}, {{4}^{2}}, {{5}^{2}}), $$ \eta _{3}^{2} = ({{0.5}^{2}}, {{1.8}^{2}}, {{6}^{2}}, {{5}^{2}}, {{7}^{2}}), $$ \eta _{4}^{2} = ({{0.7}^{2}}, {{3}^{2}} , {{8}^{2}}, {{7}^{2}}, {{9}^{2}}), $$ \eta _{5}^{2} = ({{0.9}^{2}}, {{5.4}^{2}}, {{10}^{2}}, {{9}^{2}}, { {11}^{2}}); $$ N1 = (30, 40, 40, 50, 50), $$ N2 = (50, 50, 60, 60, 80), $$ N3 = (70, 70, 90, 90, 100), $$ N4 = (90, 90, 90, 120, 120), $$ N5 = (100, 120, 120, 150, 150), $$ N6 = (150, 150, 200, 200, 200). $

新窗口打开| 下载CSV


表 6   五个总体时六种Bootstrap置信区间的模拟区间长度

(λ1, λ2, λ3, λ4, λ5) = (3, 3, 4, 4, 5)
N1N2
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.15570.19780.13633.49394.69093.24120.12160.16170.10782.87733.45792.3837
$\eta _{2}^{2}$0.27340.35180.24248.283911.54657.95180.21310.28760.19176.26438.71795.9407
$\eta _{3}^{2}$0.43870.55130.380417.033622.454515.40170.39280.45040.300513.695117.084311.6810
$\eta _{4}^{2}$1.04381.08210.747229.477038.708726.83970.78440.88380.590125.735029.364620.3567
$\eta _{5}^{2}$1.47131.79061.237244.014860.045141.98061.27141.46250.976637.114245.488031.8257
N3N4
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.10270.13980.09022.52962.83961.94790.09350.11590.07331.83182.42891.6117
$\eta _{2}^{2}$0.22130.24850.16045.26757.08584.77830.17060.20600.13044.22715.97593.9423
$\eta _{3}^{2}$0.33300.38950.251510.842013.87929.34310.24790.32260.20449.504911.54237.6441
$\eta _{4}^{2}$0.51000.76480.493921.410224.045316.39430.59280.63310.401317.795620.138713.4950
$\eta _{5}^{2}$0.99851.26590.817526.723837.319325.66530.80891.04760.664222.718731.385421.2205
N5N6
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.08220.10930.06871.73252.08301.34090.06280.08220.04941.65021.69981.0693
$\eta _{2}^{2}$0.17280.19430.12213.68815.03253.31830.11430.14620.08793.38684.16952.6306
$\eta _{3}^{2}$0.27290.30440.19158.68299.82446.47190.18150.22900.13788.16598.20795.2124
$\eta _{4}^{2}$0.51300.59740.376116.813017.249411.40770.45100.44930.270514.502814.28899.0520
$\eta _{5}^{2}$0.77330.98880.622424.588526.970217.91680.58950.74340.447616.829522.225714.1171
(λ1, λ2, λ3, λ4, λ5) = (4, 4, 5, 5, 6)
N1N2
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.14620.19150.12723.29114.44963.04560.10880.14790.09482.70343.25572.2115
$\eta _{2}^{2}$0.25650.34060.22637.844011.03467.52130.19040.26300.16865.85528.21635.5371
$\eta _{3}^{2}$0.41240.53370.355216.200821.472814.58170.35710.41180.264412.887716.077410.8849
$\eta _{4}^{2}$0.99211.04750.697727.973336.979425.37350.71450.80810.519224.298327.642618.9434
$\eta _{5}^{2}$1.38571.73321.155241.606257.332739.63931.15561.33710.859434.815842.804429.5654
N3N4
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.08800.12140.07582.37542.65131.79570.07910.09640.05911.71052.27211.4887
$\eta _{2}^{2}$0.19510.21590.13484.93876.66474.44830.14490.17140.10513.96765.64463.6908
$\eta _{3}^{2}$0.29190.33830.211410.184413.04448.68900.20770.26840.16488.995210.90707.1541
$\eta _{4}^{2}$0.42940.66430.415120.203322.587415.19450.51390.52660.323416.851819.001012.5837
$\eta _{5}^{2}$0.86521.09950.687124.776235.013023.73100.67840.87140.535221.176029.551719.7318
N5N6
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.06960.09120.05611.65391.96491.25990.05320.06720.04001.60021.61031.0197
$\eta _{2}^{2}$0.15040.16220.09983.50444.76853.13520.09730.11950.07123.27363.97712.5161
$\eta _{3}^{2}$0.23780.25400.15658.30279.28606.09010.15480.18720.11167.94167.82714.9874
$\eta _{4}^{2}$0.44400.49840.307316.110616.293710.70290.39860.36730.219114.089613.60508.6378
$\eta _{5}^{2}$0.65910.82490.508423.439125.456616.76510.50280.60770.362616.152621.122713.4314
(λ1, λ2, λ3, λ4, λ5) = (7, 7, 8, 8, 9)
N1N2
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.13550.18360.11703.05814.16322.81780.09490.13150.08112.51293.02792.0208
$\eta _{2}^{2}$0.23740.32660.20817.330310.41877.01350.16570.23380.14425.41257.66195.1002
$\eta _{3}^{2}$0.38240.51160.326715.223720.287713.62180.31850.36610.226411.997814.955510.0096
$\eta _{4}^{2}$0.93341.00400.641726.227534.919623.65690.63870.71840.444622.721825.745017.3886
$\eta _{5}^{2}$1.28861.66101.062638.801354.096536.90261.03021.18850.735932.320439.890727.1060
N3N4
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.07470.10280.06272.22142.46161.64810.06850.08010.04861.59982.12151.3816
$\eta _{2}^{2}$0.17150.18270.11144.60766.23694.12870.12600.14240.08653.72125.31593.4558
$\eta _{3}^{2}$0.25480.28640.17489.532112.18938.06240.17800.22300.13568.502910.26466.6820
$\eta _{4}^{2}$0.35660.56240.343218.993721.103314.03870.45560.43760.266215.937817.856611.7123
$\eta _{5}^{2}$0.74460.93080.568422.837232.680021.87180.58190.72400.440519.685727.738518.3212
N5N6
ZmpleZmleZmmTmpleTmleTmmZmpleZmleZmmTmpleTmleTmm
$\eta _{1}^{2}$0.05930.07570.04641.58131.84921.18840.04760.05710.03471.55231.51690.9747
$\eta _{2}^{2}$0.13210.13460.08253.32504.50162.96230.08730.10150.06173.16673.77362.4147
$\eta _{3}^{2}$0.20920.21090.12947.93528.73345.73410.13910.15890.09677.72417.42484.7839
$\eta _{4}^{2}$0.38790.41370.254015.445215.334510.05870.36780.31180.189913.705312.88718.2708
$\eta _{5}^{2}$0.56630.68480.420222.366223.954015.73040.45180.51580.314315.537319.976712.8403

注: $ \eta _{1}^{2} = ({{0.3}^{2}}, {{0.9}^{2}}, {{2}^{2}}, {{3}^{2}}, {{3}^{2}}), $$ \eta _{2}^{2} = ({{0.4}^{2}}, {{1.2}^{2}}, {{4}^{2}}, {{4}^{2}}, {{5}^{2}}), $$ \eta _{3}^{2} = ({{0.5}^{2}}, {{1.8}^{2}}, {{6}^{2}}, {{5}^{2}}, {{7}^{2}}), $$ \eta _{4}^{2} = ({{0.7}^{2}}, {{3}^{2}} , {{8}^{2}}, {{7}^{2}}, {{9}^{2}}), $$ \eta _{5}^{2} = ({{0.9}^{2}}, {{5.4}^{2}}, {{10}^{2}}, {{9}^{2}}, { {11}^{2}}); $$ N1 = (30, 40, 40, 50, 50), $$ N2 = (50, 50, 60, 60, 80), $$ N3 = (70, 70, 90, 90, 100), $$ N4 = (90, 90, 90, 120, 120), $$ N5 = (100, 120, 120, 150, 150), $$ N6 = (150, 150, 200, 200, 200). $

新窗口打开| 下载CSV


注4.1  根据$ Z_{mple} $$ Z_{mle} $$ Z_{mm} $$ T_{mple} $$ T_{mle} $$ T_{mm} $六种Bootstrap置信区间, 可以建立假设检验问题(3.9)的检验方法.由表 1-表 3可知, $ Z_{mple} $$ Z_{mle} $$ Z_{mm} $$ T_{mle} $四种Bootstrap置信区间在某些参数设置下覆盖概率较低, 故而无法有效控制犯第一类错误的概率.而$ T_{mple} $$ T_{mm} $均能有效控制犯第一类错误的概率, 且整体表现较好; 但随着偏度参数的增加略显保守.

5 案例分析

为了验证本文所给方法的合理性和有效性, 本小节将其应用于地区GDP和生物利用度数据的案例分析.

案例1  我们将上述方法应用于1995-2017年福建省和湖北省GDP数据.由图 1图 2可见, 福建省和湖北省GDP数据均不服从正态分布且明显呈现出非对称、右偏的分布特征.为检验该结论的正确性, 对数据进行Shapiro-Wilk、Anderson-Darling和Kolmogorov-Smirnov正态性检验.结果表明:福建省GDP数据的$ p $值分别为0.0046、0.0031和0.0337, 而湖北省GDP数据的$ p $值分别为0.0021、0.0010和0.0181.因此, 在5%名义显著性水平下认为福建省和湖北省GDP数据均不服从正态分布.进一步, 对该数据进行偏正态分布检验, 即检验原假设$ H_0: $福建省、湖北省GDP数据服从偏正态分布.由计算可得, 福建省GDP数据拟合值$ \chi _{f}^{2} = 3.4012<\chi _{3}^{2}(0.95) = 7.8147 $, 湖北省GDP数据拟合值$ \chi _{h}^{2} = 5.5185<\chi _{3}^{2}(0.95) = 7.8147 $.则在5%名义显著性水平下认为福建省和湖北省GDP数据均服从偏正态分布$ SN({{\xi }_{f}}, \eta _{f}^{2}, {{\lambda }_{f}}) $$ SN({{\xi }_{h}}, \eta _{h}^{2}, {{\lambda }_{h}}) $.

图 1

图 1   1995-2017年福建省地区生产总值直方图及概率密度曲线


图 2

图 2   1995-2017年湖北省地区生产总值直方图及概率密度曲线


进一步, 我们考虑假设检验问题

在原假设$ {{H}_{0}} $成立的条件下, 基于中心极限定理构造检验统计量为

类似于$ Z_{B1}^{*} $, 可构造Bootstrap检验统计量

基于$ U_{B} $可得$ p = 2\min \left\{ P({{U}_{B}}>u), P({{U}_{B}}<u) \right\}, $其中$ u $表示$ U $的观测值.因此, 可计算出Bootstrap检验统计量的$ p $值为0.8984.故在5%名义显著性水平下不能拒绝原假设$ {{H}_{0}} $, 即认为1995–2017年福建省和湖北省GDP数据的位置参数之间不具有显著差异.所以, 基于$ Z_{ mple} $$ Z_{mle} $$ Z_{mm} $$ T_{mple} $$ T_{mle} $$ T_{mm} $可得, 共同位置参数$ \xi $的Bootstrap置信区间分别为$ (-1.5286e+4, 2.3504e+3) $$ (-2.6774e+4, 2.9020e+3) $$ (-1.5336e+4, 2.5805e+3) $$ (-1.4132e+4, 2.5262e+3) $$ (-2.3826e+4, 3.0783e+3) $$ (-1.4180e+4, 2.7639e+3). $同时, 我们探讨假设检验问题

可得基于$ Z_{B1}^* $$ Z_{B2}^* $$ Z_{B3}^* $$ T_{B1}^* $$ T_{B2}^* $$ T_{B3}^* $六种Bootstrap检验统计量的$ p $值分别为0.3006、0.9176、0.9247、0.2676、0.8982和0.9075, 其中$ Z_{B3}^* $$ T_{B3}^* $两种Bootstrap检验统计量是类似于$ Z_{B1}^* $$ T_{B1}^* $, 基于极大惩罚似然方法构造的.因此, 在5%名义显著性水平下不能拒绝原假设$ {{H}_{0}} $, 即认为1995-2017年福建省和湖北省GDP数据的共同位置参数为267.

案例2  现对生物利用度进行研究, 将20名试验人员随机分成两个平行组进行实验, 以比较新的测试制剂(x)和具有长半衰期的药物产品的参考制剂(y).在统计分析中, 构造两种试剂的峰浓度(Cmax)位置参数置信区间对于确定是否具有不同的生物利用度非常重要. Wu等[28]分析了两组Cmax数据的特征, 认为这些数据的分布是高度正偏斜的.进一步, 对该数据进行偏正态分布检验, 即检验原假设$ H_0: $第x组和第y组Cmax数据服从偏正态分布.由计算可得, 第x组Cmax数据拟合值$ \chi _{x}^{2} = 2.0812<\chi _{1}^{2}(0.95) = 3.8400 $, 第y组Cmax数据拟合值$ \chi _{y}^{2} = 7.6045<\chi _{3}^{2}(0.95) = 7.8147 $.则在5%名义显著性水平下认为两组Cmax数据均服从偏正态分布$ SN({{\xi }_{x}}, \eta _{x}^{2}, {{\lambda }_{x}}) $$ SN({{\xi }_{y}}, \eta _{y}^{2}, {{\lambda }_{y}}) $.

我们考虑假设检验问题

计算出Bootstrap检验统计量的$ p $值为0.4606.故在5%名义显著性水平下不能拒绝原假设$ {{H}_{0}} $, 即认为第x组和第y组Cmax数据的位置参数之间不具有显著差异.类似于案例1, 我们计算出共同位置参数的Bootstrap置信区间分别为$ (-7.1913e+2, 3.2911e+2) $$ (-1.3289e+3, 2.9597e+2) $$ (-7.1686e+2, 3.2305e+2) $$ (-1.6733e+3, 1.9553e+2) $$ (-2.7322e+3, 1.2537e+2) $$ (-1.6693e+3, 1.8460e+2) $.进一步, 我们探讨假设检验问题

得出基于$ Z_{B1}^* $$ Z_{B2}^* $$ Z_{B3}^* $$ T_{B1}^* $$ T_{B2}^* $$ T_{B3}^* $六种Bootstrap检验统计量的$ p $值分别为0.5519、0.6428、0.6181、0.2501、0.6922和0.6773.因此, 在5%名义显著性水平下不能拒绝原假设$ {{H}_{0}} $, 即认为两种试剂的Cmax数据的共同位置参数为112.

6 结论

本文针对多个具有共同位置参数的偏正态总体, 当尺度参数和偏度参数未知时, 基于Bootstrap方法研究位置参数的区间估计和假设检验问题.首先, 分别给出未知参数的矩估计和极大似然估计.其次, 将徐礼文[1]对多个正态总体共同均值的探讨推广到多个偏正态总体, 进而构造共同位置参数的Bootstrap置信区间和Bootstrap检验统计量.再次, Monte Carlo模拟结果表明, 无论是两个总体、三个总体还是五个总体, 基于矩估计和惩罚极大似然估计的Bootstrap置信区间在覆盖概率意义下优于其他四种Bootstrap置信区间.最后, 将上述方法应用于地区生产总值和生物利用度数据的案例分析, 以验证本文所给方法的合理性和有效性.综上所述, 针对多个偏正态总体共同位置参数的统计推断问题, 本文建议优先应用基于矩估计和惩罚极大似然估计的Boostrap方法.

参考文献

徐礼文. 复杂数据的bootstrap统计推断及其应用. 北京: 科学出版社, 2016

[本文引用: 7]

Xu L W . The Bootstrap of Complex Data Statistical Inference and Its Application. Beijing: Science Press, 2016

[本文引用: 7]

Azzalini A .

A class of distributions which includes the normal ones

Scand J Stat, 1985, 12 (2): 171- 178

[本文引用: 1]

Azzalini A .

Further results on a class of distributions which includes the normal ones

Statistica, 1986, 46 (2): 199- 208

[本文引用: 1]

Arnold B C , Lin G D .

Characterizations of the skew-normal and generalized chi distributions

Sankhyā A, 2004, 66 (4): 593- 606

[本文引用: 1]

Kim H M , Genton M G .

Characteristic functions of scale mixtures of multivariate skew-normal distributions

J Multivariate Anal, 2011, 102 (7): 1105- 1117

DOI:10.1016/j.jmva.2011.03.004      [本文引用: 1]

Ye R D , Wang T H , Gupta A K .

Distribution of matrix quadratic forms under skew-normal settings

J Multivariate Anal, 2014, 131: 229- 239

DOI:10.1016/j.jmva.2014.07.001      [本文引用: 1]

Balakrishnan N , Scarpa B .

Multivariate measures of skewness for the skew-normal distribution

J Multivariate Anal, 2012, 104 (1): 73- 87

DOI:10.1016/j.jmva.2011.06.017      [本文引用: 1]

Liao X , Peng Z X , Nadarajah S .

Asymptotic expansions for moments of skew-normal extremes

Stat Probabil Lett, 2013, 83 (5): 1321- 1329

DOI:10.1016/j.spl.2013.02.010      [本文引用: 1]

Nadarajah S , Li R .

The exact density of the sum of independent skew normal random variables

J Comput Appl Math, 2017, 311: 1- 10

[本文引用: 1]

Wang Z Y , Wang C , Wang T H .

Estimation of location parameter in the skew normal setting with known coefficient of variation and skewness

International Journal of Intelligent Technologies & Applied Statistics, 2016, 9 (3): 191- 208

[本文引用: 1]

Gui W H , Guo L .

Statistical inference for the location and scale parameters of the skew normal distribution

Indian J Pure Appl Mat, 2018, 49 (4): 633- 650

DOI:10.1007/s13226-018-0291-6      [本文引用: 1]

Ma Z W , Chen Y J , Wang T H , Peng W Z .

The Inference on the Location Parameters under Multivariate Skew Normal Settings//Kreinovich V, Thach N, Trung N, Thanh D

International Econometric Conference of Vietnam, New York:Springer, 2019, 146- 162

[本文引用: 1]

Cohen A , Sackrowitz H B .

Testing hypotheses about the common mean of normal distributions

J Statist Plan Infer, 1984, 9: 207- 227

DOI:10.1016/0378-3758(84)90022-3      [本文引用: 1]

Zhou L P , Mathew T .

Combining independent tests in multivariate linear models

J Multivariate Anal, 1994, 51: 265- 276

DOI:10.1006/jmva.1994.1062     

Jordan S M , Krishnamoorthy K .

Confidence regions for the common mean vector of several multi-variate normal populations

Can J Statist, 1995, 23: 283- 297

DOI:10.2307/3315368     

Jordan S M , Krishnamoorthy K .

Exact confidence intervals for the common mean of several normal populations

Biometrics, 1996, 52: 77- 86

DOI:10.2307/2533146     

Krishnamoorthy K , Lu Y .

Inferences on the common mean of several normal populations based on the generalized variable method

Biometrics, 2003, 59: 237- 247

DOI:10.1111/1541-0420.00030     

Lin S H , Lee J C .

Generalized inferences on the common mean of several normal populations

J Statist Plan Infer, 2005, 134: 568- 582

DOI:10.1016/j.jspi.2004.02.018     

Lin S H , Lee J C , Wang R S .

Generalized inferences on the common mean vector of several multivariate normal populations

J Statist Plan Infer, 2007, 137: 2240- 2249

DOI:10.1016/j.jspi.2006.07.005     

Jin C , Crouse R H .

An identity for exponential distributions with the common location parameter and its applications

Commun Statist-Theor M, 1998, 27 (2): 409- 422

DOI:10.1080/03610929808832103     

Ye R D , Wang S G .

Generalized inferences on the common mean in MANOVA models

Commun Statist-Theor M, 2008, 37: 2291- 2303

DOI:10.1080/03610920801886008     

Ye R D , Ma T F , Wang S G .

Inferences on the common mean of several inverse Gaussian populations

Comput Statist Data Anal, 2010, 54 (4): 906- 915

DOI:10.1016/j.csda.2009.09.039      [本文引用: 1]

Pewsey A .

Modelling asymmetrically distributed circular data using the wrapped skew-normal distribution

Environ Ecol Statist, 2006, 13 (3): 257- 269

[本文引用: 2]

Arellano-Valle R B , Azzalini A .

The centred parametrization for the multivariate skew-normal distribution

J Multivariate Anal, 2008, 99 (7): 1362- 1382

DOI:10.1016/j.jmva.2008.01.020     

Pewsey A .

Problems of inference for Azzalini's skewnormal distribution

J Appl Statist, 2000, 27 (7): 859- 870

DOI:10.1080/02664760050120542      [本文引用: 2]

Graybill F A , Deal R B .

Combining unbiased estimators

Biometrics, 1959, 15 (4): 543- 550

DOI:10.2307/2527652      [本文引用: 1]

Azzalini A , Arellano-Valle R B .

Maximum penalized likelihood estimation for skew-normal and skew-t distributions

J Statist Plan Infer, 2013, 143 (2): 419- 433

DOI:10.1016/j.jspi.2012.06.022      [本文引用: 1]

Wu J R , Jiang G Y , Wong A C M , Sun X .

Likelihood analysis for the ratio of means of two independent log-normal distributions

Biometrics, 2002, 58 (2): 463- 469

DOI:10.1111/j.0006-341X.2002.00463.x      [本文引用: 1]

/