数学物理学报, 2021, 41(1): 15-28 doi:

论文

平面常宽凸体的构造

张德燕,, 段博韬

Construction of the Planar Bodies with Constant Width

Zhang Deyan,, Duan Botao

通讯作者: 张德燕, E-mail: zhangdy8005@126.com

收稿日期: 2019-12-19  

基金资助: 安徽省自然科学基金.  1908085MA05
安徽省高校自然科学研究项目.  KJ2019A0590
高校优秀人才支持计划重点项目.  gxyqZD2020022

Received: 2019-12-19  

Fund supported: Supported by the NSF of Anhui Province.  1908085MA05
the Natural Science Research Project of Universities in Anhui Province.  KJ2019A0590
the Excellent Talents Fund Program of Higher Education Institutions of Anhui Province.  gxyqZD2020022

Abstract

Firstly, a class of planar curves "lever wheel" and their arm functions are defined, and the parameter representation of the lever wheel is established in this paper. Secondly, it is shown that the lever wheel is an equivalent characterization of the constant width curve. Finally, it is proven that the Reuleaux polygons are a class of lever wheels with piecewise constant arm functions, and Reuleaux polygons with even edges are constructed.

Keywords: Lever wheel ; Arm function ; Constant width curve ; Reuleaux polygon

PDF (490KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张德燕, 段博韬. 平面常宽凸体的构造. 数学物理学报[J], 2021, 41(1): 15-28 doi:

Zhang Deyan, Duan Botao. Construction of the Planar Bodies with Constant Width. Acta Mathematica Scientia[J], 2021, 41(1): 15-28 doi:

1 引言

$ K $$ n $维欧氏空间中的闭凸集, 超平面$ H $$ n $维欧氏空间中的$ n-1 $维子空间.若$ H $$ K $相交非空, 并把$ K $完全置于一个以$ H $为边界的半空间内, 则称$ H $$ K $的支撑超平面.当$ K $的任意一对平行支撑超平面间的距离相等时, 称$ K $为常宽凸集, 平行支撑超平面间的距离为$ K $的宽度, 平面常宽凸集的边界为常宽曲线.圆是典型的常宽曲线.

常宽凸集的概念由欧拉首次提出. 1876年, Reuleaux构造了以正三角形三个顶点为圆心, 边长为半径的外接圆弧组成的非圆的常宽曲线, 人们称之为Reuleaux三角形.该方法被推广在奇数边正多边形上得到Reuleaux正多边形.之后, Meissner将Reuleaux三角形推广至三维空间, 构造出两种不同的三维常宽凸集[1-2]. 1915年, Blaschke与Lebesgue分别证明了平面上等宽度的常宽凸体中Reuleaux三角形面积最小, 这个定理就是著名的Blaschke-Lebesgue定理.对于这个命题, 国内外的数学家们又先后给出了其它巧妙的证明[1,3-5].数学家十分关注Blaschke-Lebesgue定理的高维情形, 并提出了Blaschke-Lebesgue问题, 即高维等宽度的常宽凸体中谁的体积最小.长久以来, 人们猜测Meissner体是三维Blaschke-Lebesgue问题的解, 但至今未被证明.为此, 数学家不断尝试构造新的常宽凸集并研究其几何性质. 2003年, 潘生亮教授在文献[6]中利用Minkowski支撑函数得到了一类新的光滑的常宽凸集. 2007年, Lachand-Robert与Qudet用数学归纳法给出了一种$ n $维常宽凸集的构造方法[7]. 2011年, 徐文学博士构造了一类新的偶数边的常宽凸体[1,8].

本文将讨论如何构造平面常宽曲线.为此, 我们首先定义了一类平面曲线, 称为杠杆轮(见正文中定义3.1), 并利用臂函数(见正文中第3节)给出杠杆轮的参数表示.其次, 我们证明了杠杆轮是平面常宽曲线的一种等价刻画.最后, 我们构造了一类臂函数为三角函数形式的常宽曲线, 并表明广义Reuleaux多边形(即由若干段圆弧围成的平面常宽凸体)是臂函数为分段常函数的一类杠杆轮.在此基础上, 构造了具体的广义Reuleaux多边形, 特别是偶数边的广义Reuleaux多边形.

2 基本概念

$ {{\Bbb R}} $为实数集, $ {{\Bbb R}} ^n $为带有标准内积$ \langle \cdot, \cdot \rangle $的n维欧氏空间, $ S^{n-1} $$ {{\Bbb R}} ^n $中的单位球面.

定义2.1  设$ K\subset{{\Bbb R}} ^n $是一个有界子集, $ {\bf{u}}\in{S^{n-1}} $, 称

$ K $$ {\bf{u}} $方向上的广义支撑超平面.

$ n = 2 $时, 称$ H(K, {\bf{u}}) $$ K $$ {\bf{u}} $方向上的广义支撑线.显然, 当$ K $为有界闭集时

定义2.2  设$ K\subset{{\Bbb R}} ^n $是一个有界子集.若存在实数$ \omega\geq{0} $, 对任意$ {\bf{u}}\in{S^{n-1}} $, $ H(K, {\bf{u}}) $$ H(K, -{\bf{u}}) $之间的距离恒为$ \omega $, 则称$ K $是一个广义常宽集, 并称$ \omega $为它的宽度.

一般地, 称$ {{\Bbb R}} ^n $中有非空内部的有界闭凸集为凸体.于是, 若取$ K $$ {{\Bbb R}} ^n $中的凸体, 则定义2.2就是通常的常宽凸体的定义.

$ K\subset{{\Bbb R}} ^n $是一个有界子集.若存在同胚映射$ f:{{\Bbb R}} ^n\rightarrow{{\Bbb R}} ^n $使得$ f(K) = B^n $, 其中$ B^n $$ {{\Bbb R}} ^n $中的单位闭球, 则称$ K $满足球同胚条件.记$ {\cal K}_{B^n} $为满足球同胚条件的有界集的全体.此时, 对$ K $的边界$ \partial K $$ f(\partial K) = S^{n-1} $.

3 杠杆轮的定义及参数方程

一般地, 常宽曲线由极值点构成, 即一个常宽曲线与其在任意方向上支撑线的交都为单点集(极值点定义参见文献[9]).因此, 设$ K $是一个平面常宽凸体, 可以构造满射$ \alpha:S^1\rightarrow \partial K $, 使得对给定的$ {\bf{u}}\in S^1 $, $ \{\alpha({\bf{u}})\} = H(K, {\bf{u}})\cap{K} $.$ c({\bf{{\bf{u}}}}) $$ S^1 $上以$ {\bf{{\bf{u}}}} $为起点且沿逆时针方向的有向曲线段, 若$ K $是一个Reuleaux多边形, 则上述映射$ \alpha $具有如下两个性质.

(ⅰ) $ \forall {\bf{{\bf{u}}}}\in S^1, \exists c({\bf{{\bf{u}}}}), \lambda\geq{0} $使得对任意$ {\bf{v}}\in c({\bf{{\bf{u}}}}) $, 有

特别地, 当$ \lambda = 0 $时, 有

(ⅱ) $ \forall {\bf{{\bf{u}}}}\in S^1 $, $ \omega $$ K $的宽度, 则$ \alpha({\bf{u}})-\alpha(-{\bf{u}}) = \omega {\bf{u}} $.

下面我们将对局部具有性质(ⅰ)和(ⅱ)的曲线进行研究.

定义3.1  设$ \alpha:S^1\rightarrow{{\Bbb R}} ^2 $是一个连续映射.若$ \alpha $满足

$ \rm(ⅰ) $对任意的$ {\bf{{\bf{u_0}}}}\in S^1 $, 当$ {\bf{u}} $沿着$ c({\bf{{\bf{u_0}}}})\varsubsetneqq S^1 $趋于$ {\bf{u_0}} $时, 极限$ \lim\limits_{{\bf{u}}\rightarrow {\bf{{\bf{u_0}}}}}\frac{\alpha({\bf{u}}) -\alpha({\bf{{\bf{u_0}}}})}{\|{\bf{u}}-{\bf{{\bf{u_0}}}}\|} $存在且

其中$ \| \cdot \| $为矢量的模长;

$ \rm(ⅱ) $$ \exists \omega>0 $使得对任意$ {\bf{u}}\in{S^{1}} $, 有$ \alpha({\bf{u}})-\alpha(-{\bf{u}}) = \omega{\bf{u}} $, 则称$ \alpha(S^{1}) $为杠杆轮, 可以用$ \alpha $表示.称线段$ [\alpha(-{\bf{{\bf{u}}}}), \alpha({\bf{{\bf{u}}}})] $$ \alpha $$ {\bf{{\bf{u}}}} $方向上的直径.

注3.1  杠杆轮$ \alpha $上各方向直径长度均为$ \omega $.

$ \alpha $为杠杆轮, 若任意给定$ {\bf{{\bf{u_0}}}}\in S^1, {\bf{u}}\in c({\bf{{\bf{u_0}}}})\varsubsetneqq S^1 $$ {\bf{{\bf{u_0}}}}\neq \pm {\bf{u}} $, 记点$ P_{{\bf{{\bf{u_0}}}}, {\bf{u}}} $为过点$ \alpha({\bf{{\bf{u_0}}}}) $, $ \alpha(-{\bf{{\bf{u_0}}}}) $的直线与过点$ \alpha({\bf{u}}) $, $ \alpha(-{\bf{u}}) $的直线的交点, 则$ \exists \lambda_1, \lambda_2\in {{\Bbb R}} $使得

$ \begin{equation} P_{{\bf{{\bf{u_0}}}}, {\bf{u}}} = (1-\lambda_1)\alpha({\bf{{\bf{u_0}}}})+\lambda_1\alpha(-{\bf{{\bf{u_0}}}}), P_{{\bf{{\bf{u_0}}}}, {\bf{u}}} = (1-\lambda_2)\alpha({\bf{u}})+\lambda_2\alpha(-{\bf{u}}). \\ \end{equation} $

结合定义3.1中的条件(ⅱ), 可得

$ \begin{equation} \alpha({\bf{u}})-\alpha({\bf{{\bf{u_0}}}}) = \omega(\lambda_2 {\bf{u}}-\lambda_1 {\bf{{\bf{u_0}}}}). \end{equation} $

由(3.2)式, 可得

$ \begin{equation} \langle \frac{\alpha({\bf{u}})-\alpha({\bf{{\bf{u_0}}}})}{\|{\bf{u}}-{\bf{{\bf{u_0}}}}\|}, \frac{{\bf{u}}-{\bf{{\bf{u_0}}}}}{\|{\bf{u}}-{\bf{{\bf{u_0}}}}\|}\rangle = \frac{\langle \omega(\lambda_2{\bf{u}}-\lambda_1{\bf{{\bf{u_0}}}}), {\bf{u}}-{\bf{{\bf{u_0}}}}\rangle}{\|{\bf{u}}-{\bf{{\bf{u_0}}}}\|^2} = \frac{\omega}{2}(\lambda_1+\lambda_2). \end{equation} $

$ \alpha $连续和(3.2)式, 当$ {\bf{u}} $沿着$ c({\bf{{\bf{u_0}}}})\varsubsetneqq S^1 $趋于$ {\bf{u_0}} $时, $ \exists \lambda_1({\bf{{\bf{u}}}}), \lambda_2({\bf{{\bf{u}}}}) $使得

因此, $ \lim\limits_{{\bf{u}}\rightarrow{\bf{u_0}}}\lambda_1({\bf{{\bf{u}}}}) = \lim\limits_{{\bf{u}}\rightarrow{\bf{u_0}}}\lambda_2({\bf{{\bf{u}}}}) $.

$ {\bf{u_0}} $的任意性, 对任意的$ {\bf{{\bf{u}}}}\in S^1 $, 当$ {\bf{v}} $沿着$ c({\bf{{\bf{u}}}})\varsubsetneqq S^1 $趋于$ {\bf{u}} $时, 定义

为杠杆轮$ \alpha $$ {\bf{{\bf{u}}}} $方向上的臂函数.一般地, 令$ {\bf{u}}(\theta) = (\cos\theta, \sin\theta), \theta\in[0, 2\pi) $, 记

引理3.1  对任意的$ {{\bf{{\bf{u}}}}\in{S^{1}}} $, 臂函数$ \lambda({\bf{{\bf{u}}}}) $具有以下两个性质

$ \rm(ⅰ) $$ \lambda({\bf{{\bf{u}}}})+\lambda(-{\bf{{\bf{u}}}}) = 1; $

$ \rm(ⅱ) $$ \lambda({\bf{{\bf{u}}}})\in[0, 1]. $

  由定义3.1中的条件(ⅰ)与(3.3)式, 可得

$ \begin{equation} \lim\limits_{{\bf{v}}\rightarrow {\bf{{\bf{u}}}} }\frac{\|\alpha({\bf{v}}) -\alpha({\bf{{\bf{u}}}})\|}{\|{\bf{v}}-{\bf{{\bf{u}}}}\|} = \lim\limits_{{\bf{v}}\rightarrow {\bf{{\bf{u}}}} }\langle \frac{\alpha({\bf{v}}) -\alpha({\bf{{\bf{u}}}})}{\|{\bf{v}}-{\bf{{\bf{u}}}}\|}, \frac{{\bf{v}}-{\bf{{\bf{u}}}}}{\|{\bf{v}}-{\bf{{\bf{u}}}}\|}\rangle = \omega\lambda({\bf{{\bf{u}}}}). \end{equation} $

由定义3.1中条件(ⅱ)与(3.4)式, 可得

$ \lambda({\bf{{\bf{u}}}})+\lambda(-{\bf{{\bf{u}}}}) = 1 $成立.

因为$ \omega>0 $, 由(2.4)式易知$ \lambda({\bf{{\bf{u}}}})\geq0 $.$ {\bf{{\bf{u}}}} $的任意性, $ \lambda(-{\bf{{\bf{u}}}})\geq0 $, 故$ \lambda({\bf{{\bf{u}}}})\in[0, 1] $.

$ {\cal L}(\omega) $为平面上直径长度为$ \omega $的杠杆轮的全体.称$ P({\bf{{\bf{u}}}}) = \lim\limits_{{\bf{v}}\rightarrow{\bf{{\bf{u}}}}}P_{{\bf{{\bf{u}}}}, {\bf{v}}} $为杠杆轮$ \alpha $$ {\bf{{\bf{u}}}} $方向上的支点, 其中$ P_{{\bf{{\bf{u}}}}, {\bf{v}}} $被(2.1)式定义.称线段$ [P({\bf{{\bf{u}}}}), \alpha({\bf{{\bf{u}}}})] $$ \alpha $$ {\bf{{\bf{u}}}} $方向上的臂.

注3.2  可以看出, 杠杆轮$ \alpha $$ {\bf{{\bf{u}}}} $方向上的支点

且由引理3.1中的条件(ⅰ)可得$ P({\bf{{\bf{u}}}}) = P(-{\bf{{\bf{u}}}}). $

注3.3  对任意$ {\bf{u}}\in S^1 $, 可见$ \lambda({\bf{{\bf{u}}}}) = \frac{\|\alpha({\bf{{\bf{u}}}}) -P({\bf{{\bf{u}}}})\|}{\|\alpha({\bf{{\bf{u}}}}) -\alpha(-{\bf{{\bf{u}}}})\|} $, 即$ \lambda({\bf{{\bf{u}}}}) $$ \alpha $$ {\bf{{\bf{u}}}} $方向上臂与直径的长度之比.

注3.4  设杠杆轮$ \alpha $的直径长度为$ \omega $, $ \alpha $$ {\bf{{\bf{u}}}} $方向上的臂长$ \|\alpha({\bf{{\bf{u}}}})-P({\bf{{\bf{u}}}})\| = \omega\lambda({\bf{{\bf{u}}}}) $恰好是$ \alpha $$ \alpha({\bf{{\bf{u}}}}) $处的曲率半径.

定理3.1(杠杆轮的参数方程)  若$ \alpha\in{\cal L}(\omega) $, $ \lambda_{\bf{u}} $$ \alpha $的臂函数, 则$ \lambda_{\bf{u}} $具有以下两个性质

$ \rm(ⅰ) $$ \lambda_{\bf{u}}(\theta)+\lambda_{\bf{u}}(\theta+\pi) = 1, \theta\in[0, \pi) $;

$ \rm(ⅱ) $$ (\int_{0}^{\pi}\lambda_{\bf{u}}(\theta)\sin\theta{\rm d}\theta, -\int_{0}^{\pi}\lambda_{\bf{u}}(\theta)\cos\theta{\rm d}\theta) = (1, 0) $,

$ \alpha $的参数方程为

其中$ \alpha(0) = (x_0, y_0) $.

反过来, 若$ \lambda_{\bf{u}}:[0, 2\pi)\rightarrow [0, 1] $满足性质$ \rm(ⅰ) $$ \rm(ⅱ) $, 则曲线

为杠杆轮.

   (1) $ \forall \alpha\in{\cal L}(\omega) $, $ \lambda_{\bf{u}} $$ \alpha $的臂函数.注意到定义3.1中的条件(ⅰ)等价于对任意的$ {\bf{{\bf{u_0}}}}\in S^1, {\bf{u}} $沿着$ c({\bf{{\bf{u_0}}}})\varsubsetneqq S^1 $趋于$ {\bf{u_0}} $, 使得

$ \begin{equation} \lim\limits_{{\bf{u}}\rightarrow {\bf{u_0}} }\frac{\alpha({\bf{u}}) -\alpha({\bf{u_0}})}{\|{\bf{u}}-{\bf{u_0}}\|} = \lim\limits_{{\bf{u}}\rightarrow {\bf{u_0}} }\frac{\|\alpha({\bf{u}}) -\alpha({\bf{u_0}})\|}{\|{\bf{u}} -{\bf{u_0}}\|}\lim\limits_{{\bf{u}}\rightarrow {\bf{u_0}}}\frac{{\bf{u}} -{\bf{u_0}}}{\|{\bf{u}}-{\bf{u_0}}\|}. \end{equation} $

结合(3.4)式可得

$ \begin{equation} \lim\limits_{{\bf{u}}\rightarrow {\bf{u_0}} }\frac{\alpha({\bf{u}}) -\alpha({\bf{u_0}})}{\|{\bf{u}}-{\bf{u_0}}\|} = \omega\lambda({\bf{u_0}})\lim\limits_{{\bf{u}}\rightarrow {\bf{u_0}} }\frac{{\bf{u}} -{\bf{u_0}}}{\|{\bf{u}}-{\bf{u_0}}\|}. \end{equation} $

$ {\bf{u_0}} = (\cos\theta, \sin\theta) $, 当$ {\bf{u}} $沿着顺时针方向趋近于$ {\bf{u_0}} $时, 由(3.6)式可得

$ \alpha(0) = (x_0, y_0) $时, 由$ {\bf{u_0}} $的任意性可以得到$ \alpha(\theta) $的参数方程

结合定义3.1中的条件(ⅱ), 则有

结合引理3.1可知臂函数$ \lambda_{\bf{u}} $满足性质(ⅰ)和(ⅱ).

(2) 设函数$ \lambda_{\bf{u}} $满足性质(ⅰ)和(ⅱ), 曲线

首先, 证明曲线$ \alpha $连续封闭.

结合性质(ⅱ)可得$ \alpha(0) = \alpha(2\pi) $, 则$ \alpha $是连续闭合的曲线.

其次, 由步骤(1)的证明过程可以看出(3.6)式成立, 进而(3.5)式也成立, 故定义3.1中的条件(ⅰ)成立.下面证明定义3.1中的条件(ⅱ)也是成立的.

任意取定$ \theta\in[0, 2\pi) $, 当$ \theta\in[0, \pi) $时, 有

$ \theta\in[\pi, 2\pi) $时, 有

$ \bf{u} = (\cos\theta, \sin\theta) $, 则定义3.1中的条件(ⅱ)成立.

4 杠杆轮是常宽曲线的等价刻画

上一节通过观察Reuleaux多边形的特征定义了一类平面曲线:杠杆轮.本节将证明杠杆轮是常宽曲线的一种等价刻画.

引理4.1  下列各条款等价

$ \rm(ⅰ) $$ K $为n维常宽凸体;

$ \rm(ⅱ) $$ K\in{\cal K}_{B^n} $$ K $为广义常宽集;

$ \rm(ⅲ) $$ K\in{\cal K}_{B^n} $对任意$ {\bf{u}}\in{S^{n-1}} $, 若$ \alpha_1\in H(K, {\bf{u}})\cap{K}, \alpha_2\in H(K, -{\bf{u}})\cap{K} $, 则$ \frac{\alpha_1-\alpha_2}{\|\alpha_1-\alpha_2\|} = {\bf{u}} $.

   (ⅰ) $ \Rightarrow $ (ⅱ).显然的.

(ⅱ) $ \Rightarrow $ (ⅲ).设$ K\in{\cal K}_{B^n} $是宽度为$ \omega $的广义常宽集.假设$ \exists {\bf{u}}\in{S^{n-1}} $, $ \alpha_1\in H(K, {\bf{u}})\cap{K} $, $ \alpha_2\in H(K, -{\bf{u}})\cap{K} $使得$ \frac{\alpha_1-\alpha_2}{\|\alpha_1-\alpha_2\|}\neq {\bf{u}} $.

$ {\bf{p}} = \alpha_2+\omega {\bf{u}} $, 易知$ {\bf{p}}\neq\alpha_1 $

$ \langle {\bf{u}} $, $ \alpha_1-{\bf{p}}\rangle = 0 $$ \|\alpha_1-{\bf{p}}\|>0 $, 可得$ \|\alpha_1-\alpha_2\|>\omega $.

$ {\bf{u}}^* = \frac{\alpha_1-\alpha_2}{\|\alpha_1-\alpha_2\|} $, 设$ \alpha_1^*\in H(K, {\bf{u}}^*)\cap{K}, \alpha_2^*\in H(K, -{\bf{u}}^*)\cap{K} $, 则

这与定义2.2矛盾, 故(ⅱ) $ \Rightarrow $ (ⅲ)成立.

(ⅲ) $ \Rightarrow $ (ⅱ).当$ K $满足条款(ⅲ)时, 假设$ \exists \alpha_1^*\in H(K, {\bf{u}})\cap{K} $使得$ \alpha_1\neq\alpha_1^* $.

看出, $ \alpha_1^*-\alpha_2 $$ {\bf{u}} $不共线, 与$ K $满足条款(ⅲ)矛盾.故对任意$ {\bf{u}}\in{S^{n-1}} $, $ H(K, {\bf{u}})\cap{K} $是一个单点集, 于是, 设映射$ \alpha:S^{n-1}\rightarrow {{\Bbb R}} ^n $满足$ \{\alpha({\bf{u}})\} = H(K, {\bf{u}})\cap{K} $.对任意$ {\bf{u}} $, $ {\bf{v}}\in{S^{n-1}} $, $ {\bf{u}}\neq {\bf{v}} $

同理

$ \forall {\bf{u}}\in{S^{n-1}} $, 记$ \omega({\bf{u}}) = \|\alpha({\bf{u}})-\alpha(-{\bf{u}})\| $, 则

因此

同理, $ \omega({\bf{v}})\geq \omega({\bf{u}})\langle {\bf{u}} $, $ {\bf{v}}\rangle $.

若将$ S^{n-1} $上从$ {\bf{u}} $$ {\bf{v}} $的弧长为$ s $的测地线平均分为$ k $段: $ \widehat{{\bf{u_0}}{\bf{u}}_1} $, $ \widehat{{\bf{u}}_1{\bf{u}}_2}, \cdots $, $ \widehat{{\bf{u}}_{k-1}{\bf{u}}_k} $.其中$ {\bf{u}}_0 = {\bf{u}}, {\bf{u}}_k = {\bf{v}} $.于是$ \langle {\bf{u}}_{i-1}, {\bf{u}}_{i}\rangle = \cos\frac{s}{k}, i = 1, 2, \cdots , k $, 则

因为

$ \omega({\bf{u}}) = \omega({\bf{v}}) $, 进而$ K $为广义常宽集, 即(ⅲ) $ \Rightarrow $ (ⅱ)成立.

(ⅱ) $ \Rightarrow $ (ⅰ).设$ K $满足条款(ⅱ), 则对任意$ {\bf{u}}\in{S^{n-1}}, H(K, {\bf{u}}) = H(\rm{conv}K, {\bf{u}}) $, 其中$ \rm{conv}K $表示$ K $的凸包.又$ K $为广义常宽集, 故凸体$ \rm{conv}K $也为广义常宽集, 进而$ \rm{conv}K $为常宽凸体.由$ K\subset \rm{conv}K $, 可得

$ \rm{conv}K $应用(ⅲ) $ \Rightarrow $ (ⅱ)的方法, 可以得到$ H(\rm{conv}K, {\bf{u}})\cap{\rm{conv}K} $$ H(K, {\bf{u}})\cap K $均为单点集, 故

进而

事实上, 若$ \exists {\bf{x}}\in\partial K $, 但$ {\bf{x}}\not\in\partial{(\rm{conv}K)} $, 由$ \partial{(\rm{conv}K)} $的封闭性, 则$ \partial K $有自交点或不连通, 这与$ K\in{\cal K}_{B^n} $矛盾, 故$ \partial{(\rm{conv}K)} = \partial K $.

因此$ K = \rm{conv}K $, 故$ K $为常宽凸体, 即(ⅱ) $ \Rightarrow $ (ⅰ)成立.

引理4.2  设曲线$ \alpha $为杠杆轮, 则对任意$ {\bf{u}}\in S^{1} $$ H(\alpha, {\bf{u}})\cap{\alpha} = \{\alpha({\bf{u}})\} $.

  设$ \alpha $是直径长为$ \omega $的杠杆轮.由定理3.1, 存在臂函数$ \lambda_{\bf{u}} $使得

其中$ \alpha(0) = (x_0, y_0) $.$ {\bf{u}}(\theta) = (\cos\theta, \sin\theta), \theta\in[0, 2\pi) $, 任意取定$ \theta_0\in[0, 2\pi) $, 则

$ \theta_0-\theta\in(0, \pi) $时, 令$ \phi = \theta_0-\varphi $, 则

$ \theta_0-\theta\in(\pi, 2\pi) $时, 令$ \phi = \theta_0-\varphi $, 由$ \alpha $的封闭性(即$ \alpha(0) = \alpha(2\pi) $)

$ \theta_0-\theta\in(-2\pi, 0) $时, 令$ \phi = \theta_0-\varphi+2\pi $, 同理可证

$ \alpha(\theta_0)\in H(\alpha, {\bf{u}}(\theta_0))\cap{\alpha} $.

下面证明$ H(\alpha, {\bf{u}}(\theta_0))\cap{\alpha} $中仅有一点$ \alpha(\theta_0) $.反设存在$ \alpha(\theta)\in H(\alpha, {\bf{u}}(\theta_0))\cap{\alpha} $$ \alpha(\theta)\neq\alpha(\theta_0) $, 则$ \langle{\bf{u}}(\theta_0), \alpha(\theta_0)-\alpha(\theta)\rangle = 0 $.进而

$ m = \min\{\theta_0, \theta\}, M = \max\{\theta_0, \theta\} $.利用$ \lambda_{\bf{u}} $的非负性, 仿照上述的分类讨论, 可得

进而, $ \alpha(\theta) = \alpha(\theta_0) $, 即$ H(\alpha, {\bf{u}}(\theta_0))\cap{\alpha} = \{\alpha(\theta_0)\} $, 由$ \theta_0 $的任意性可得结论成立.

定理4.1(常宽曲线的等价刻画)  $ K\in{\cal K}_{B^2} $, $ K $为常宽凸体当且仅当$ \partial K $为杠杆轮.

  充分性.设$ \partial K $为杠杆轮, 由引理4.2可知对任意$ {\bf{u}}\in{S^{1}}, $

由定义3.1中的条件(ⅱ)可得

故杠杆轮为广义常宽集.进一步, 结合已知条件$ K\in{\cal K}_{B^2} $和引理4.1可知$ K $为常宽凸体.

必要性.设$ K $为平面常宽凸体, 由引理4.1可知$ K\in{\cal K}_{B^2} $, 且对任意$ {\bf{u}}\in{S^{1}}, $$ \alpha_1\in H(K, {\bf{u}})\cap{K} $, $ \alpha_2\in H(K, -{\bf{u}})\cap{K} $, 则

由引理4.1中步骤(ⅲ) $ \Rightarrow $ (ⅱ)的证明过程, 存在一个正常数$ \omega $和一个映射$ \alpha:S^1\rightarrow {{\Bbb R}} ^2 $满足$ \{\alpha({\bf{u}})\} = H(K, {\bf{u}})\cap{K} $, 且

$ \alpha $满足定义3.1的条件(ⅱ). $ \forall {\bf{u}}, {\bf{v}}\in S^1 $$ {\bf{u}}\neq \pm{\bf{v}} $, 令

显然, $ \alpha({\bf{u}})\in[{\bf{p}}_{{\bf{u}}, -{\bf{v}}}, {\bf{p}}_{{\bf{u}}, {\bf{v}}}] $, 其中$ [{\bf{p}}_{{\bf{u}}, -{\bf{v}}}, {\bf{p}}_{{\bf{u}}, {\bf{v}}}] $表示以$ {\bf{p}}_{{\bf{u}}, -{\bf{v}}}, {\bf{p}}_{{\bf{u}}, {\bf{v}}} $为端点的线段.同理, $ \alpha(-{\bf{u}})\in[{\bf{p}}_{-{\bf{u}}, -{\bf{v}}}, {\bf{p}}_{-{\bf{u}}, {\bf{v}}}] $.$ \alpha({\bf{u}})-\alpha(-{\bf{u}}) = \omega{\bf{u}} $, 故$ \exists \lambda\in[0, 1] $使得

同理, $ \exists \mu\in[0, 1] $使得

$ {\bf{p}}_{{\bf{u}}, {\bf{v}}} = {\bf{p}}_{-{\bf{u}}, -{\bf{v}}}+x \omega {\bf{u}}+y \omega {\bf{v}} $, 其中$ x, y $为实数.由$ {\bf{p}}_{{\bf{u}}, {\bf{v}}}\in H(K, {\bf{u}})\cap H(K, {\bf{v}}) $, 得

解得$ x = y = \frac{1}{\langle {\bf{u}}, {\bf{v}}\rangle+1} $.

若任意给定$ {\bf{{\bf{u_0}}}}\in S^1 $, 当$ {\bf{u}} $沿$ c({\bf{{\bf{u_0}}}})\varsubsetneqq S^1 $趋近于$ {\bf{u_0}} $时, 常宽曲线$ \alpha $$ \alpha({\bf{u_0}}) $处的曲率半径$ \lim\limits_{{\bf{u}}\rightarrow {\bf{u_0}} }\frac{\|\alpha({\bf{u}}) -\alpha({\bf{u_0}})\|}{\|{\bf{u}}-{\bf{u_0}}\|} $存在.于是, $ \exists \lambda({\bf{u}}), \mu({\bf{u}})\in[0, 1] $使得

$ \begin{equation} \lim\limits_{{\bf{u}}\rightarrow {\bf{u_0}}}\frac{\alpha({\bf{u}}) -\alpha({\bf{u_0}})}{\|{\bf{u}}-{\bf{u_0}}\|} = \frac{\omega}{2}\lim\limits_{{\bf{u}}\rightarrow {\bf{u_0}} }(\mu({\bf{u}})+\lambda({\bf{u}})) \lim\limits_{{\bf{u}}\rightarrow {\bf{u_0}}}\frac{{\bf{u}} -{\bf{u_0}}}{\|{\bf{u}}-{\bf{u_0}}\|}. \end{equation} $

$ \frac{\omega}{2}(\mu({\bf{u}})+\lambda({\bf{u}}))\geq 0 $, 将(3.1)式等号两边与单位矢量$ \lim\limits_{{\bf{u}}\rightarrow {\bf{u_0}}}\frac{{\bf{u}} -{\bf{u_0}}}{\|{\bf{u}}-{\bf{u_0}}\|} $作内积可以得到$ \alpha $满足定义3.1中的条件(ⅰ).由定义3.1知$ \partial K $为杠杆轮.

5 平面常宽凸体的构造

下面我们利用定理3.1和定理4.1构造一类平面常宽曲线.设$ [0, \pi) $上的函数

$ \begin{equation} \mu(\theta) = \sum\limits_{i = 1}^na_i\cos(i\theta)+\sum\limits_{i = 1}^nb_i\sin(i\theta), \end{equation} $

其中$ a_i, b_i\in{{\Bbb R}} , i = 1, 2, \cdots, n $, 则

结合定理3.1和定理4.1可以证明, 函数

$ \begin{equation} \lambda_{\bf{u}}(\theta) = \left\{\begin{array}{ll} { }\frac{1}{2}+\frac{\mu(\theta)}{2c}, & \theta\in[0, \pi), \\ { }\frac{1}{2}-\frac{\mu(\theta-\pi)}{2c}, {\quad} & \theta\in[\pi, 2\pi) \end{array}\right. \end{equation} $

是杠杆轮(或常宽曲线)的臂函数当且仅当齐次线性方程组

$ \begin{equation} \left\{\begin{array}{ll} { } \sum\limits_{i = 2}^n\frac{1+(-1)^i}{2}\left(\frac{1}{i+1}-\frac{1}{i-1}\right)a_i+\frac{b_1\pi}{2} = 0, \\ { } \frac{a_1\pi}{2}+\sum\limits_{i = 2}^n\frac{1+(-1)^i}{2}\left(\frac{1}{i+1}+\frac{1}{i-1}\right)b_i = 0 \end{array}\right. \end{equation} $

成立且非零常数

$ \begin{equation} c\geq \max\limits_{\theta\in[0, \pi)}|\mu(\theta)|. \end{equation} $

$ \alpha $是由臂函数$ \lambda_{\bf{u}}(\theta) $确定的杠杆轮, 令$ \alpha(0) = (x_0, y_0) $, 结合定理3.1可得

$ \begin{equation} \alpha(\theta) = \bigg(-\omega\int_{0}^{\theta}\lambda_{\bf{u}}(\varphi)\sin\varphi{\rm d}\varphi+x_0, \omega\int_{0}^{\theta}\lambda_{\bf{u}}(\varphi)\cos\varphi{\rm d}\varphi+y_0\bigg). \end{equation} $

利用(5.1), (5.2)和(5.5)式可以得到$ \alpha $的参数方程$ \alpha(\theta) = (x(\theta), y(\theta)) $

其中

$ \begin{equation} u_i(\theta) = \left\{ \begin{array}{ll} 1, & \theta\in[0, \pi), \\ (-1)^{i+1}, {\quad}& \theta\in[\pi, 2\pi). \end{array}\right. \end{equation} $

例5.1  当$ n = 4 $时, 联立(5.3)和(5.4)式可以求出$ a_1, \cdots, a_4, b_1, \cdots, b_4, c $的解空间, 取其中的一组解$ a_1 = 0 $, $ a_2 = -1 $, $ a_3 = 24 $, $ a_4 = 5 $, $ b_1 = 0 $, $ b_2 = 2 $, $ b_3 = 0 $, $ b_4 = -5 $, $ c = 23 $, 此时臂函数

其中$ u_i(\theta) $由(5.6)式给出.取$ \omega = 1 $, $ x_0 = 1 $, $ y_0 = 0 $, 确定的杠杆轮记为$ \alpha_1 $, 如图 1.

图 1

图 1   杠杆轮α1


例5.2  当$ n = 5 $时, 联立(4.3)和(4.4)式可以求出$ a_1, \cdots, a_5, b_1, \cdots, b_5, c $的解空间, 取其中的一组解$ a_1 = \frac{8}{15\pi} $, $ a_2 = -1 $, $ a_3 = 0 $, $ a_4 = 15 $, $ a_5 = -\frac{4}{5} $, $ b_1 = \frac{8}{3\pi} $, $ b_2 = 1 $, $ b_3 = 0 $, $ b_4 = -2 $, $ b_5 = 0 $, $ c = 18 $, 此时臂函数

其中$ u_i(\theta) $由(4.6)给出.取$ \omega = 1 $, $ x_0 = 1 $, $ y_0 = 0 $, 确定的杠杆轮记为$ \alpha_2 $, 如图 2.

图 2

图 2   杠杆轮α2


我们把包含圆与Reuleaux多边形在内的所有可以分割为若干段圆弧的常宽曲线统称为广义Reuleaux多边形.下面我们讨论广义Reuleaux多边形的构造.由定理3.1和定理4.1可知, 对任意宽度为$ \omega $的广义Reuleaux多边形$ \Gamma $, 存在臂函数$ \lambda_{\bf{u}} $满足定理3.1中的性质(ⅰ)和(ⅱ)且

定理5.1  任意广义$ \rm Reuleaux $多边形的臂函数为分段常函数.反之, 任意臂函数为分段常函数的杠杆轮都是广义$ \rm Reuleaux $多边形.

  首先, 设$ \Gamma $是宽度为$ \omega $的广义Reuleaux多边形, 则$ \Gamma\in{\cal L}(\omega) $.$ \gamma $$ \Gamma $上任意一段圆弧, 其圆心为$ P $半径为$ r $.对任意$ {\bf{x}}\in\gamma $, $ \exists {\bf{u}}\in S^1 $使得$ {\bf{x}} = P+r{\bf{u}} $.由引理4.2可得$ {\bf{x}} = \Gamma({\bf{u}}) $, 故

$ \Gamma $$ {\bf{u}} $方向上的支点为$ P({\bf{u}}) $, 因杠杆轮$ \Gamma $$ {\bf{u}} $方向上的臂长是$ \Gamma $$ {\bf{x}} $处的曲率半径, 即$ \|\Gamma({\bf{u}})-P({\bf{u}})\| = r $, 故

且对任意$ \Gamma({\bf{u}})\in\gamma $

即在$ \gamma $上对应的$ \lambda({\bf{u}}) $恒为常数.因广义Reuleaux多边形由若干段圆弧构成, 故它的臂函数在$ [0, 2\pi) $上为分段常函数.

其次, 设$ \alpha $是直径为$ \omega $的杠杆轮, 其臂函数$ \lambda_{\bf{u}} $为分段常函数, 故设

其中右开区间$ I_1, I_2, \cdots, I_k $为区间$ [0, 2\pi) $的一组划分, $ \lambda_i\in[0, 1] $是一组常数, $ i = 1, 2, \cdots, k $.结合定理3.1知, $ \lambda_{\bf{u}} $确定的$ \alpha $上的曲线段

是半径为$ \omega\lambda_i $的圆弧, 即$ \alpha $是广义Reuleaux多边形.

事实上, 构造广义Reuleaux多边形就是构造臂函数为分段常函数的杠杆轮.为此, 我们设$ [0, \pi) $上的分段常函数

$ \begin{equation} \mu(\theta) = \left\{ \begin{array}{ll} \mu_1, & \theta\in I_1, \\ \mu_2, & \theta\in I_2, \\ \vdots & \vdots\\ \mu_n, {\quad} & \theta\in I_n, \end{array}\right. \end{equation} $

其中右开区间$ I_1, I_2, \cdots, I_n $为区间$ [0, \pi) $的一组划分, $ \mu_i\in{{\Bbb R}} $是一组常数, $ i = 1, 2, \cdots, n $.

$ \begin{equation} S_i = \int_{I_i}\sin\theta{\rm d}\theta, C_i = \int_{I_i}\cos\theta{\rm d}\theta. \end{equation} $

结合定理3.1和定理5.1可以证明, 若$ n $元齐次线性方程组

$ \begin{equation} \left\{\begin{array}{ll} { } \sum\limits_{i = 1}^{n}S_i\mu_i = 0, \\ { } \sum\limits_{i = 1}^{n}C_i\mu_i = 0 \end{array}\right. \end{equation} $

成立且非零常数

$ \begin{equation} c\geq \max\limits_{1\leq i\leq n}|\mu_i|, \end{equation} $

则分段常函数

$ \begin{equation} \lambda_{\bf{u}}(\theta) = \left\{\begin{array}{ll} { } \frac{1}{2}+\frac{\mu(\theta)}{2c}, & \theta\in[0, \pi), \\ { } \frac{1}{2}-\frac{\mu(\theta-\pi)}{2c}, {\quad}& \theta\in[\pi, 2\pi) \end{array}\right. \end{equation} $

是广义Reuleaux多边形的臂函数.反之, 若任意广义Reuleaux多边形的臂函数$ \lambda_{\bf{u}}(\theta) $由(5.7)和(5.11)式给出, 则(5.9)和(5.10)式成立.

设分段常函数

是广义Reuleaux多边形$ \Gamma $的臂函数, 其中右开区间$ I_1, I_2, \cdots, I_n $为区间$ [0, \pi) $的一组划分, $ \lambda_1, \lambda_2, \cdots, \lambda_n $是一组常数, 且任意区间$ I_{i} $$ I_{i-1} $相邻, 任意常数$ \lambda_{i}\neq\lambda_{i-1}, i = 2, \cdots, n $.

易看出, 当常数$ \lambda_{i} = 0 $时, 区间$ I_{i} $对应$ \Gamma $上的一个奇点.当常数$ \lambda_{i}\neq0 $时, 区间$ I_{i} $对应$ \Gamma $上的一条边.进而, 可以得到广义Reuleaux多边形$ \Gamma $的边数

$ \begin{equation} N = 2n-N_0-N_1-N_{\lambda_{1}, \lambda_{n}}, \end{equation} $

其中非负整数$ N_0, N_1 $分别定义为常数组$ \lambda_1, \lambda_2, \cdots, \lambda_n $$ 0 $$ 1 $的个数, 且

综上所述, 将区间$ [0, \pi) $任意划分为一组右开区间$ I_1, I_2, \cdots, I_n $, 通过(4.8)式计算出两组实数$ \{S_i\}, \{C_i\}, i = 1, 2, \cdots, n $, 并代入(4.9)和(4.10)式, 可以求出$ \mu_1, \mu_2, \cdots, \mu_n, c $的解空间.联立(5.7)和(5.11)式得到臂函数$ \lambda_{\bf{u}}(\theta) $, 进而得到对应的广义Reuleaux多边形.

例5.3  将区间$ [0, \pi) $平均分成九个右开区间, 可以求出$ \mu_1, \mu_2, \cdots, \mu_9, c $的解空间, 取其中的一组解$ \mu_1 = \mu_4 = \mu_6 = \mu_9 = \cos\frac{2\pi}{9}-\cos\frac{\pi}{9} $, $ \mu_2 = \mu_8 = 2-2\cos\frac{4\pi}{9}-\cos\frac{2\pi}{9}-\cos\frac{\pi}{9} $, $ \mu_3 = \mu_5 = \mu_7 = \cos\frac{\pi}{9}-\cos\frac{2\pi}{9} $, $ c = \cos\frac{\pi}{9}-\cos\frac{2\pi}{9} $.此时臂函数

设直径长度$ \omega = 1 $, 利用定理$ \rm3.1 $, 构造出广义$ \rm Reuleaux $十一边形, 如图 3.

图 3

图 3   广义Reuleaux十一边形


例5.4  将区间$ [0, \pi) $划分为$ [0, \theta_1) $, $ [\theta_1, \theta_2) $, $ [\theta_2, \pi) $三个区间, 令$ \frac{\mu_1}{c} = \frac{\mu_3}{c} = -1 $, $ |\frac{\mu_2}{c}|<1 $, 即$ \lambda_1 = \lambda_3 = 0 $, $ \lambda_2\in(0, 1) $, 则(5.12)式中$ N = 4 $, 结合(5.9)式解得$ \theta_1 = \pi-\theta_2\in(0, \frac{\pi}{3}) $.$ \theta_1 = \frac{\pi}{6} $, 此时臂函数

设直径长度$ \omega = 1 $, 利用定理$ \rm3.1 $, 构造出$ \rm Reuleaux $等腰梯形, 如图 4.

图 4

图 4   Reuleaux等腰梯形


6 小结

为了构造平面常宽凸体, 我们基于Reuleaux多边形的性质定义了一类平面曲线, 称为杠杆轮, 它是平面常宽曲线的一种等价刻画.我们引入了杠杆轮的臂函数, 用臂函数给出了杠杆轮的参数表示, 从而给出了常宽曲线的一种不同于支撑函数表示的参数方程.特别地, 本文定义的臂函数区别于支撑函数.首先, 臂函数不依赖于原点位置.其次, 可以用臂函数的积分表示曲线参数方程, 不要求臂函数的连续性, 并且比支撑函数更便于构造Reuleaux多边形.

另外, 本文构造了一类臂函数为三角函数形式的常宽曲线, 并且推广了经典的Reuleaux多边形, 得到了广义Reuleaux多边形.

参考文献

徐文学.新的常宽凸集.重庆:西南大学, 2013

[本文引用: 3]

Xu W X. On New Convex Set of Constant Width. Chongqing:Southwest University, 2013

[本文引用: 3]

Meissner E .

Über Punktmengen konstanter Breite

Vierteljahresschr Naturforsch Ges Zürich, 1911, 56: 42- 50

URL     [本文引用: 1]

Blatter C .

Über Kurven konstanter Breite

Elem Math, 1981, 36 (5): 105- 115

[本文引用: 1]

Fujiwara M .

Analytic proof of Blaschke's theorem on the curve of constant breadth with minimum area

Proceedings of the Japan Academy, 1927, 3 (6): 307- 309

DOI:10.3792/pia/1195581847     

Evans M H .

A direct proof of a theorem of Blaschke and Lebesgue

The Journal of Geometric Analysis, 2002, 12 (1): 81- 88

DOI:10.1007/BF02930861      [本文引用: 1]

潘生亮.

切线极坐标的一个应用

华东师范大学学报(自然科学版), 2003, 1: 13- 16

URL     [本文引用: 1]

Pan S L .

An application of the polar tangential coordinate

Journal of East China Normal University (Natrual Science Edition), 2003, 1: 13- 16

URL     [本文引用: 1]

Robert T L , Qudet E .

Bodies of constant width in arbitrary dimension

Math Nachr, 2007, 280 (7): 740- 750

DOI:10.1002/mana.200510512      [本文引用: 1]

徐文学, 周家足, 陈方维.

一类常宽"等腰梯形"

中国科学:数学, 2011, 41 (10): 855- 860

DOI:10.3969/j.issn.0253-2778.2011.10.002      [本文引用: 1]

Xu W X , Zhou J Z , Chen F W .

On the isosceles trapezoids of constant width

Chinese Science:Mathematics, 2011, 41 (10): 855- 860

DOI:10.3969/j.issn.0253-2778.2011.10.002      [本文引用: 1]

Schneider R .

Convex Bodies:the Brunn-Minkowski Theory (2nd ed)

New York: Cambridge University Press, 2014

URL     [本文引用: 1]

/