数学物理学报, 2021, 41(1): 1-14 doi:

论文

偶数阶张量core逆的性质和应用

王宏兴,1, 张晓燕,1,2

Properties and Applications of the Core Inverse of an Even-Order Tensor

Wang Hongxing,1, Zhang Xiaoyan,1,2

通讯作者: 王宏兴, E-mail:winghongxing0902@163.com

收稿日期: 2020-02-1  

基金资助: 国家自然科学基金.  61772006
广西自然科学基金.  2018GXNSFAA138181
广西科技基地和人才专项基金.  桂科AD19245148

Received: 2020-02-1  

作者简介 About authors

张晓燕,E-mail:1310362243@qq.com , E-mail:1310362243@qq.com

Abstract

Tensor generalized inverse is one of the important contents of tensor theory research. In this paper, based on the research of tensor generalized inverse in recent years, we obtain some properties of the core inverse of tensor with the Einstein product, a tensor partial ordering based on the core inverse and the least-squares solution of $ {{\cal A}} {*}{{\cal X}}={{\cal B}}$ under condition ${{\cal X}}\in{\Bbb {\cal R}}({{\cal A}}) $.

Keywords: Core inverse ; Einstein product ; Partial ordering ; Tensor equation

PDF (326KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王宏兴, 张晓燕. 偶数阶张量core逆的性质和应用. 数学物理学报[J], 2021, 41(1): 1-14 doi:

Wang Hongxing, Zhang Xiaoyan. Properties and Applications of the Core Inverse of an Even-Order Tensor. Acta Mathematica Scientia[J], 2021, 41(1): 1-14 doi:

1 引言

$ M\in Z^+ $, 记集合$ [M] = \{1, 2, \cdots, M\} $; $ I_j\in Z^+ $, 其中$ j\in [M] $.张量$ {{\cal A}} = ({a}_{{i_1}\cdots{i_M}}) \in {\Bbb C}^{{I_1}\times{I_2}\times\cdots \times{I_M}} $是复数域$ {{\Bbb C}} $上的$ {{I_1} \times{I_2}\times\cdots\times{I_M}} $个元素的多维排列, 其中$ {i_j} \in [{\mathbb I}_j] $, $ {j}\in [{\mathbb M}] $.简记$ {I_1}\times I_2\times\cdots\times{I_M} = {\cal T}^I_M $$ ({I_1-R_1})\times\cdots \times({I_M-R_M}) = {{\cal T}^{I-R}_M} $.$ {{\cal A}}\in {\Bbb C}^{{\cal T}^I_M\times {\cal T}^J_M} $$ {{\cal B}}\in {\Bbb C}^{{{\cal T}^J_M}\times{{\cal T}^K_M}} $, 定义爱因斯坦积$ {\cal A}{*}_{M}{\cal B} $ (参见文献[4])

$ \begin{eqnarray} \left({{{\cal A}}{*}_{M}{{\cal B}}}\right)_{{i_1}\cdots{i_M}{k_1}\cdots{k_M}} = \sum\limits_{ {j_r} \in [{\mathbb J}_r], {r} \in [{\mathbb M}] } {a}_{{i_1}\cdots{i_M}{j_1}\cdots{j_M}}{b}_{{j_1}\cdots{j_M}{k_1}\cdots{k_M}}. \end{eqnarray} $

显然, 张量的爱因斯坦积满足结合律.本文记$ {{{\cal A}}{*}_{M}{{\cal B}}} = {{{\cal A}}{*}{{\cal B}}} $; 张量$ {{\cal A}} $的值域为$ {{\cal R(A)}} $和零空间为$ {{\cal N(A)}} $

$ \begin{equation} {{\cal R(A)}} = \{ {{\cal Y}} \in {\Bbb C}^{{{\cal T}^I_M}} : \ {{\cal Y}} = {{\cal A}}{*}{{\cal X}}, \ {{\cal X}} \in {\Bbb C}^{{{\cal T}^J_M}}\}, \end{equation} $

$ \begin{equation} {{\cal N(A)}} = \{{{\cal X}} \in {\Bbb C}^{{{\cal T}^J_M}}: \ {{\cal A}}{*}{{\cal X}} = {{\cal O}}\}, \end{equation} $

其中$ {{\cal O}} $是零张量; $ {{\cal A}}^{*} $$ {{\cal A}} $的共轭转置

$ \begin{eqnarray} ({{\cal A}}^{*})_{{i_1}\cdots{i_M} {j_1}\cdots{j_M}} = (\bar{{\cal A}})_{{j_1}\cdots{j_M}{i_1}\cdots{i_M}}. \end{eqnarray} $

进一步, 记对角张量为$ {{\cal D}} $

其中$ \sigma_{{j_1}\cdots{j_M}{i_1}\cdots{i_M}}\in {\Bbb C} $; 如果$ {{\cal D}} $的所有对角元素$ {{\sigma}_{{j_1}\cdots{j_M}{i_1}\cdots{i_M}}} = 1 $, 则称$ {{\cal D}} $为单位张量, 记作$ {{\cal I}} $.显然有$ ({{\cal A}} {*}{{\cal B}})^{*} = {{\cal B}}^{*} {*}{{\cal A}}^{*} $以及$ {{\cal I}} {*}{{\cal A}} = {{\cal A}} {*}{{\cal I}} = {{\cal A}} $ (参见文献[18]).

$ {{\cal A}}\in {\Bbb C}^{{{\cal T}^I_M}\times{{\cal T}^I_M}} $, 若存在张量$ {{\cal X}} \in {\Bbb C}^{{{\cal T}^I_M} \times{{\cal T}^I_M}} $使得$ {{\cal A}} {*}{{\cal X}} = {{\cal X}} {*}{{\cal A}} = {{\cal I}} $, 则$ {{\cal A}} $是可逆的, 且$ {{\cal X}} $$ {{\cal A}} $的逆, 记作$ {{\cal A}^{-1}} $, 参见文献[2].在文献[18]中, Sun等引入偶数阶张量Moore-Penrose逆的概念:设$ {{\cal A}} \in {\Bbb C}^{{{\cal T}^I_M}\times{{\cal T}^J_M}} $, 则存在唯一的张量$ {{\cal X}} \in {\Bbb C}^{{{\cal T}^J_M}\times{{\cal T}^I_M}} $满足

$ {{\cal X}} = {{\cal A}^{+}} $, 称$ {{\cal A}^{+}} $$ {{\cal A}} $的Moore-Penrose逆.显然, 若$ {{\cal A}} $是可逆的, 则$ {{\cal A}^{+}} = {{\cal A}^{-1}} $.

在文献[6]中, Ji和Wei提出偶数阶张量的加权Moore-Penrose逆.

$ {{\cal A}}\in{\Bbb C}^{{{\cal T}^I_M}\times{{\cal T}^I_M}} $, 则称满足$ {{\cal R}({\cal A}^{p+1})} = {{\cal R}({\cal A}^{p})} $成立的最小正整数$ p $$ {{\cal A}} $的指标, 记为$ \mbox{Ind}({{\cal A}}) = p $.当指标为1时, 则存在唯一的张量$ {{\cal X}} \in {{{\Bbb C}}^{{{\cal T}^I_M} \times{{\cal T}^I_M}}} $满足

$ \begin{eqnarray} (1)\ {{\cal A}}{*}{{\cal X}}{*}{{\cal A}} = {{\cal A}}, \ (2)\ {{\cal X}}{*}{{\cal A}}{*}{{\cal X}} = {{\cal X}}, \ (5)\ {{\cal A}}{*}{{\cal X}} = {{\cal X}}{*}{{\cal A}}. \end{eqnarray} $

$ {{\cal X}} = {{\cal A}^{\sharp}} $, 称$ {{\cal A}^{\sharp}} $$ {{\cal A}} $的群逆[7].

如果方阵$ A $满足$ rank(A^2) = rank(A) $, 则称$ A $的指标为1, 记为$ \mbox{Ind}(A) = 1 $.众所周知, 矩阵$ A $的群逆存在当且仅当$ \mbox{Ind}(A) = 1 $. 2010年, Baksalary和Trenkler[1]提出core逆的概念并给出若干core逆的性质.矩阵$ A $的core逆存在当且仅当$ \mbox{Ind}(A) = 1 $.随后, 矩阵的core逆问题引起了众多数学工作者的关注. Wang和Liu在文献[20]中给出了一个关于core逆的新的刻画.更多关于矩阵core逆和张量理论、计算及其应用的研究见文献[1, 3, 10-11, 13, 20-22]. Sahoo等在文献[17]中引入张量core逆的定义及其性质.本文在上述研究的基础上, 讨论爱因斯坦积下的张量core逆的性质, 应用张量core逆建立张量core偏序和研究张量方程$ {{\cal A}} {*}{{\cal X}} = {{\cal B}} $的约束最小二乘解等.

2 预备知识

定义2.1[17]  设$ {{\cal A}}\in {\Bbb C}^{{{\cal T}^I_M}\times{{\cal T}^I_M}} $$ \mbox{Ind}({{\cal A}}) = 1 $, 则存在唯一的矩阵$ {{\cal X}} \in {\Bbb C}^{{{\cal T}^I_M}\times{{\cal T}^I_M}} $满足

$ {{\cal X}} = {{\cal A}}$, 称$ {{\cal X}} $$ {{\cal A}} $的core逆.

引理2.1[17]  设$ {{\cal A}}\in {\Bbb C}^{{{\cal T}^I_M}\times{{\cal T}^I_M}} $$ \mbox{Ind}({{\cal A}}) = 1 $, 则

(1) ;

(2) .

引理2.2[17]  设$ {{\cal A}}\in {\Bbb C}^{{{\cal T}^I_M}\times{{\cal T}^I_M}} $$ \mbox{Ind}({{\cal A}}) = 1 $, 则存在唯一的$ {{\cal X}}\in {\Bbb C}^{{{\cal T}^I_M}\times{{\cal T}^I_M}} $满足

$ {{\cal X}} = {{\cal A}}$.

定义2.2[17]  设$ {{\cal A}} \in {\Bbb C}^{{{\cal T}^I_M}\times{{\cal T}^I_M}} $, 若

(ⅰ)  $ {{\cal A}}{*}{{\cal A}}^{+} = {{\cal A}}^{+}{*}{{\cal A}} $, 则称$ {{\cal A}} $是EP张量;

(ⅱ)$ {{\cal A}}^{2} = {{\cal A}} $, 则称$ {{\cal A}} $是幂等张量;

(ⅲ)  $ {{\cal A}}^{3} = {{\cal A}} $, 则称$ {{\cal A}} $是tripotent张量;

(ⅳ)  $ {{\cal A}}^{2} = {{\cal A}} = {{\cal A}}^{*} $, 则称$ {{\cal A}} $是Hermitian幂等张量;

(ⅴ)  $ {{\cal A}}^{*}{*}{{\cal A}} = {{\cal A}}{*}{{\cal A}}^{*} = {{\cal I}} $, 则称$ {{\cal A}} $是酉张量.

引理2.3[9,15]  设张量$ {{\cal A}} \in{\Bbb C}^{{{\cal T}^I_M}\times{{\cal T}^K_M}} $, 则在Matlab函数reshape下存在一一映射

其中$ A\in{\Bbb C}^{{{\cal J}}\times{{\cal R}}} $, $ {{\cal J}} = \prod\limits_{i = 1}^{M}{I_i} $$ {{\cal R}} = \prod\limits_{i = 1}^{M}{k_i} $.$ {{\cal A}} $的秩为$ rshrank({{\cal A}}) $

注2.1  由文献[15, 引理3.2]有$ rshrank({{\cal A}}{*}{{\cal B}}) = rank(AB)\leq rank(A) = rshrank({{\cal A}}) $, 即$ rshrank({{\cal A}}{*}{{\cal B}})\leq rshrank({{\cal A}}). $

引理2.4[19]  设$ {{\cal A}} \in {\Bbb C}^{{{\cal T}^I_M}\times{{\cal T}^I_M}} $, 则存在酉张量$ {{\cal U}} \in {\Bbb C}^{{{\cal T}^I_M}\times{{\cal T}^I_M}} $, 使得

$ \begin{eqnarray} {{\cal A}} = {{\cal U}}{*} \left[\begin{array}{ccc} {{\cal D}}{*}{{\cal K }} {\quad} & {{\cal D}}{*} {{\cal L}} \\ {{\cal O}}_2 {\quad} & {{\cal O}}_3 \end{array}\right]{*}{{\cal U}}^\ast, \end{eqnarray} $

其中$ {{\cal D}} \in {\Bbb C}^{{{\cal T}^R_M} \times{{\cal T}^R_M}} $是可逆的对角张量, $ {{\cal K}} \in {\Bbb C}^{{{\cal T}^R_M} \times{{\cal T}^R_M}} $$ {{\cal L}} \in {\Bbb C}^{{{\cal T}^R_M} \times{{\cal T}^{I-R}_M}} $$ {{\cal K}}{*}{{\cal K}}^\ast +{{\cal L}}{*}{{\cal L}}^\ast = {{\cal I}}_{r} $.

进一步得$ {{\cal A}} $的Moore-Penrose逆

$ \begin{eqnarray} {{\cal A}^{+}} = {{\cal U}}{*} \left[\begin{array}{ccc} {{\cal K}}^{*}{*} {{\cal D}}^{-1} {\quad} & {{\cal O}}_1 \\ {{\cal L}}^{*}{*}{{\cal D}} ^{-1} {\quad} & {{\cal O}}_3 \end{array}\right]{*}{{\cal U}}^{*}. \end{eqnarray} $

注2.2  设$ rshrank({{\cal A}}) = rshrank({{\cal A}}^2) $, 由注2.1知

$ \begin{eqnarray} rshrank({{\cal D}}) & \leq& rshrank({{\cal A}}) = rshrank\left( {{\cal U}}{*} \left[\begin{array}{ccc} {{\cal D}}{*}{{\cal K}} {\quad} & {{\cal D}}{*} {{\cal L}} \\ {{\cal O}}_2 {\quad} & {{\cal O}}_3 \end{array}\right]{*}{{\cal U}}^\ast\right) \\& = &rshrank\left( {{\cal U}}{*} \left[\begin{array}{ccc} ({{\cal D}}{*}{{\cal K}})^2 {\quad} & {{\cal D}}{*}{{\cal K}}{*}{{\cal D}}{*}{{\cal L}} \\ {{\cal O}}_2 {\quad} & {{\cal O}}_3 \end{array}\right]{*}{{\cal U}}^\ast\right) \\ & \leq& rshrank\left( {{\cal U}}{*} \left[\begin{array}{ccc} {{\cal D}}{*}{{\cal K}} {\quad} & {{\cal O}}_1 \\ {{\cal O}}_2 {\quad} & {{\cal O}}_3 \end{array}\right]{*}{{\cal U}}^\ast\right) \\& = &rshrank({{\cal D}}{*}{{\cal K}}) \leq rshrank({{\cal D}}). \end{eqnarray} $

应用$ {{\cal D}} $是可逆的, 得到$ rshrank({{\cal D}}{*}{{\cal K}}) = rshrank({{\cal D}}) = rshrank({{\cal K}}) $$ {{\cal K}} $是可逆的.即:若$ rshrank({{\cal A}}) = rshrank\left({{\cal A}}^2\right) $, 则$ {{\cal K}} $是可逆的.

注2.3  如果$ {{\cal A}} $的指标是$ 1 $, $ rshrank({{\cal A}}) = rshrank\left({{\cal A}}^2\right) $, 则$ {{\cal A}} $有群逆, 且

$ \begin{eqnarray} {{\cal A}}^{ \sharp} = {{\cal U}}{*} \left[\begin{array}{ccc} {{\cal K}}^{-1}{*}{{\cal D}} ^{-1} {\quad} & {{\cal K}}^{-1}{*}{{\cal D}} ^{-1}{*}{{\cal K}}^{-1}{*}{{\cal L}} \\ {{\cal O}}_2 {\quad} & {{\cal O}}_3 \end{array}\right]{*}{{\cal U}}^{*}. \end{eqnarray} $

引理2.5  设$ {{\cal A}} \in {\Bbb C}^{{{\cal T}^I_M}\times\times{{\cal T}^I_M}} $形如(2.1)式, 则

(ⅰ)  $ {{\cal A}} $是EP张量当且仅当$ {{\cal L}} = {{\cal O}}_{1} $;

(ⅱ)  $ {{\cal A}} $是幂等张量当且仅当$ {{\cal D}}{*}{{\cal K}} = {{\cal I}}_{r} $;

(ⅲ)  $ {{\cal A}} $是Hermitian幂等张量当且仅当$ {{\cal L}} = {{\cal O}}_1, {{\cal D}}{*}{{\cal K}} = {{\cal I}}_{r} $;

(ⅳ)  $ {{\cal A}} $是tripotent张量当且仅当$ ({{\cal D}}{*}{{\cal K}})^{2} = {{\cal I}}_{r} $.

  应用(2.1)式和$ {{\cal A}}{*}{{\cal A}}^{+} = {{\cal A}}^{+}{*}{{\cal A}} $, 有

应用$ {{\cal L}}^{*}{*}{{\cal L}} = {{\cal O}} $, 得到(ⅰ).

应用(2.1)式和$ {{\cal A}}^{2} = {{\cal A}} $, 有

以及$ \mbox{Ind}({{\cal A}}) = 1 $.因此$ {{\cal K}} $$ {{\cal D}}{*}{{\cal K}} $是可逆的.应用$ ({{\cal D}}{*}{{\cal K}})^{2} = {{\cal D}}{*}{{\cal K}} $, 得到(ⅱ).

应用(2.1)式和$ {{\cal A}}^{2} = {{\cal A}} = {{\cal A}}^{*} $, 有

应用$ {{\cal D}}{*}{{\cal L}} = {{\cal O}} $, $ {{\cal D}}{*}{{\cal K}} = ({{\cal D}}{*}{{\cal K}})^{*} $, $ ({{\cal D}}{*}{{\cal K}})^{2} = {{\cal D}}{*}{{\cal K}} $$ {{\cal K}}{*}{{\cal K}}^\ast +{{\cal L}}{*}{{\cal L}}^\ast = {{\cal I}}_{r} $, 得到(ⅲ).

应用(2.1)式和$ {{\cal A}}^{3} = {{\cal A}} $, 有

以及$ \mbox{Ind}({{\cal A}}) = 1 $.应用$ ({{\cal D}}{*}{{\cal K}})^{3} = {{\cal D}}{*}{{\cal K}} $, 得到(ⅳ).

3 张量core逆的性质

定理3.1  设$ {{\cal A}} \in {\Bbb C}^{{{\cal T}^I_M}\times\times{{\cal T}^I_M}} $形如(1.1)式且$ rshrank({{\cal A}}) = rshrank({{\cal A}}^2) $, 则

(3.1)

  设$ {{\cal A}^{+}} $如(2.2)式给出, 则

$ {{\cal B}}\in {\Bbb C}^{{{\cal T}^I_M}\times{{\cal T}^I_M}} $$ {{\cal A}} $的core逆, 记

$ \begin{eqnarray} {{\cal B}} = {{\cal U}}{*} \left[\begin{array}{ccc} {{\cal W}} {\quad} & {{\cal X}} \\ {{\cal Y}} {\quad} & {{\cal Z}} \end{array}\right]{*}{{\cal U}}^{*}, \end{eqnarray} $

其中$ {{\cal W}} \in {\Bbb C}^{{{\cal T}^R_M} \times{{\cal T}^R_M}} $.由定义2.1的条件(ⅰ)成立当且仅当$ {{\cal D}} {*} {{\cal K}}{*}{{\cal W}} + {{\cal D}} {*}{{\cal L}}{*}{{\cal Y}} = {{\cal I}}_r $$ {{\cal K}}{*}{{\cal X}} +{{\cal L}}{*}{{\cal Z}} = {{\cal O}} $.根据引理2.2, 我们知道 , 由定义2.1的条件(ⅱ)成立当且仅当$ {{\cal Y}} = {{\cal O}} $$ {{\cal Z}} = {{\cal O}} $.因此, $ {{\cal D}} {*}{{\cal K}}{*}{{\cal W}} = {{\cal I}}_r $$ {{\cal K}}{*}{{\cal X}} = {{\cal O}} $.由于$ {{\cal K}} $是非奇异的, 因此条件(ⅱ)等价于$ {{\cal X}} = {{\cal O}} $.定理3.1得证.

定理3.2  设$ {{\cal A}} $, $ {{\cal A}^{+}} $, $ {{\cal A}}^\sharp $, 和$ {{\cal A}} $分别形如(2.1), (2.2), (2.4)和(3.1)式, 则

(ⅰ) $ {{\cal P}}_{{{\cal A}}} = {{\cal A}}{*}{{\cal A}}^{+} = {{\cal A}}{*}{{\cal A}} $;

(ⅱ)

  由于

得到$ {{\cal P}}_{{{\cal A}}} = {{\cal A}}{*}{{\cal A}}^{+} = {{\cal A}}{*}{{\cal A}} $.

由于 , 得到 .因此有

定理3.2得证.

定理3.3  设$ {{\cal A}} \in{\Bbb C}^{{{\cal T}^I_M}\times{{\cal T}^I_M}} $形如(2.1)式且$ rshrank({{\cal A}}) = rshrank({{\cal A}}^2) $.

$ {{\cal A}}^{*}{*}{{\cal A}}^2 $群可逆.

  由定理3.1, 有$ {{\cal D}}{*}{{\cal K}} $是可逆的, 又由注2.1, 得到

$ rshrank({{\cal A}}^{*}{*}{{\cal A}}^2)\leq rshrank({{\cal A}}^\ast{*}{{\cal A}}) = r $, 因此$ rshrank({{\cal A}}^{*}{*}{{\cal A}}^2) = rshrank({{\cal A}}^{*}{*}{{\cal A}}) = r $.同理有$ rshrank({{\cal A}}{*}{{\cal A}}^{*}) = r $.

由于

以及$ rshrank({{\cal A}}^{*}{*} {{\cal A}}^2{*} {{\cal A}}^{*}{*}{{\cal A}}^2) \leq rshrank({{\cal A}}^{*}{*}{{\cal A}}^2) = r $, 我们得到$ rshrank({{\cal A}}^{*}{*}{{\cal A}}^2{*} {{\cal A}}^{*}{*}{{\cal A}}^2) \ = \ r $.$ rshrank({{\cal A}}^{*}{*}{{\cal A}}^2) = rshrank ({{\cal A}}^{*}{*}{{\cal A}}^2{*} {{\cal A}}^{*}{*}{{\cal A}}^2) = r $, 所以$ ({{\cal A}}^{*}{*}{{\cal A}}^2)^{\sharp} $存在.

引理3.1  设$ {{\tilde{\cal A}}} = {\tilde{\cal {B}}}{*}{ \tilde{\cal{C}}} $, $ rshrank({\tilde{\cal A}}) = rshrank({\tilde{\cal A}}^2) $, $ rshrank({\tilde{\cal {B}}}) = rshrank({\tilde{\cal {C}}}) = r $, 其中

$ {\tilde{\cal {C}}}{*}{ \tilde{\cal{B}}} $是可逆的.

  由于$ {\tilde{\cal {A}}}^{2} = { \tilde{\cal{B}}}{*}{\tilde{\cal {C}}} {*}{\tilde{\cal {B}}}{*}{\tilde{\cal {C}}} $, 若$ {\tilde{\cal {C}}}{*}{\tilde{\cal {B}}} $不可逆, 则$ rshrank({\tilde{\cal {A}}}^{2}) < rshrank({\tilde{\cal {B}}}{*}{\tilde{\cal {C}}}) = rshrank({\tilde{\cal {A}}}) $$ \mbox{Ind}({\tilde{\cal {A}}}) = 1 $矛盾.因此, $ {\tilde{\cal {C}}}{*}{\tilde{\cal {B}}} $是可逆的.

定理3.4  设$ {{\cal A}}\in{\Bbb C}^{{{\cal T}^I_M}\times{{\cal T}^I_M}} $形如(2.1)式, $ rshrank({{\cal A}}^{2}) = rshrank({{\cal A}}) = r $, 则

  设$ {{\cal A}} $有形如(2.1)式的形式, 由定理3.1和定理3.3, 有$ {{\cal D}}{*}{{\cal K}} $是可逆的, $ {{\cal A}}^{*}{*}{{\cal A}}^2 $是群可逆的, 以及

应用引理3.1, 我们知道

是可逆的.因此得到$ ({{\cal A}}^{*}{*}{{\cal A}}^2)^\sharp $的表达式

应用(2.1)式和$ ({{\cal A}}^{*}{*}{{\cal A}}^2)^\sharp $的表达式, 我们得到

.

4 张量偏序

矩阵偏序是满足自反性、传递性和反对称性的二元关系.以下是三种重要的矩阵偏序.

第一种偏序是由Hartwing在文献[5]提出的减序

$ \begin{eqnarray} A\leq B \Leftrightarrow rank(B-A) = rank(B)-rank(A). \end{eqnarray} $

第二种偏序是由Mitra在文献[14]中提出的sharp序

$ \begin{eqnarray} A\mathop \le \limits ^{\#}B \Leftrightarrow A^{\#}A = A^{\#}B , AA^{\#} = BA^{\#}. \end{eqnarray} $

第三种偏序是由Baksalary和Trenkler在文献[1]提出的core序

类似于矩阵偏序, 我们称在张量上满足下述三个条件的二元关系$ "\preceq" $为张量偏序.

(1) 自反性, $ {{\cal A}}\preceq{{\cal A}} $;

(2) 对称性, 若$ {{\cal A}}\preceq{{\cal B}} $$ {{\cal B}}\preceq{{\cal A}} $, 则$ {{\cal A}} = {{\cal B}} $;

(3) 传递性, 若$ {{\cal A}}\preceq{{\cal B}} $$ {{\cal B}}\preceq{{\cal C}} $, 则$ {{\cal A}}\preceq{{\cal C}} $.

在本节, 我们考虑张量的偏序并研究张量偏序的性质和刻画等.

定义4.1  设$ {{\cal A}}, {{\cal B}} \in {\Bbb C}^{{{\cal T}^I_M} \times{{\cal T}^I_M}} $.我们称满足

$ \begin{eqnarray} {{\cal A}}\preceq {{\cal B}} \Leftrightarrow rshrank({{\cal B-A}}) = rshrank({{\cal B}})-rshrank({{\cal A}}) \end{eqnarray} $

的二元关系$ {{\cal A}}\preceq {{\cal B}} $$ {{\cal T}} $-减序.

以下定理证明$ {{\cal T}} $-减序是一个张量偏序.

定理4.1  $ {{\cal T}} $减序是一个张量偏序.

  自反性显然成立.

$ {{\cal A}}\mathop \preceq{{\cal B}} $, $ {{\cal B}}\mathop \preceq{{\cal A}} $, 即有$ rshrank({{\cal B-A}}) = rshrank({{\cal B}})-rshrank({{\cal A}}) $, $ rshrank({{\cal A-B}}) = rshrank({{\cal A}})-rshrank({{\cal B}}) $.由于$ rshrank({{\cal A-B}}) = rshrank({{\cal B-A}}) $, 则$ rshrank({{\cal A}}) = rshrank({{\cal B}}) $, 则$ rshrank({{\cal A-B}}) = 0 $, 也就是说$ {{\cal A}} = {{\cal B}} $.

$ {{\cal A}}\mathop \preceq{{\cal B}} $, $ {{\cal B}}\mathop \preceq{{\cal C}} $, 即有$ rshrank({{\cal B-A}}) = rshrank({{\cal B}})- rshrank({{\cal A}}) $, $ rshrank({{\cal B-C}}) = rshrank({{\cal B}})-rshrank({{\cal C}}) $, 则

$ rshrank({{\cal C-A}}) = rshrank({{\cal C}})-rshrank({{\cal A}}) $.因此有$ {{\cal A}}\mathop \preceq{{\cal C}} $.

定义4.2  设$ {{\cal A}}, {{\cal B}} \in {\Bbb C}^{{{\cal T}^I_M} \times{{\cal T}^I_M}} $$ \mbox{Ind}({{\cal A}}) = \mbox{Ind}({{\cal B}}) = 1 $.我们称满足

的二元关系为$ {{\cal T}} $-core序.

为了证明$ {{\cal T}} $-core序是张量偏序, 我们首先要证明两个引理.

引理4.1  设$ {{\cal A}} \in {\Bbb C}^{{{\cal T}^I_M}\times{{\cal T}^I_M}} $$ {{\cal B}} \in {\Bbb C}^{{{\cal T}^I_M}\times{{\cal T}^I_M}} $且有$ \mbox{Ind}({{\cal A}}) = \mbox{Ind}({{\cal B}}) = 1 $, 此外, $ {{\cal A}} $形如(2.1)式, 则 当且仅当

$ \begin{eqnarray} {{\cal B}} = {{\cal U}}{*} \left [\begin{array}{ccc} {{\cal D}}{*}{{\cal K}} {\quad} & {{\cal D}}{*}{{\cal L}} \\ {{\cal O}}_2 {\quad} & {{\cal Z}} \end{array}\right] {*} {{\cal U}}^\ast, \end{eqnarray} $

其中$ {{\cal D}}{*} {{\cal K}} $非奇异并且$ {{\cal Z}} \in {\Bbb C}^{{{\cal T}^{I-R}_M}\times{{{\cal T}^{I-R}_M}}} $是指标为1的张量.

  设$ {{\cal B}} $的分解形如(3.2)式, 从(2.1), (3.1)和(3.2)式, 得到

因此, 成立当且仅当$ {{{\cal W}}} = {{\cal D}}{*}{{\cal K}} $, $ {{\cal X}} = {{\cal D}}{*}{{\cal L}} $.此外, 由

知道, 成立当且仅当$ {{\cal W}} = {{\cal D}}{*}{{\cal K}} $, $ {{\cal Y}} = {{\cal O}} $.即有(4.6)式成立, 其中$ {{\cal D}}{*}{{\cal K}} \in {\Bbb C}^{{R_1}\times\cdots\times{R_M} \times{R_1} \times\cdots\times{R_M}} $是可逆的.由$ \mbox{Ind}({{\cal B}}) = 1 $, 得到$ {{\cal Z}} \in {\Bbb C}^{{\cal T}^{I-R}_M\times {\cal T}^{I-R}_M} $的指标为1.

引理4.2  设$ {{\cal B}} $形如(4.6)式且$ {\mbox{Ind}}({{\cal A}}) = 1 $, 则

$ \begin{eqnarray} {{\cal B}}^{\sharp} = {{\cal U}}{*} \left [\begin{array}{ccc} ({{\cal D}}{*}{{\cal K}})^{-1}{\quad} & {{\cal X}}_0 \\ {{\cal O}}_2 {\quad} & {{\cal Z}}^{\sharp} \end{array}\right]{*} {{\cal U}}^\ast, \end{eqnarray} $

其中$ {{\cal X}}_0 = ({{\cal D}}{*}{{\cal K}})^{-1}{*}{{\cal K}}^{-1}{*}{{\cal L}}- ({{\cal D}}{*}{{\cal K}})^{-2}{*}{{\cal D}}{*}{{\cal L}}{*}{{\cal Z}}^{\#}{*}{{\cal Z}}- {{\cal K}}^{-1}{*}{{\cal L}}{*}{{\cal Z}}^{\#} $.

  假设$ {{\cal X}} $$ {{\cal B}} $的群逆, 将其分解为

$ \begin{eqnarray} {{\cal X}} = {{\cal U}}{*} \left [\begin{array}{ccc} {{\cal X}}_1 {\quad} & {{\cal X}}_2 \\ {{\cal X}}_3 {\quad} & {{\cal X}}_4 \end{array}\right]{*} {{\cal U}}^\ast. \end{eqnarray} $

$ {{\cal B}}{*}{{\cal X}}{*}{{\cal B}} = {{\cal B}} $, 得到

$ \cal U*\left[ {\begin{array}{*{20}{c}}{\cal D*K*{X}_1*\cal D*K + D*L*{X}_3*\cal D*K}\\{\cal Z*{X}_3*\cal D*K}\end{array}\;\;\begin{array}{*{20}{c}}{\cal D*K*{X}_1*\cal D*L + D*L*{X}_3*\cal D*L}\\{ + \cal D*K*{X}_2*\cal Z + D*L*{X}_4*\cal Z}\\{\cal Z*{X}_3*\cal D*L + Z*{X}_4*\cal Z}\end{array}} \right]*{\cal U^ * }\\ = \cal U*\left[ {\begin{array}{*{20}{c}}{\cal D*K\quad }&{\cal D*L}\\{{\cal O}_2\quad }&\cal Z\end{array}} \right]*{\cal U^ * }, $

$ \begin{equation} {{\cal D}}{*}{{\cal K}}{*}{{\cal X}}_1{*} {{\cal D}}{*}{{\cal K}}+{{\cal D}}{*}{{\cal L}}{*}{{\cal X}}_3{*} {{\cal D}}{*}{{\cal K}} = {{\cal D}}{*}{{\cal K}} , \end{equation} $

$ \begin{equation} {{\cal D}}{*}{{\cal K}}{*}{{\cal X}}_1{*} {{\cal D}}{*}{{\cal L}}+{{\cal D}}{*}{{\cal L}} {*}{{\cal X}}_3{*} {{\cal D}}{*}{{\cal L}} +{{\cal D}}{*}{{\cal K}}{*}{{\cal X}}_2{*} {{\cal Z}}+{{\cal D}} {*}{{\cal L}} {*}{{\cal X}}_4{*} {{\cal Z}} = {{\cal D}}{*}{{\cal L}}, \end{equation} $

$ \begin{equation} {{\cal Z}}{*}{{\cal X}}_3{*}{{\cal D}}{*}{{\cal K}} = {{\cal O}}_2, \end{equation} $

$ \begin{equation} {{\cal Z}}{*}{{\cal X}}_3{*}{{\cal D}}{*}{{\cal L}}+{{\cal Z}}{*}{{\cal X}}_4{*}{{\cal Z}} = {{\cal Z}}. \end{equation} $

$ {{\cal D}}{*}{{\cal K}} $可逆, (3.16)式可等价表达为$ {{\cal Z}}{*}{{\cal X}}_3 = {{\cal O}}_2 $.

$ {{\cal X}}{*}{{\cal B}}{*}{{\cal X}} = {{\cal X}} $, 有

$ \begin{eqnarray} &&{{\cal U}}{*} \left [\begin{array}{ccc} {{\cal X}}_1{*}{{\cal D}}{*}{{\cal K}}{*} {{\cal X}}_1+{{\cal X}}_1{*}{{\cal D}}{*}{{\cal L}}{*} {{\cal X}}_3+ {{\cal X}}_2{*}{{\cal Z}}{*}{{\cal X}}_3 \ & {{\cal X}}_1{*}{{\cal D}}{*}{{\cal K}}{*} {{\cal X}}_2+{{\cal X}}_1{*}{{\cal D}}{*}{{\cal L}}{*} {{\cal X}}_4 +{{\cal X}}_2{*}{{\cal Z}}{*}{{\cal X}}_4 \\ {{\cal X}}_3{*}{{\cal D}}{*}{{\cal K}}{*} {{\cal X}}_1+{{\cal X}}_3{*}{{\cal D}}{*}{{\cal L}}{*} {{\cal X}}_3+ {{\cal X}}_4{*}{{\cal Z}}{*}{{\cal X}}_3 \ & {{\cal X}}_3{*}{{\cal D}}{*}{{\cal K}}{*} {{\cal X}}_2+{{\cal X}}_3{*}{{\cal D}}{*}{{\cal L}}{*} {{\cal X}}_4 +{{\cal X}}_4{*}{{\cal Z}}{*}{{\cal X}}_4 \end{array}\right]{*} {{\cal U}}^\ast \\ && = {{\cal U}}{*} \left [\begin{array}{ccc} {{\cal X}}_1 {\quad} & {{\cal X}}_2 \\ {{\cal X}}_3 {\quad} & {{\cal X}}_4 \end{array}\right]{*} {{\cal U}}^\ast. \end{eqnarray} $

$ \begin{equation} {{\cal X}}_1{*}{{\cal D}}{*}{{\cal K}}{*} {{\cal X}}_1+{{\cal X}}_1{*}{{\cal D}}{*}{{\cal L}}{*} {{\cal X}}_3+ {{\cal X}}_2{*}{{\cal Z}}{*}{{\cal X}}_3 = {{\cal X}}_1 , \end{equation} $

$ \begin{equation} {{\cal X}}_1{*}{{\cal D}}{*}{{\cal K}}{*} {{\cal X}}_2+{{\cal X}}_1{*}{{\cal D}}{*}{{\cal L}}{*} {{\cal X}}_4 +{{\cal X}}_2{*}{{\cal Z}}{*}{{\cal X}}_4 = {{\cal X}}_2 , \end{equation} $

$ \begin{equation} {{\cal X}}_3{*}{{\cal D}}{*}{{\cal K}}{*} {{\cal X}}_1+{{\cal X}}_3{*}{{\cal D}}{*}{{\cal L}}{*} {{\cal X}}_3+ {{\cal X}}_4{*}{{\cal Z}}{*}{{\cal X}}_3 = {{\cal X}}_3, \end{equation} $

$ \begin{equation} {{\cal X}}_3{*}{{\cal D}}{*}{{\cal K}}{*} {{\cal X}}_2+{{\cal X}}_3{*}{{\cal D}}{*}{{\cal L}}{*} {{\cal X}}_4 +{{\cal X}}_4{*}{{\cal Z}}{*}{{\cal X}}_4 = {{\cal X}}_4. \end{equation} $

$ {{\cal B}}{*}{{\cal X}} = {{\cal X}}{*}{{\cal B}} $, 有

$ \begin{eqnarray} &&{{\cal U}}{*} \left [\begin{array}{ccc} {{\cal D}}{*}{{\cal K}}{*}{{\cal X}}_1+{{\cal D}}{*}{{\cal L}}{*}{{\cal X}}_3 {\quad} & {{\cal D}}{*}{{\cal K}}{*}{{\cal X}}_2+{{\cal D}}{*}{{\cal L}}{*}{{\cal X}}_4 \\ {{\cal Z}}{*}{{\cal X}}_3 {\quad} & {{\cal Z}}{*}{{\cal X}}_4 \end{array}\right]{*} {{\cal U}}^\ast \\ & = &{{\cal U}}{*} \left [\begin{array}{ccc} {{\cal X}}_1{*}{{\cal D}}{*}{{\cal K}} {\quad} & {{\cal X}}_1{*}{{\cal D}}{*}{{\cal L}}+{{\cal X}}_2{*} {{\cal Z}} \\ {{\cal X}}_3{*}{{\cal D}}{*}{{\cal K}} {\quad}& {{\cal X}}_3{*}{{\cal D}}{*}{{\cal L}}+ {{\cal X}}_4{*} {{\cal Z}} \end{array}\right]{*} {{\cal U}}^\ast, \end{eqnarray} $

$ \begin{equation} {{\cal D}}{*}{{\cal K}}{*}{{\cal X}}_1+{{\cal D}}{*}{{\cal L}}{*}{{\cal X}}_3 = {{\cal X}}_1{*}{{\cal D}}{*}{{\cal K}} , \end{equation} $

$ \begin{equation} {{\cal D}}{*}{{\cal K}}{*}{{\cal X}}_2+{{\cal D}}{*}{{\cal L}}{*}{{\cal X}}_4 = {{\cal X}}_1{*}{{\cal D}}{*}{{\cal L}}+{{\cal X}}_2{*} {{\cal Z}} , \end{equation} $

$ \begin{equation} {{\cal Z}}{*}{{\cal X}}_3 = {{\cal X}}_3{*}{{\cal D}}{*}{{\cal K}}, \end{equation} $

$ \begin{equation} {{\cal Z}}{*}{{\cal X}}_4 = {{\cal X}}_3{*}{{\cal D}}{*}{{\cal L}}+{{\cal X}}_4{*} {{\cal Z}}. \end{equation} $

$ {{\cal Z}}{*}{{\cal X}}_3 = {{\cal O}}_2 $, 得到$ {{\cal X}}_3{*}{{\cal D}}{*}{{\cal K}} = {{\cal Z}}{*}{{\cal X}}_3 = {{\cal O}}_2 $, 又$ {{\cal D}}{*}{{\cal K}} $可逆, 得到$ {{\cal X}}_3 = {{\cal O}}_2 $.应用$ {{\cal X}}_3 = {{\cal O}}_2 $和(4.12)式, 得到$ {{\cal X}}_1 = ({{\cal D}}{*}{{\cal K}})^{-1} $.$ {{\cal X}}_3 = {{\cal O}}_2 $$ {{\cal X}}_1 = ({{\cal D}}{*}{{\cal K}})^{-1} $代入(4.13), (4.15), (4.18), (4.20), (4.23)和(4.25)式, 得到

$ \begin{equation} {{\cal D}}{*}{{\cal K}}{*}{{\cal X}}_2{*}{{\cal Z}}+{{\cal D}} {*}{{\cal L}} {*}{{\cal X}}_4{*} {{\cal Z}} = {{\cal O}}_1, \end{equation} $

$ \begin{equation} {{\cal Z}}{*}{{\cal X}}_4{*}{{\cal Z}} = {{\cal Z}}, \end{equation} $

$ \begin{equation} {{\cal K}}^{-1} {{\cal L}}{*}{{\cal X}}_4+{{\cal X}}_2{*}{{\cal Z}}{*}{{\cal X}}_4 = {{\cal O}}_1, \end{equation} $

$ \begin{equation} {{\cal X}}_4{*}{{\cal Z}}{*}{{\cal X}}_4 = {{\cal X}}_4, \end{equation} $

$ \begin{equation} {{\cal D}}{*}{{\cal K}}{*}{{\cal X}}_2+{{\cal D}} {*}{{\cal L}}{*}{{\cal X}}_4 = {{\cal K}}^{-1}{*}{{\cal L}}+{{\cal X}}_2{*}{{\cal Z}}, \end{equation} $

$ \begin{equation} {{\cal Z}}{*}{{\cal X}}_4 = {{\cal X}}_4{*}{{\cal Z}}. \end{equation} $

由(4.27), (4.29)和(4.31)式, 得到$ {{\cal X}}_4 = {{\cal Z}}^{\#} $.

由(4.30)式, $ {{\cal X}}_4 = {{\cal Z}}^{\#} $$ {{\cal D}}{*}{{\cal K}} $可逆, 知道

进而由(4.26)式, 得到

证毕.

定理4.2  T-core序是一个张量偏序.

  为了证明$ {{\cal T}} $-core序是一个张量偏序.我们要需要证明$ {{\cal T}} $-core序满足(ⅰ)自反性, 即 ; (ⅱ)反身性, 即 表明$ {{\cal A}} = {{\cal B}} $; (ⅲ)传递性, 即 表明 , 对于$ {{\cal A}}, {{\cal B}} $, $ {{\cal C}} \in {\Bbb C}^{{{\cal T}^I_M}\times{{\cal T}^I_M}} $.由于自反性显然满足, 我们开始证明(ⅱ).设 , 得到

由张量core满足{2}逆和(4.32)式第二个等式的右边, 得到 .因此, 应用引理2.1得到$ {{\cal B}} = {{\cal A}}{*}{{\cal B}}^ {\sharp}{*}{{\cal B}} $.应用(2.1), (4.6)和(4.9)式, 得到

$ \begin{eqnarray} {{\cal B}} = {{\cal A}}{*}{{\cal B}}^ {\sharp}{*}{{\cal B}} = {{\cal U}}{*} \left [\begin{array}{ccc} {{\cal D}}{*}{{\cal K}} {\quad} & {{\cal D}}{*}{{\cal L}}+{{\cal D}}{*}{{\cal K}}{*}{{\cal X}}_{0}{*}{{\cal Z}}+ {{\cal D}}{*}{{\cal L}}{*}{{\cal Z}}^{\sharp}{*}{{\cal Z}} \\ {{\cal O}}_2 {\quad} & {{\cal O}}_3 \end{array}\right]{*} {{\cal U}}^\ast. \end{eqnarray} $

通过比较(4.6)和(4.33)式, 得到了$ {{\cal B}} = {{\cal A}}{*}{{\cal B}}^ {\sharp}{*}{{\cal B}} $成立的充要条件就是$ {{\cal Z}} = 0 $.但是若$ {{\cal Z}} = 0 $, 则$ {{\cal B}} $$ {{\cal A}} $在(2.1)式的形式一致, 即$ {{\cal T}} $-core偏序具有反身性.

(ⅲ), 设 , 即

通过应用(4.34)和(4.35)式的第二个等式和引理2.1, 有 .由(3.1), (4.6)和(4.9)式, 得到

由(3.1)式, 得到了 .因此, .

类似地, 应用(4.34)和(4.35)式的第一个等式和引理2.1, 得到

此外, 引理2.1和引理2.2, 得到

由(3.1), (4.6)和(4.37)式, 得到

.因此, 有 .因此, 得到 .

定理4.3  若$ {{\cal A}}, \ {{\cal B}}\in {\Bbb C}^{{{\cal T}^I_M}\times{{\cal T}^I_M}} $并且$ rshrank({{\cal A}}^{2}) = rshrank({{\cal A}}) $$ rshrank({{\cal B}}^{2}) = rshrank({{\cal B}}) $, 则下列条件等价

$ \rm(ⅰ) $;

$ \rm(ⅱ) $$ {{\cal A}}^{+}{*}{{\cal A}} = {{\cal A}}^{+}{*}{{\cal B}} $$ {{\cal A}}^2 = {{\cal B}}{*}{{\cal A}} $.

  由引理2.1, (4.5)式的第一个条件可写为 .在等式 的两边左乘$ {{\cal A}}^{+}{*}{{\cal A}} $, 得到$ {{\cal A}}^ {+}{*}{{\cal A}} = {{\cal A}}^ {+}{*}{{\cal B}} $.在等式$ {{\cal A}}^ {+}{*}{{\cal A}} = {{\cal A}}^ {+}{*}{{\cal B}} $两边左乘$ {{\cal A}}^{\sharp}{*}{{\cal A}} $, 得到 .因此, .类似地, 由引理2.1, (3.5)式的第一个条件可写为$ {{\cal A}}{*} {{\cal A}}^ {+} = {{\cal B}}{*}{{\cal A}}^ {\sharp}{*} {{\cal A}}{*}{{\cal A}}^ {+} $.在等式 两边右乘$ {{\cal A}}^ {2} $, 得到$ {{\cal A}}^2 = {{\cal B}}{*} {{\cal A}} $.此外, 在等式$ {{\cal A}}^2 = {{\cal B}}{*} {{\cal A}} $两边右乘$ {{\cal A}}^ {\sharp}{*}{{\cal A}}^ {+} $, 得到 ..

5 张量方程

$ {{\cal A}} \in{\Bbb C}^{{{\cal T}^I_M}\times{I{\cal T}^I_M}} $$ {{\cal B}} \in{\Bbb C}^{{{\cal T}^I_M}} $.若方程

$ \begin{eqnarray} {{\cal A}}{*}{{\cal X}} = {{\cal B}} \end{eqnarray} $

有解, 则通解为

其中$ {{\cal A}}^{(1)} $$ {{\cal A}} $$ \left\{1\right\} $逆并且$ {{\cal Y}} \in{\Bbb C}^{{{\cal T}^I_M}} $是任意张量.当方程(5.1)无解时, 则 是其极小范数最小二乘解[18].在文献[17]中, Sahoo等研究了方程(5.1)在约束条件$ {{\cal B}}\in{\Bbb {{\cal R({{\cal A}})}}} $, $ \mbox{Ind}({{\cal A}}) = 1 $$ {{\cal X}}\in{\Bbb {{\cal R({{\cal A}})}}} $下的解, 并证明 是唯一解.当$ {{\cal B}}\notin{\Bbb {{\cal R({{\cal A}})}}} $, 易证方程(5.1)是无解的.本节我们考虑方程(5.1)在$ {x \in {\Bbb {\cal R}}({\cal A})} $下的最小二乘解.

定理5.1  设$ {{\cal A}} $$ {{\cal B}} $形如(5.1)式且$ {\mbox{Ind}}({{\cal A}}) = 1 $, 则 $ \|{{\cal A}}{*}{{\cal X}} -{{\cal B}}\|_F^2 = \min, $$ {{{\cal X}} \in {\Bbb {\cal R}}({\cal A})} $的唯一解.

  由于$ {{\cal X}}\in{\Bbb {\cal R(A)}} $, 则存在$ {{\cal Y}} \in{\Bbb C}^{{{\cal T}^I_M}} $使得$ {{\cal X}} = {{\cal A{*}Y}} $.$ {{\cal A}} $形如(2.1)式.记

其中$ {{\cal A}}, \ {{\cal U}} \in{\Bbb C}^{{{\cal T}^I_M}\times{{\cal T}^I_M}} $, $ {y_1} \in{\Bbb C}^{{{\cal T}^R_M}} $, $ {y_2} \in{\Bbb C}^{{{\cal T}^{I-R}_M}} $, $ {b_1 } \in{\Bbb C}^{{{\cal T}^R_M}} $, $ { b_2} \in{\Bbb C}^{{{\cal T}^{I-R}_M}} $, 和$ {{{\cal O}}_4} \in{\Bbb C}^{{{\cal T}^{I-R}_M}} $.由于$ {{\cal D}}{*}{{\cal K}} $可逆, 取$ y_1 = ({{\cal D}}{*}{\cal K})^{-2}{*} b_1 - {{\cal K}}^{-1}{*} {{\cal L}}{*}y_2 $, 则有

因而$ \| {{\cal A}}{*} {{\cal X}}- {{\cal B}}\|_F^2 = \|b_2\|_F^2 $, 即得

定理5.1证毕.

参考文献

Baksalary O M , Trenkler G .

Core inverse of matrices

Linear Multilinear A, 2010, 58 (6): 681- 697

DOI:10.1080/03081080902778222      [本文引用: 3]

Brazell M , Li N , Navasca C , Tamon C .

Solving multilinear systems via tensor inversion

SIAM J Matrix Anal A, 2013, 34 (2): 542- 570

DOI:10.1137/100804577      [本文引用: 1]

Chen J , Zhu H , Patricio P , Zhang Y .

Characterizations and representations of core and dual core inverses

Can Math Bull, 2017, 60 (2): 269- 282

DOI:10.4153/CMB-2016-045-7      [本文引用: 1]

Einstein A. The Foundation of the General Theory of Relativity//Kox A J, Klein M J, Schulmann R, et al. The Collected Papers of Albert Einstein. Princeton: Princeton Univ Press, 2007: 146-200

[本文引用: 1]

Hartwig R E .

How to partially order regular elements

Math Japon, 1980, 25 (1): 1- 13

URL     [本文引用: 1]

Ji J , Wei Y .

Weighted Moore-Penrose inverses and the fundamental theorem of even-order tensors with Einstein product

Front Math China, 2017, 12 (6): 1317- 1337

[本文引用: 1]

Ji J , Wei Y .

The Drazin inverse of an even-order tensor and its application to singular tensor equations

Comput Math Appl, 2018, 75 (9): 3402- 3413

DOI:10.1016/j.camwa.2018.02.006      [本文引用: 1]

Jin H , Minru B , Benítez J , Liu X .

The generalized inverses of tensors and an application to linear models

Comput Math Appl, 2017, 74 (3): 385- 397

DOI:10.1016/j.camwa.2017.04.017     

李娜, 马海凤.

爱因斯坦积下张量的加权Moore-Penrose逆的扰动理论

高等学校计算数学学报, 2018, 40 (4): 346- 363

URL     [本文引用: 1]

Li N , Ma H .

Perturbation theory for weighted Moore-Penrose inverse of tensors via Einstein product

Numer Math-A J Chinese U, 2018, 40 (4): 346- 363

URL     [本文引用: 1]

Luo G , Zuo K , Zhou L .

Revisitation of the core inverse

Wuhan Univ J Nat Sci, 2015, 20 (5): 381- 385

DOI:10.1007/s11859-015-1109-6      [本文引用: 1]

Malik S B .

Some more properties of core partial order

Appl Math Comput, 2013, 221: 192- 201

URL     [本文引用: 1]

Martin C D , Shafer R , LaRue B .

An order-p tensor factorization with applications in imaging

SIAM J Sci Comput, 2013, 35 (1): 474- 490

DOI:10.1137/110841229     

Miao Y , Qi L , Wei Y .

Generalized tensor function via the tensor singular value decomposition based on the T-product

Linear Algebra Appl, 2020, 590: 258- 303

DOI:10.1016/j.laa.2019.12.035      [本文引用: 1]

Mitra S K .

On group inverses and the sharp order

Linear Algebra Appl, 1987, 92: 17- 37

DOI:10.1016/0024-3795(87)90248-5      [本文引用: 1]

Stanimirović P S , Čirić M , Katsikis V N , Li C , Ma H .

Outer and $(b, c) $ inverses of tensors

Linear Multilinear A, 2020, 68 (5): 940- 971

DOI:10.1080/03081087.2018.1521783      [本文引用: 2]

Rakić D S , Dinčić N Č , Djordjević D S .

Group, Moore-Penrose, core and dual core inverse in rings with involution

Linear Algebra Appl, 2014, 463: 115- 133

DOI:10.1016/j.laa.2014.09.003     

Sahoo J K , Behera R , Stanimirovió P S , Katsikis V N , Ma H .

Core and core-EP inverses of tensors

Computat Appl Math, 2020, 39 (1): 101- 129

DOI:10.1007/s40314-019-0983-5      [本文引用: 6]

Sun L , Zheng B , Bu C , Wei Y .

Moore-Penrose inverse of tensors via Einstein product

Linear Multilinear A, 2016, 64 (4): 686- 698

DOI:10.1080/03081087.2015.1083933      [本文引用: 3]

Wang B , Du H , Ma H .

Perturbation bounds for DMP and CMP inverses of tensors via Einstein product

Computat Appl Math, 2020, 39 (1): 1- 28

DOI:10.1007/s40314-019-0964-8      [本文引用: 1]

Wang H , Liu X .

Characterizations of the core inverse and the core partial ordering

Linear Multilinear A, 2015, 63 (9): 1829- 1836

DOI:10.1080/03081087.2014.975702      [本文引用: 2]

Wang Q W, Wang X X. Arnoldi method for large quaternion right eigenvalue problem. J Sci Comput, 2020, 82, Article number: 58

Zhang X F , Wang Q W , Li T .

The accelerated overrelaxation splitting method for solving symmetric tensor equations

Computat Appl Math, 2020, 39: 1- 14

DOI:10.1007/s40314-019-0964-8      [本文引用: 1]

/