行间AANA随机变量阵列加权和的完全矩收敛性
On the Complete Moment Convergence for Weighted Sums of Rowwise Asymptotically Almost Negatively Associated Random Variables
通讯作者:
收稿日期: 2019-08-20
基金资助: |
|
Received: 2019-08-20
Fund supported: |
|
In this paper, by applying the moment inequality for AANA random sequence, some results on complete moment convergence for weighted sums of AANA random variables are obtained without assumptions of identical distribution, which generalize and improve the corresponding ones of Baek et al. [
Keywords:
本文引用格式
孟兵, 王定成, 吴群英.
Meng Bing, Wang Dingcheng, Wu Qunying.
1 引言
定义1.1 称随机变量
其中
定义1.2 称随机变量序列
其中
定理1.1 设
若
Wang等[12]把上述结果从行间NA随机变量推广到了AANA随机变量, 而且增加考虑了
定理1.2 设
且(1.1)式也成立.
进一步假设
其中
定义1.3 称随机变量序列
完全矩收敛的概念是由Chow[3]首先提出的.
定义1.4 称随机变量序列
2 引理
引理2.1[17] 设
引理2.2[17] 设
当
引理2.3[16] 设
3 主要结果及证明
整篇文章中,
定理3.1 设
以及
进一步假设
进一步假设
其中
注3.1 定理3.1不仅把定理1.1关于行间NA阵列的结果扩展到了AANA阵列的情况, 而且考虑了
注3.2 在定理3.1的条件下, 对任意
证 (3.2)式的证明完全类似于(3.1)式的证明, 因此, 该文仅证明(3.1)式成立.不失一般性, 设
根据Wang等[12]中的定理3.1的证明, 可以直接得到
注意到:
由(3.8)式, (2.1)式和(1.3)式可知
接下来证明当
由引理2.1可知,
则
因此, 要证(3.1)式成立, 只需证明
根据(1.2)式, 不失一般性, 不妨设
下面分
情况1
取某个
首先证明
由(3.8)式以及
其次证明
根据
由
情况2
首先证明
事实上, 由条件
因此, 对足够大的
根据(3.20)式, 引理2.2, Markov不等式以及情况1中
由(3.8)式, 引理2.3, (1.2)式, (1.3)式和(3.4)式, 可知
下面分
情况1
首先证明(3.18)式仍成立.根据
这样, (3.20)式仍成立.
取某个
从而由(3.20)式, Markov不等式, 引理2.2以及
根据
首先证明:
当
其次证明:
因此, 当
情况2
取
参考文献
On the complete convergence of weighted sums for arrays of negatively associated variables
The strong law of large numbers for weighted averages under dependence assumptions
On the rate of moment convergence of sample sums and extremes
Complete convergence and the law of large numbers
On the strong convergence for weighted sums of asymptotically almost negatively associated random variables
Negative association of random variables with applications
Strong convergence for sequences of asymptotically almost negatively associated random variables
Complete convergence for weighted sums of random variables
On complete convergence for widely orthant dependent random variables and its applications in nonparametric regression models
Complete convergence for arrays of rowwise negatively superadditive dependent random variables and its applications
Complete convergence for weighted sums of NSD random variables and its application in the EV regression model
Complete consistency for the estimator of nonparametric regression models based on extended negatively dependent errors
The strong law of large numbers and the law of the iterated logarithm for product sums of NA and AANA random variables
Rosenthal type inequalities for asymptotically almost negatively associated random variables and applications
/
〈 |
|
〉 |
