数学物理学报, 2020, 40(6): 1599-1611 doi:

论文

高阶各向异性Cahn-Hilliard-Navier-Stokes系统的弱解

罗娇,, 漆前,, 罗宏,

Weak Solutions to Higher-Order Anisotropic Cahn-Hilliard-Navier-Stokes Systems

Luo Jiao,, Qi Qian,, Luo Hong,

通讯作者: 罗宏, E-mail: lhscnu@163.com

收稿日期: 2020-06-3  

基金资助: 国家自然科学基金.  10771306
国家自然科学基金.  11701399

Received: 2020-06-3  

Fund supported: the NSFC.  10771306
the NSFC.  11701399

作者简介 About authors

罗娇,E-mail:656508503@qq.com , E-mail:656508503@qq.com

漆前,E-mail:1374852064@qq.com , E-mail:1374852064@qq.com

Abstract

In this paper, we are concerned with weak solutions to higher-order anisotropic Cahn-Hilliard-Navier-Stokes systems in a two-dimensional bounded domain. The system consists of an incompressible Navier-Stokes equation coupled with a higher-order anisotropic Cahn-Hilliard equation. First some functional spaces and the definition of weak solutions are introduced. Then energy estimates of the solutions are given, and weak solutions of the system are obtained by Galerkin approximation scheme. Furthermore, the uniqueness of the solution to the system is proved.

Keywords: Anisotropic ; Cahn-Hilliard-Navier-Stokes system ; Weak solutions ; Existence ; Uniqueness

PDF (353KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

罗娇, 漆前, 罗宏. 高阶各向异性Cahn-Hilliard-Navier-Stokes系统的弱解. 数学物理学报[J], 2020, 40(6): 1599-1611 doi:

Luo Jiao, Qi Qian, Luo Hong. Weak Solutions to Higher-Order Anisotropic Cahn-Hilliard-Navier-Stokes Systems. Acta Mathematica Scientia[J], 2020, 40(6): 1599-1611 doi:

1 引言

著名的界面扩散模型Cahn-Hilliard-Navier-Stokes(CHNS)系统是由Cahn-Hilliard方程和Navier-Stokes方程耦合而成, 可用来模拟两个不相溶和不可压缩流体的等温混合物的相分离, 参见文献[1-6]及其中的参考文献.过去的几十年里, 在区域$ \Omega $、系数、非线性项$ f $的各种假设下, Cahn-Hilliard-Navier-Stokes系统已经被广泛研究[7-11], 但耦合的均为低阶的Cahn-Hilliard方程.

关于高阶Cahn-Hilliard方程以及相应耦合的CHNS系统的研究也有很多成果[12-19]. Cherfils等[12]得到了高阶各向同性的Cahn-Hilliard方程的适定性结果和全局吸引子.文献[13]证明了具有动态边界条件的高阶Cahn-Hilliard方程的适定性和耗散性.文献[14]证明了高阶各向同性的Cahn-Hilliard-Navier-Stokes系统弱解的存在唯一性.在此基础上, Pan等在文献[15]中也从各向同性的角度提升了高阶CHNS系统的弱解关于时间的正则性结果.另一方面, Caginalp和Esenturk在文献[16]中提出了高阶Cahn-Hilliard系统来考虑各向异性界面.关于高阶各向异性的Cahn-Hilliard方程, 文献[17]中得到了其适定性结果以及全局吸引子的存在性.一般高阶的Cahn-Hilliard方程和修正高阶各向异性的Cahn-Hilliard方程的适定性结果分别在文献[18-19]中得到.

虽然高阶Cahn-Hilliard方程和高阶各向同性的CHNS系统已经被广泛研究, 但是关于高阶各向异性的CHNS系统的研究很少.基于此, 本文研究由高阶各向异性的Cahn-Hilliard方程和不可压缩的Navier-Stokes方程耦合而成的CHNS系统.我们假设两种流体有不可忽略的温差, 相同的常数密度(等于$ 1 $), 两相之间的扩散界面的厚度很小但不为$ 0 $, 即考虑如下的初边值问题

$ \left\{ {\begin{array}{*{20}{l}}{{\partial _t}\boldsymbol{u} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} - \nu \Delta \boldsymbol{u} + \nabla p = K\mu \nabla \phi + \boldsymbol{g}, }&{(x, t) \in \Omega \times (0, + \infty ), }\\{\nabla \cdot \boldsymbol{u} = 0, }&{(x, t) \in \Omega \times (0, + \infty ), }\\{{\partial _t}\phi + u \cdot \nabla \phi - {{\varrho}_0}\Delta \mu = 0, }&{(x, t) \in \Omega \times (0, + \infty ), }\\{\mu = \sum\limits_{i = 1}^k {{{( - 1)}^i}} \sum\limits_{|\alpha | = i} {{a_\alpha }} {D^{2\alpha }}\phi + f(\phi ), }&{(x, t) \in \Omega \times (0, + \infty ), }\\{\boldsymbol{u} = 0, \;{D^\alpha }\phi = 0, \;|\alpha | \le k, }&{(x, t) \in \partial \Omega \times (0, + \infty ), }\\{\boldsymbol{u}(0) = {\boldsymbol{u}_0}, \;\phi (0) = {\phi _0}, }&{x \in \Omega , }\end{array}} \right. $

其中$ \Omega\subset{\Bbb R}^2 $是一个有界区域且边界$ \Gamma $光滑, $ \boldsymbol{g} $是与时间无关的外力.序参数$ \phi $代表两种液体的相对浓度, $ \boldsymbol{u} $代表流体速度, 正常数$ \nu $, $ \varrho_0 $$ {\cal K} $相应代表流体的粘性系数, 流动系数, 应力系数. $ \mu $为以下自由能的变分导数

其中$ \alpha = (k_1, k_2)\in({\Bbb N}\cup{0})^2 $, $ |\alpha| = k_1+k_2 $, 当$ \alpha\neq(0, 0) $时, 有

特别的, $ {\cal D}^{(0, 0)}\phi = \phi $. $ F(r) = \int_0^rf(\xi){\rm d}\xi $, 通常取多项式近似$ F(r) = C_1r^4-C_2r^2 $, 其中$ C_1 $, $ C_2 $为正常数[20].

本文我们将讨论高阶各向异性的CHNS系统(1.1)的弱解.第2节给出相应的假设, 介绍所需的空间和算子, 同时给出系统(1.1)弱解的定义; 第3节给出了解的能量估计, 通过Galerkin方法证明弱解的存在性, 并得到弱解的唯一性.

2 预备知识

为了本文研究, 假设$ \varrho_0 = 1 $, $ f\in C^2({\Bbb R}) $并且满足

$ \begin{equation} \left\{\begin{array}{ll} \liminf\limits_{\mid r \mid\rightarrow +\infty}f'(r)>0, \ f(0) = 0, \\ | f''(r)| \leq c_f(1+| r |^{m-1}), \ \forall r\in {\Bbb R}, \\ F(r)\geq c_1r^4-c_2, \ \exists c_1>0, \ \exists c_2\geq0, \ \forall r\in {\Bbb R}, \end{array}\right. \end{equation} $

其中$ c_f $为正常数, $ m\geq2 $.由(2.1)式可得

$ \begin{equation} | f'(r)|\leq c_f(1+| r |^m), \ \ | f(r)|\leq c_f(1+| r |^{m+1}), \ \forall r\in {\Bbb R}, \end{equation} $

其中$ f $$ F $的导数.特别的, $ f(r) = r^3-r $满足(2.1)式.

假设$ X $为一个实的Hilbert空间, 内积和范数分别为$ (\cdot, \cdot)_X $$ \mid\cdot\mid_X $, $ X^* $表示$ X $的对偶空间.空间$ {\Bbb X} $表示$ X \times X $, 现定义以下两个Hilbert空间

其中$ {\Bbb L}^2(\Omega) = (L^2(\Omega))^2 $, $ {\Bbb H}_0^1(\Omega) = (H_0^1(\Omega))^2 $.空间$ {\Bbb H} $的内积和范数分别为$ (\cdot, \cdot) $$ \mid\cdot\mid $.空间$ {\Bbb V} $的内积和范数表示如下

由Poincaré不等式可知, $ {\Bbb V} $的范数等价于$ {\Bbb H}_0^1(\Omega) $-范数.

此外, 假设$ k\in{\Bbb N} $, $ k\geq2 $, 当$ |\alpha| = k $$ a_\alpha>0 $, 则映射

是对称连续强制的双线性形式, 因此定义一个从$ H_0^k $$ H^{-k} $的椭圆算子$ A_k $

其中$ H^{-k}(\Omega) = (H^k(\Omega))^* $.$ 2k $阶线性椭圆算子的正则性结果[21]知, $ A_k $是一个无界线性自伴的正算子且有紧逆.它的定义域如下

$ \forall\upsilon\in D(A_k) $, 有

由Poincaré不等式易得$ D(A_k^{1/2}) = H_0^k(\Omega) $且对$ \forall(\upsilon, \omega) \in D(A_k^{1/2})\times D(A_k^{1/2}) $, 有

$ | A_k\cdot| $等价于$ H^{2k} $范数, 相应的, $ | A_k^{1/2}\cdot| $等价于$ H^k $范数.

其中$ B_k\phi = \sum\limits_{i = 1}^{k-1} (-1)^{i} \sum\limits_{|\alpha| = i}a_\alpha{\cal D}^{2\alpha}\phi $.

定义相空间如下

$ {\Bbb Y} $关于如下范数是一个完备的度量空间

由于对$ \forall \boldsymbol{\upsilon} \in {\Bbb V} $, $ \left( {\nabla p, \boldsymbol{\upsilon} } \right) = 0 $, 故系统(1.1)的变分形式如下

$ \left\{ {\begin{array}{*{20}{l}}{({\partial _t}\boldsymbol{u}, \boldsymbol{\upsilon}) + \nu (\nabla \boldsymbol{u}, \nabla \boldsymbol{\upsilon}) + (\boldsymbol{u} \cdot \nabla \boldsymbol{u}, \boldsymbol{\upsilon}) - \mathcal{K}(\mu \nabla \phi , \boldsymbol{\upsilon}) = (\boldsymbol{g}, \boldsymbol{\upsilon}), \;\;}\\{({\partial _t}\phi , \varphi ) + (\boldsymbol{u} \cdot \nabla \phi , \varphi ) + (\nabla \mu , \nabla \varphi ) = 0, \;\;}\\{\sum\limits_{i = 1}^k {\sum\limits_{\mid \alpha \mid = i} {{a_\alpha }} } ({\mathcal{D}^\alpha }\phi , {\mathcal{D}^\alpha }\xi ) + (f(\phi ), \xi ) - (\mu , \xi ) = 0, \;}\end{array}} \right. $

其中$ \boldsymbol{\upsilon} \in {\Bbb V} $, $ \varphi\in H^1(\Omega) $, $ \xi\in H_0^k(\Omega) $, 且满足$ \boldsymbol{u}\left( 0 \right) = {\boldsymbol{u}_0} $$ \phi \left( 0 \right) = {\phi _0} $.

定义2.1   令$ \boldsymbol{g} \in {\Bbb V}^* $, $ f\in C^2({\Bbb R}) $且满足(2.1)式.若初值$ \left( {{\boldsymbol{u}_0}, {\phi _0}} \right) \in {\Bbb Y} $, 并且

满足(2.3)式, 则称$ \left( {{\boldsymbol{u}_0}, {\phi _0}} \right) $为系统(1.1)的弱解.

3 弱解的存在唯一性

为了得到弱解的存在性, 先进行先验估计得到以下结论.

定理3.1   令$ \boldsymbol{g} \in {\Bbb V}^* $, $ f\in C^2({\Bbb R}) $满足(2.1)式.如果$ \left( {{\boldsymbol{u}_0}, {\phi _0}} \right) $是系统(1.1)的弱解, 那么以下估计成立

$ \begin{eqnarray} &&\|(\boldsymbol{u}(t), \phi(t))\|_{{\Bbb Y}}^2+\int_t^{t+1}(\frac{\nu}{{\cal K}}\| \boldsymbol{u}(s)\|^2+\|\mu(s)\|^2+| F(\phi(s))|_{L^1}){\rm d}s\\ &&+\int_t^{t+1}(\| \partial_t \boldsymbol{u}(s)\|_{{\Bbb V}^*}^2+\|\phi(s)\|_{H^{2k+1}}^2 +| \partial_t \phi(s)|_{H^{-1}}^2){\rm d}s\\ &\leq & Q(\|(\boldsymbol{u}(0), \phi(0))\|_{{\Bbb Y}}^2) e^{-\kappa t}+C_0(\nu, {\cal K}, \| \boldsymbol{g}\|_{{\Bbb V}^*}), \ \forall t\geq0, \end{eqnarray} $

其中单增非减函数$ Q $, 正常数$ \kappa $$ C_0 $都与时间和初值无关.

  在方程(2.3)1中取$ \boldsymbol{\upsilon} = {\cal K}^{-1}\boldsymbol{u} $, 由$ \left( {\boldsymbol{u} \cdot \nabla \boldsymbol{u}, \boldsymbol{u}} \right) = 0 $可得

$ \begin{equation} \frac{1}{2{\cal K}}\frac{\rm d}{{\rm d}t}|\boldsymbol{u}(t)|^2+\frac{\nu}{{\cal K}}\|\boldsymbol{u}(t)\|^2-(\mu\nabla\phi, \boldsymbol{u}(t)) = \frac{1}{{\cal K}}(\boldsymbol{u}(t), \boldsymbol{g}). \end{equation} $

在方程(2.3)2中取$ \varphi = \mu $可得

$ \begin{equation} (\partial_t\phi(t), \mu(t))+(\boldsymbol{u}(t)\cdot\nabla\phi(t), \mu(t))+|\nabla\mu(t)|_{L^2}^2 = 0. \end{equation} $

在方程(2.3)3中取$ \xi = \partial_t\phi(t) $得到

$ \begin{equation} \frac{1}{2}\frac{\rm d}{{\rm d}t}(|A_k^{1/2}\phi(t)|^2+B_k^{1/2}[\phi(t)]+2(F(\phi(t)), 1))-(\mu(t), \partial_t\phi(t)) = 0, \end{equation} $

其中$ B_k^{1/2}[\phi(t)] = \sum\limits_{i = 1}^{k-1} \sum\limits_{|\alpha| = i}a_\alpha| {\cal D}^\alpha\phi(t)|^2 $.由Gagliardo-Nirenberg不等式[22]知, 对$ i\in\{1, \cdots, k-1\} $, $ k\in {\Bbb N} $, $ k\geq 2 $, 有如下不等式

由Young不等式得, 对$ \forall i\in\{1, \cdots, k-1\} $, 有

$ \epsilon_i $取合适的值时, 可得

$ \begin{equation} | B_k^{1/2}[\phi(t)]|\leq\frac{1}{2}| A_k^{1/2}\phi(t)|^2+c|\phi(t)|_{L^2}^2. \end{equation} $

由(3.2)–(3.4)式得到

$ \begin{eqnarray} &&\frac{\rm d}{{\rm d}t}[\frac{1}{{\cal K}}| \boldsymbol{u}(t) |^2+|A_k^{1/2}\phi(t)|^2+B_k^{1/2}[\phi(t)]+2(F(\phi(t)), 1)]\\ &&+\frac{2\nu }{{\cal K}}\| \boldsymbol{u}(t)\|^2+2|\nabla\mu(t)|_{L^2}^2-\frac{2}{{\cal K}}(\boldsymbol{u}(t), \boldsymbol{g}) = 0, \end{eqnarray} $

再在方程(2.3)3中取$ \xi = 2\zeta\phi(t) $, $ \zeta>0 $, 得到

$ \begin{equation} 2\zeta(\mu(t), \phi(t))_{L^2} = 2\zeta| A_k^{1/2}\phi(t)|_{L^2}^2+2\zeta B_k^{1/2}[\phi(t)]+2\zeta(\phi(t), f(\phi(t)))_{L^2}. \end{equation} $

其中$ c_E $为足够大的常数确保$ E(t) $非负.此外, 存在一个单增非减的函数$ Q $使得

$ \begin{equation} \|(\boldsymbol{u}(t), \phi(t))\|_{{\Bbb Y}}^2\leq E(t) \leq Q(\|(\boldsymbol{u}(t), \phi(t))\|_{{\Bbb Y}}^2). \end{equation} $

由(3.6)式和(3.7)式得到

$ \begin{equation} \frac{\rm d}{{\rm d}t}E(t)+\kappa E(t) = \Lambda_1(t), \end{equation} $

其中$ \kappa\in(0, \zeta) $,

$ \begin{eqnarray} \Lambda_1(t):& = &-2\frac{\nu}{{\cal K}}\|\boldsymbol{u}(t)\|_{\Bbb V}^2+\frac{\kappa}{{\cal K}}|\boldsymbol{u}(t)|^2-2|\nabla\mu(t)|_{L^2}^2-(2\zeta-k)| A_k^{1/2}\phi(t)|^2+\frac{2}{{\cal K}}(\boldsymbol{u}(t), \boldsymbol{g})\\ & &+2[\kappa(F(\phi(t))-f(\phi(t))\phi(t), 1)_{L^2}-(\zeta-\kappa)(f(\phi(t))\phi(t), 1)_{L^2}]\\ & &+2\zeta(\mu(t), \phi(t))-(2\zeta-\kappa)B_k^{1/2}[\phi(t)]+\kappa c_E. \end{eqnarray} $

现对(3.10)式的右边进行估计, 由Hölder, Poincaré和Young不等式有

$ \begin{eqnarray} 2\zeta(\mu(t), \phi(t))_{L^2}&\leq& 2\zeta |\mu(t)|_{L^2}|\phi(t)|_{L^2}\leq 2\zeta c_\Omega^{1/2}|\Omega|^{1/2}|\nabla\mu(t)|_{L^2}|\phi(t)|_{L^2}{}\\ &\leq&|\nabla\mu(t)|_{L^2}^2+\zeta^2c_\Omega|\Omega| |\phi(t)|_{L^2}^2, \end{eqnarray} $

其中$ c_\Omega $$ \Omega $有关.

由Hölder, Young不等式可得

$ \begin{equation} \frac{2}{{\cal K}}(\boldsymbol{u}(t), \boldsymbol{g})\leq\frac{2}{{\cal K}}\|\boldsymbol{u}(t)\|_{\Bbb V}\|\boldsymbol{g}\|_{{\Bbb V^*}}\leq\frac{\nu}{{\cal K}}\|\boldsymbol{u}(t)\|_{\Bbb V}^2+\frac{1}{{\cal K}\nu}\|\boldsymbol{g}\|_{{\Bbb V^*}}^2. \end{equation} $

另一方面, 通过(2.1)式, 对$ \forall r\in{\Bbb R} $, 有

$ \begin{equation} c_*| f(r)|(1+|r|)\leq 2f(r)r + c_f, \end{equation} $

$ \begin{equation} F(r)-f(r)r\leq c_f^{'}r^2+c_f^{''}, \end{equation} $

$ \begin{equation} |F(r)|-c_0\leq | f(r)|(1+| r|), \end{equation} $

其中$ c_* $, $ c_f $, $ c_f^{'} $, $ c_f^{''} $$ c_0 $为正的足够大的常数.

由(3.5)式, (3.11)–(3.14)式和Poincaré不等式, 得到

$ \begin{eqnarray} \Lambda_1(t)&\leq &-\frac{1}{{\cal K}}(\nu-\kappa c_\Omega|\Omega|)\|\boldsymbol{u}(t)\|_{\Bbb V}^2-|\nabla\mu(t)|_{L^2}^2-\frac{1}{2}(2\zeta-k)| A_k^{1/2}\phi(t)|^2{}\\ & &+\frac{1}{{\cal K}\nu}\|\boldsymbol{g}\|_{{\Bbb V^*}}^2+(2\kappa c_f^{'}+\zeta^2c_\Omega|\Omega|+(2\zeta-k)c)|\phi(t)|_{L^2}^2{}\\ & &-c_*(\zeta-\kappa)(| f(\phi(t))|, 1+| \phi(t)|)+c_1, \end{eqnarray} $

其中$ c_1 = \kappa c_E+2\kappa c_f^{''}|\Omega|+c_f(\zeta-\kappa)|\Omega| $.

由Young不等式, (2.1)$ _3 $式和(3.15)式有

$ \epsilon $取适当的值, 使下式成立

$ \begin{equation} (2\kappa c_f^{'}+\xi^2c_\Omega|\Omega|+(2\zeta-k)c)|\phi(t)|_{L^2}^2\leq\frac{1}{2}c_*(\zeta-\kappa)(| f(\phi(t))|, 1+| \phi(t)|)+c. \end{equation} $

因此, 由(3.16)式和(3.17)式可得

$ \begin{eqnarray} \Lambda_1(t)&\leq &-\frac{1}{{\cal K}}(\nu-\kappa c_\Omega|\Omega|)\|\boldsymbol{u}(t)\|_{\Bbb V}^2-|\nabla\mu(t)|_{L^2}^2-\frac{1}{2}(2\zeta-k)| A_k^{1/2}\phi(t)|^2+\frac{1}{{\cal K}\nu}\|\boldsymbol{g}\|_{{\Bbb V^*}}^2{}\\ & &-\frac{1}{2}c_*(\zeta-\kappa)(| f(\phi(t))|, 1+| \phi(t)|)+c_1. \end{eqnarray} $

$ \zeta = 1/c_\Omega|\Omega| $$ \kappa\in(0, \zeta) $, 并令$ \kappa = \min\{\nu/2c_\Omega|\Omega|, 1/c_\Omega|\Omega|\} $.通过(3.9)式和(3.18)式可得

$ \begin{eqnarray} && \frac{\rm d}{{\rm d}t}E(t)+\kappa E(t)+\kappa_1(\frac{\nu}{{\cal K}}\|\boldsymbol{u}(t)\|_{\Bbb V}^2 +| A_k^{1/2}\phi(t)|^2)+|\nabla\mu(t)|_{L^2}^2 +\kappa_2(| f(\phi(t))|, 1+| \phi(t)|)_{L^2} {}\\ &\leq& \frac{1}{{\cal K}\nu}\|\boldsymbol{g}\|_{{\Bbb V^*}}^2+c_1. \end{eqnarray} $

由Gronwall不等式(参见文献[23, 引理2.5]), 可得

$ \begin{eqnarray} E(t)&\leq&2E(0)e^{-kt}+2\int_0^t(\frac{1}{{\cal K}\nu}\| \boldsymbol{g}\|_{{\Bbb V^*}}^2+c_1)e^{-k(t-y)}{\rm d}y\\ &\leq&2E(0)e^{-kt}+2\kappa^{-1}(\frac{1}{{\cal K}\nu}\| \boldsymbol{g}\|_{{\Bbb V^*}}^2+c_1), \ \forall t\geq 0. \end{eqnarray} $

对(3.19)式在$ [t, t+1] $上积分可得

$ \begin{eqnarray} && E(t+1)+\int_t^{t+1}\kappa E(s)+\kappa_1(\frac{\nu}{{\cal K}}\|\boldsymbol{u}(s)\|_{{\Bbb V}}^2 \\ &&+| A_k^{1/2}\phi(s)|^2)+|\nabla\mu(s)|_{L^2}^2+\kappa_2(| f(\phi(s))|, 1+| \phi(s)|)_{L^2}{\rm d}s{}\\ &\leq& E(t)+\frac{1}{{\cal K}\nu}\| \boldsymbol{g}\|_{{\Bbb V^*}}^2+c_1, \ \forall t\geq0. \end{eqnarray} $

通过(3.20)式和(3.21)式有

$ \begin{eqnarray} && E(t)+\int_t^{t+1}(\kappa_1(\frac{\nu}{{\cal K}}\|\boldsymbol{u}(s)\|_{{\Bbb V}}^2+| A_k^{1/2}\phi(s)|^2)+|\nabla\mu(s)|_{L^2}^2+\kappa_2(| f(\phi(s))|, 1+| \phi(s)|)_{L^2}){\rm d}s\\ &\leq&4E(0)e^{-\kappa t}+(4\kappa^{-1}+1)(\frac{1}{{\cal K}\nu}\|\boldsymbol{g}\|_{{\Bbb V^*}}^2+c_1), \ \forall t\geq0. \end{eqnarray} $

于是从(3.8)式, (3.15)式和(3.22)式, 可得

$ \begin{eqnarray} && \|(\boldsymbol{u}(t), \phi(t)\|_{{\Bbb Y}}^2+\int_t^{t+1}\frac{\nu}{{\cal K}}\|\boldsymbol{u}(s)\|_{\Bbb V}^2+| A_k^{1/2}\phi(s)| ^2+|\nabla\mu(s)|_{L^2}^2+| F(\phi(s))|_{L^1}){\rm d}s\\ &\leq& Q(\|(\boldsymbol{u}(0), \phi(0)\|_{{\Bbb Y}}^2)e^{-\kappa t}+c_2, \ \forall t\geq0, \end{eqnarray} $

其中$ c_2 = (4\kappa^{-1}+1)(\frac{1}{{\cal K}\nu}\| \boldsymbol{g}\|_{{\Bbb V^*}}^2+c_1) $.

接下来证明(3.1)式中的其余项.显然, 从(3.23)式可得

$ \begin{equation} \int_t^{t+1}\|\mu(s)\|_{H^1}^2{\rm d}s\leq Q(\|(\boldsymbol{u}(0), \phi(0))\|_{{\Bbb Y}}^2)e^{-\kappa t}+c_3, \ \forall t \geq 0. \end{equation} $

从(1.1)4式, (2.2)式, (3.23)式, (3.24)式以及$ H^k\hookrightarrow L^\beta $, $ \beta\in[1, +\infty) $, 可得

通过(1.1)4式, (3.24)式和正则性结果, 有

$ \begin{equation} \int_t^{t+1}\|\phi(s)\|_{H^{2k+1}}^2{\rm d}s\leq Q(\|(\boldsymbol{u}(0), \phi(0))\|_{{\Bbb Y}}^2)e^{-\kappa t}+c_5, \ \forall t \geq 0. \end{equation} $

此外, 从(1.1)3式, (3.23)式和(3.24)式, 可得

$ \begin{eqnarray} \int_t^{t+1}\|\partial_t\phi(s)\|_{H^{-1}}^2{\rm d}s &\leq &\int_t^{t+1}(\| \Delta\mu(s)\|_{H^{-1}}^2+\| \boldsymbol{u}(s)\cdot\nabla\phi(s)\|_{H^{-1}}^2){\rm d}s\\ &\leq &\int_t^{t+1}(\|\mu(s)\|^2+c_\Omega \|\boldsymbol{u}(s)\|_{\Bbb V}^2\|\phi(s)\|^2){\rm d}s\\ &\leq & Q(\|(\boldsymbol{u}(0), \phi(0))\|_{{\Bbb Y}}^2)e^{-\kappa t}+c_6, \quad\forall t \geq 0. \end{eqnarray} $

因此, $ \partial_t\phi\in L^2([t, t+1];H^{-1}(\Omega)) $.

为了得到$ \partial_t\boldsymbol{u} $$ L^2([t, t+1];{\Bbb V}^*) $中一致有界, 由

$ \begin{equation} \|\boldsymbol{u}\cdot\nabla\boldsymbol{u}\|_{{\Bbb V}^*}^2 \leq c_\Omega |\boldsymbol{u}|^2\|\boldsymbol{u}\|_{{\Bbb V}}^2, \quad\forall \boldsymbol{u} \in {\Bbb V} \end{equation} $

可以得到

$ \begin{equation} \| \mu\nabla\phi \|_{\Bbb V^*}^2 \leq c_8\|\phi\|^2| \mu|_{L^2}\|\mu\|_{H^{1}}. \end{equation} $

从(1.1)$ _1 $式, (3.23)式, (3.27)式和(3.28)式, 可得

$ \begin{eqnarray} \int_t^{t+1}\|\partial_t\boldsymbol{u}\|_{{\Bbb V^*}}^2{\rm d}s&\leq &\int_t^{t+1}\nu\|\Delta\boldsymbol{u}\|_{{\Bbb V^*}}^2+\|\boldsymbol{u}\cdot\nabla\boldsymbol{u}\|_{{\Bbb V}^*}^2+{\cal K} \| \mu\nabla\phi \|_{\Bbb V^*}^2+\|\boldsymbol{g}\|_{{\Bbb V}^*}^2{\rm d}s\\ &\leq&\int_t^{t+1}\nu\|\boldsymbol{u}\|_{{\Bbb V}}^2+c_\Omega |\boldsymbol{u}|^2\|\boldsymbol{u}\|_{{\Bbb V}}^2+c_8\|\phi\|^2| \mu|_{L^2}\|\mu\|_{H^{1}}+\|\boldsymbol{g}\|_{{\Bbb V}^*}^2{\rm d}s\\ &\leq& Q(\|(\boldsymbol{u}(0), \phi(0))\|_{{\Bbb Y}}^2)e^{-\kappa t}+c_9, \quad\forall t \geq 0. \end{eqnarray} $

结合(3.23)式, (3.25)式, (3.26)式和(3.29)式, 可得(3.1)式.定理3.1证毕.

定理3.2   令$ \boldsymbol{g} \in {\Bbb V}^* $, $ f\in C^2({\Bbb R}) $且满足(2.1)式.若初值$ (\boldsymbol{u}_0, \phi_0)\in {\Bbb Y} $, 系统(1.1)存在弱解$ (\boldsymbol{u}, \phi) $.

  将用经典的Galerkin方法来证明系统(1.1)弱解的存在性, 参见文献[24-26].

由于$ {\Bbb V}\times H^{2k}\hookrightarrow{\Bbb Y} $是紧嵌入, 设$ \{(\boldsymbol{w}_i, e_i), i = 1, 2, 3 , \cdots \}\subset{\Bbb V}\times H^{2k} $$ {\Bbb Y} $的正交基.取定一个正整数$ n $, 构造系统(1.1)的近似解$ \{ \boldsymbol{u}^n\} $, $ \{\phi^n\} $, $ \{\mu^n\} $:

满足对$ i = 1, 2, \cdots, n $, 有

$ \begin{eqnarray} \left\{ \begin{array}{ll} (\partial_t\boldsymbol{u}_n, \boldsymbol{w}_i)+\nu( \nabla\boldsymbol{u}_n, \nabla \boldsymbol{w}_i)+(\boldsymbol{u}_n\cdot\nabla\boldsymbol{u}_n, \boldsymbol{w}_i)-{\cal K}(\mu_n\nabla\phi_n, \boldsymbol{w}_i) = (\boldsymbol{g}_n, \boldsymbol{w}_i), \\ (\partial_t\phi_n, e_i) +(\boldsymbol{u}_n\cdot\nabla\phi_n, e_i)+(\nabla\mu_n, \nabla e_i) = 0, \\ { } (\mu_n, e_i) = \sum\limits_{i = 1}^k\sum\limits_{\mid\alpha\mid = i}a_\alpha({\cal D}^{\alpha}\phi_n, {\cal D}^{\alpha}e_i)+(f(\phi_n), e_i), \\ { } \boldsymbol{u}_n(0) = \sum\limits_{i = 1}^n(\boldsymbol{u}_0, \boldsymbol{w}_i)\boldsymbol{w}_i, \ \phi_n(0) = \sum\limits_{i = 1}^n(\phi_0, e_i)e_i. \end{array} \right. \end{eqnarray} $

其中当$ n\rightarrow\infty $时, 在$ {\Bbb Y} $$ (\boldsymbol{u}_n(0), \phi_n(0))\rightarrow(\boldsymbol{u}_0, \phi_0) $.

实际上, (3.30)式是关于函数$ \alpha_n^i(t) $, $ \beta_n^i(t) $, $ \gamma_n^i(t) $, $ (i = 1, 2, \cdots , n) $的非线性常微分方程组的柯西问题.由常微分方程组解的存在性基本理论知, 方程(3.30)在$ [0, t_n] $上存在唯一解$ \boldsymbol{u}_n(t) $, $ \phi_n(t) $, $ t_n>0 $.

由定理3.1知, 存在与$ n $无关的$ T $, 解可以延拓到整个区间$ [0, T] $.还可得序列$ \{(\boldsymbol{u}_n, \phi_n)\} $$ L^\infty([0, +\infty);{\Bbb Y})\cap L^2([t, t+1];{\Bbb V}\times (D(A_k)\cap H^{2k+1})) $中有界; $ \{(\partial_t\boldsymbol{u}_n, \partial_t\phi_n)\} $$ L^2([t, t+1];{\Bbb V^*}\times H^{-1}(\Omega)) $中有界; $ \{\mu_n\} $$ L^2([t, t+1];H^1(\Omega)) $中有界.于是可取出子序列依然用$ \{\boldsymbol{u}_n\}, \{\phi_n\} $, $ \{\mu_n\} $表示, 使得

固定$ N(n\geq N) $, 选取$ \boldsymbol{v}_N\in{\Bbb V} $, $ \psi_N\in H^1 $$ \xi_N\in H^k $如下

$ \alpha_N^i(t) $, $ \beta_N^i(t) $, $ \gamma_N^i(t) $分别与(3.30)$ _1 $式, (3.30)$ _2 $式和(3.30)$ _3 $式相乘, 并从$ 1 $$ N $求和, 可得

$ n\rightarrow\infty $可得

$ N\rightarrow\infty $, 可得$ \boldsymbol{v} \in{\Bbb V} $, $ \varphi\in H^1 $$ \xi\in H_0^k $满足

因此, 系统(1.1)存在弱解.定理3.2证毕.

通过以下定理, 可以得到系统(1.1)的弱解关于初值的连续依赖性.

定理3.3   令$ \boldsymbol{g} \in {\Bbb V}^* $, $ f\in C^2({\Bbb R}) $且满足(2.1)式.令$ (\boldsymbol{u}_i, \phi_i) $是系统(1.1)的两个解, 分别对应的初值为$ (\boldsymbol{u}_i(0), \phi_i(0))\in{\Bbb Y} $, $ i = 1, 2 $, 则有如下估计

$ \begin{equation} \|((\boldsymbol{u}_1-\boldsymbol{u}_2)(t), (\phi_1-\phi_2)(t))\|_{\Bbb Y}^2\leq Ce^{Lt}\|((\boldsymbol{u}_1-\boldsymbol{u}_2)(0), (\phi_1-\phi_2)(0))\|_{\Bbb Y}^2, \ \forall t\geq0, \end{equation} $

其中$ C $$ L $是与时间无关的正常数.

  令$ \boldsymbol{w}: = \boldsymbol{u}_1-\boldsymbol{u}_2 $, $ \psi: = \phi_1-\phi_2 $, $ \eta: = \mu_1-\mu_2 $, $ \widetilde{p}: = p_1-p_2 $, 由系统(1.1)容易得到

$ \begin{equation} \left\{\begin{array}{ll} \partial_t\boldsymbol{w} -\nu\Delta\boldsymbol{w}+\nabla\widetilde{p}+\boldsymbol{w}\cdot\nabla\boldsymbol{u}_1+\boldsymbol{u}_2\cdot\nabla\boldsymbol{w} = {\cal K}\mu_1\nabla\psi+{\cal K}\eta\nabla\phi_2, \\ \nabla\cdot \boldsymbol{w} = 0, \\ \partial_t\psi-\Delta\eta+\boldsymbol{w}\cdot\nabla\phi_1+\boldsymbol{u}_2\cdot\nabla\psi = 0, \\ \eta = A_k\psi+B_k\psi+f(\phi_1)-f(\phi_2), \\ \end{array}\right. \end{equation} $

将(3.32)$ _1 $式与$ {\cal K}^{-1}\boldsymbol{w}(t) $做内积, 由$ (\boldsymbol{u}_2\cdot\nabla\boldsymbol{w}, \boldsymbol{w}) = 0 $, 得到

$ \begin{equation} \frac{1}{2{\cal K}}\frac{\rm d}{{\rm d}t}|\boldsymbol{w}(t)|^2+\frac{\nu}{{\cal K}}\|\boldsymbol{w}(t)\|^2 = -\frac{1}{{\cal K}}(\boldsymbol{w}\cdot\nabla\boldsymbol{u}_1, \boldsymbol{w})+(\mu_1\nabla\psi, \boldsymbol{w})+(\eta\nabla\phi_2, \boldsymbol{w}). \end{equation} $

将(3.32)$ _2 $式在$ L^2(\Omega) $中与$ A_k\psi(t) $做内积, 得到

$ \begin{equation} \frac{1}{2}\frac{\rm d}{{\rm d}t}| A_k^{1/2}\psi(t)|^2-(A_k\psi, \Delta\eta) = -(\boldsymbol{w}\cdot\nabla\phi_1, A_k\psi)-(\boldsymbol{u}_2\cdot\nabla\psi, A_k\psi). \end{equation} $

再将(3.32)$ _4 $式在$ L^2(\Omega) $中与$ -\Delta\eta(t)-\varsigma A_k\psi(t) $ ($ \varsigma>0 $且足够小)做内积, 得到

$ \begin{eqnarray} |\nabla\eta(t)|_{L^2}^2-\varsigma(\eta, A_k\psi)_{L^2}& = &-(A_k\psi, \Delta\eta)-\varsigma(A_k\psi, B_k\psi)-\varsigma| A_k\psi(t)|_{L^2}^2-(B_k\psi, \Delta\eta)\\ & &-(f(\phi_1)-f(\phi_2), \Delta\eta)_{L^2}-\varsigma(f(\phi_1)-f(\phi_2), A_k\psi)_{L^2}. \end{eqnarray} $

从(3.33)–(3.35)式可得

$ \begin{eqnarray} & &\frac{1}{2}\frac{\rm d}{{\rm d}t}(\frac{1}{{\cal K}}|\boldsymbol{w}(t)|^2+| A_k^{1/2}\psi(t)|^2)+\frac{\nu}{{\cal K}}\|\boldsymbol{w}(t)\|^2+|\nabla\eta(t)|_{L^2}^2+\varsigma| A_k\psi(t)|_{L^2}^2{}\\ & = &-\frac{1}{{\cal K}}(\boldsymbol{w}\cdot\nabla\boldsymbol{u}_1, \boldsymbol{w}) +(\mu_1\nabla\psi, \boldsymbol{w})+(\eta\nabla\phi_2, \boldsymbol{w})-(\boldsymbol{w}\cdot\nabla\phi_1, A_k\psi){}\\ & &-(\boldsymbol{u}_2\cdot\nabla\psi, A_k\psi)+\varsigma(\eta, A_k\psi)_{L^2}-(B_k\psi, \Delta\eta)-\varsigma(A_k\psi, B_k\psi){}\\ &&-(f(\phi_1)-f(\phi_2), \Delta\eta)_{L^2}-\varsigma(f(\phi_1)-f(\phi_2), A_k\psi)_{L^2}, \end{eqnarray} $

接下来将对(3.36)式的右边进行估计, 通过Hölder, Ladyzhenskaya, Young不等式和(3.5)式, 前五项的估计如下

$ \begin{eqnarray} -\frac{1}{{\cal K}}|(\boldsymbol{w}\cdot\nabla\boldsymbol{u}_1, \boldsymbol{w})|&\leq &c|\boldsymbol{w}|_{L^4}|\nabla\boldsymbol{u}_1||\boldsymbol{w}|_{L^4}\\ &\leq& c|\boldsymbol{w}|^{1/2}\|\boldsymbol{w}\|^{1/2}\|\boldsymbol{u}_1\||\bf w|^{1/2}\|\boldsymbol{w}\|^{1/2}\\ &\leq&\frac{\nu}{4{\cal K}}\|\boldsymbol{w}\|^2+c\|\boldsymbol{u}_1\|^2|\boldsymbol{w}|^2, \end{eqnarray} $

$ \begin{eqnarray} |(\boldsymbol{w}\cdot\nabla\phi_1, A_k\psi)|&\leq &|\boldsymbol{w}|_{L^4}|\nabla\phi_1|_{L^4}| A_k\psi|_{L^2}\\ &\leq &c|\boldsymbol{w}|^{1/2}\|\boldsymbol{w}\|^{1/2}\|\phi_1\|_{H^1}^{1/2}\|\phi_1\|_{H^2}^{1/2}| A_k\psi|_{L^2}\\ &\leq& c|\boldsymbol{w}|\|\boldsymbol{w}\|\|\phi_1\|_{H^1}\|\phi_1\|_{H^2}+\frac{\varsigma}{16}| A_k\psi|_{L^2}^2\\ &\leq &\frac{\nu}{4{\cal K}}\|\boldsymbol{w}\|^2+\frac{\varsigma}{16}| A_k\psi|_{L^2}^2+c\|\phi_1\|_{H^1}^2\|\phi_1\|_{H^2}^2|\boldsymbol{w}|^2, \end{eqnarray} $

以及

$ \begin{eqnarray} | (\boldsymbol{u}_2\cdot\nabla\psi, A_k\psi)|&\leq &c|\boldsymbol{u}_2|^{1/2}\|\boldsymbol{u}_2\|^{1/2}\|\psi\|_{H^1}^{1/2}\|\psi\|_{H^2}^{1/2}| A_k\psi|_{L^2}\\ &\leq &\frac{\varsigma}{16}| A_k\psi|_{L^2}^2+c|\boldsymbol{u}_2|\|\boldsymbol{u}_2\|\|\psi\|_{H^1}\|\psi\|_{H^2}\\ &\leq &\frac{\varsigma}{16}| A_k\psi|_{L^2}^2+c\|\boldsymbol{u}_2\|^{2}| A_k^{1/2}\psi|_{L^2}^2, \end{eqnarray} $

$ \begin{eqnarray} |(\mu_1\nabla\psi, \boldsymbol{w})|&\leq &c|\boldsymbol{w}|^{1/2}\|\boldsymbol{w}\|^{1/2}\|\psi\|_{H^1}^{1/2}\|\psi\|_{H^2}^{1/2}| \mu_1|_{L^2}{}\\ &\leq& \frac{\nu}{4{\cal K}}\|\boldsymbol{w}\|^2+c|\boldsymbol{w}|^{2/3}\|\psi\|_{H^1}^{2/3}\|\psi\|_{H^2}^{2/3}| \mu_1|_{L^2}^{4/3}\\ &\leq&\frac{\nu}{4{\cal K}}\|\boldsymbol{w}\|^2+\frac{\varsigma}{16}| A_k\psi|_{L^2}^2+c|\psi|_{L^2}^2+c|\boldsymbol{w}|\|\psi\|_{H^1}| \mu_1|_{L^2}^2\\ &\leq&\frac{\nu}{4{\cal K}}\|\boldsymbol{w}\|^2+\frac{\varsigma}{16}| A_k\psi|_{L^2}^2+c|\psi|_{L^2}^2+c(|\boldsymbol{w}|^2+\epsilon\|\psi\|_{H^1}^2)(| A_k\phi_1|^2+|\phi_1|^2) {}\\ \end{eqnarray} $

$ \begin{eqnarray} |(\eta\nabla\phi_2, \boldsymbol{w})|&\leq &c|\boldsymbol{w}|^{1/2}\|\boldsymbol{w}\|^{1/2}\|\phi_1\|_{H^1}^{1/2}\|\phi_1\|_{H^2}^{1/2}| \eta|_{L^2}\\ &\leq&\frac{\nu}{4{\cal K}}\|\boldsymbol{w}\|^2+\frac{\varsigma}{16}| A_k\psi|_{L^2}^2+c|\psi|_{L^2}^2+c|\boldsymbol{w}|^2\|\phi_1\|_{H^1}^2\|\phi_1\|_{H^2}^2. \end{eqnarray} $

由Hölder和Sobolev不等式, (3.36)式的最后两项估计如下

$ \begin{eqnarray} |(-(f(\phi_1)-f(\phi_2)), \Delta\eta)_{L^2}|& = &|(\nabla(f(\phi_1)-f(\phi_2)), \nabla\eta)_{L^2}|{}\\ &\leq& Q(\|\phi_1\|_{H^1}, \|\phi_2\|_{H^1})(\|\phi_1\|_{H^2}^2+\|\phi_2\|_{H^2}^2)\|\psi\|_{H^k}^2+\frac{1}{2}|\nabla\eta|_{L^2}^2 {}\\ \end{eqnarray} $

$ \begin{equation} \varsigma|(f(\phi_1)-f(\phi_2), A_k\psi)_{L^2}|\leq Q_\varsigma(\|\phi_1\|_{H^1}, \|\phi_2\|_{H^1})\|\psi\|_{H^k}^2+\frac{\varsigma}{16}| A_k\psi|_{L^2}^2, \end{equation} $

其中$ Q $, $ Q_\zeta $是与时间无关的单增非减的函数.

此外, 通过Hölder, Young, Poincaré和(3.5)式, (3.36)式的余下项估计如下

$ \begin{eqnarray} \varsigma|(\eta, A_k\psi)_{L^2}|&\leq&\varsigma|\eta|_{L^2}|A_k\psi|_{L^2}\leq \varsigma c_\Omega^{1/2}|\Omega|^{1/2}|\nabla\eta|_{L^2}|A_k\psi|_{L^2}\\ &\leq&\frac{\varsigma}{2}|A_k\psi|_{L^2}^2+\frac{\varsigma c_\Omega|\Omega|}{2}|\nabla\eta|_{L^2}^2, \end{eqnarray} $

$ \begin{equation} |-(B_k\psi, \Delta\eta)_{L^2}|\leq|(\nabla B_k\psi, \nabla\eta)|\leq\frac{1}{4}|\nabla\eta|_{L^2}^2+\frac{\varsigma}{16}| A_k\psi|_{L^2}^2+c|\psi|_{L^2}^2 \end{equation} $

$ \begin{eqnarray} \varsigma|(A_k\psi, B_k\psi)|&\leq&\varsigma|A_k\psi|_{L^2}|B_k\psi|_{L^2}\leq\varsigma\epsilon|A_k\psi|_{L^2}^2+ c(\epsilon)|B_k\psi|_{L^2}^2{}\\ &\leq& \frac{\varsigma}{8}| A_k\psi|_{L^2}^2+c|\psi|_{L^2}^2. \end{eqnarray} $

由(3.37)–(3.46)式, 可得

$ \begin{eqnarray} && \frac{\rm d}{{\rm d}t}(\frac{1}{{\cal K}}|\boldsymbol{w}(t)|^2+| A_k^{1/2}\psi(t)|^2)+(\frac{1}{2}-\varsigma c_\Omega|\Omega|) |\nabla\eta(t)|_{L^2}^2{}\\ &\leq&{\cal J}(t)(\frac{1}{{\cal K}}|\boldsymbol{w}(t)|^2+| A_k^{1/2}\psi(t)|^2), \end{eqnarray} $

其中

另一方面, 将(3.19)式在$ (0, t) $上积分并由(3.8)式可得

$ \begin{eqnarray} && E(t)+\int_0^t\kappa E(s){\rm d}s+\int_0^t\kappa_1(\frac{\nu}{{\cal K}}\|\boldsymbol{u}(s)\|_{\Bbb V}^2 \\ &&+| A_k^{1/2}\phi(s)|^2)+|\nabla\mu(s)|_{L^2}^2+\kappa_2(| f(\phi(s))|, 1+| \phi(s)|)_{L^2}{\rm d}s{}\\ &\leq &Q(\|(\boldsymbol{u}(0), \phi(0)\|_{{\Bbb Y}}^2)+ (\frac{1}{{\cal K}\nu}\| \boldsymbol{g}\|_{{\Bbb V^*}}^2+c_1)t. \end{eqnarray} $

由(3.1)式和(3.48)式, 容易得到

$ \begin{equation} \int_0^t{\cal J}(s){\rm d}s\leq Q(\|(\boldsymbol{u}_1(0), \phi_1(0))\|_{{\Bbb Y}}+\|(\boldsymbol{u}_2(0), \phi_2(0))\|_{{\Bbb Y}})+Lt, \end{equation} $

其中$ L $代表正常数且与初值有关.

因此, 在(3.47)式中取$ \varsigma $足够小并运用Gronwall不等式, 由(3.49)式可得

其中$ C $是与时间无关的正常数.定理3.3证毕.

注3.1   由定理3.3可得系统(1.1)弱解的唯一性.

参考文献

Anderson D M , Mcfadden G B , Wheeler A A .

Diffuse-interface methods in fluid mechanics

Annual Review of Fluid Mechanics, 1998, 30 (1): 139- 165

[本文引用: 1]

Gurtin M E , Polignone D , Vinals J .

Two-phase binary fluids and immiscible fluids described by an order parameter

Mathematical Models and Methods in Applied Sciences, 1996, 6 (6): 815- 831

Jasnow D , Vinals J .

Coarse-grained description of thermo-capillary flow

Physics of Fluids, 1996, 8 (3): 660- 669

Lamorgese A G , Molin D , Mauri R .

Phase field approach to multiphase flow modeling

Milan Journal of Mathematics, 2011, 79 (2): 597- 642

Ables H , Feireisl E .

On a diffuse interface model for a two-phase flow of compressible viscous fluids

Indiana University Mathematics Journal, 2008, 57 (2): 659- 698

K im , Junseok .

Phase-field models for multi-component fluid flows

Communications in Computational Physics, 2012, 12 (3): 613- 661

[本文引用: 1]

Liu H , Sengul T , Wang S , Zhang P .

Dynamic transitions and pattern formations for a Cahn-Hilliard model with long-range repulsive interactions

Communications in Mathematical Sciences, 2015, 13 (5): 1289- 1315

[本文引用: 1]

Song L , Zhang Y , Ma T .

Global attractor of the Cahn-Hilliard equation in Hk spaces

Journal of Mathematical Analysis and Applications, 2009, 355: 53- 62

You B .

Global attractor of the Cahn-Hilliard-Navier-Stokes system with moving contact lines

Communications on Pure and Applied Analysis, 2019, 18 (5): 2283- 2298

Gal C G , Grasselli M .

Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D

Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 2010, 27 (1): 401- 436

Cao C S , Gal C G .

Global solutions for the 2D NS-CH model for a two-phase flow of viscous, incompressible fluids with mixed partial viscosity and mobility

Nonlinearity, 2012, 25 (11): 3211- 3234

[本文引用: 1]

Cherfils L , Miranville A , Peng S R .

Higher-order models in phase separation

Journal of Applied Analysis and Computation, 2017, 7 (1): 39- 56

[本文引用: 2]

Mininni R M , Miranville A , Romanelli S .

Higher-order Cahn-Hilliard equations with dynamic boundary conditions

Journal of Mathematical Analysis and Applications, 2017, 449 (2): 1321- 1339

[本文引用: 1]

Cherfils L , Gatti S , Miranville A .

Asymptotic behavior of higher-order Navier-Stokes-Cahn-Hilliard systems

Mathematical Methods in the Applied Sciences, 2018, 41 (12): 4476- 4794

[本文引用: 1]

Pan J J , Xing C , Luo H .

Uniform regularity of the weak solution to higher-order Navier-Stokes-Cahn-Hilliard systems

Journal of Mathematical Analysis and Applications, 2020, 486 (2): 123925

[本文引用: 1]

Esenturk E , Caginalp G .

Anisotropic phase field equations of arbitrary order

Discrete and Continuous Dynamical Systems, 2010, 4 (2): 311- 350

[本文引用: 1]

Cherfils L , Miranville A , Peng S R .

Higher-order anisotropic models in phase separation

Advances in Nonlinear Analysis, 2019, 8 (1): 278- 302

[本文引用: 1]

Cherfils L , Miranville A , Peng S R , Zhang W .

Higher-order generalized Cahn-Hilliard equations

Electronic Journal of Qualitative Theory of Differential Equations, 2017, 9: 1- 22

[本文引用: 1]

Peng S R , Zhu H Y .

Well-posedness for modified higher-order anisotropic Cahn-Hilliard equations

Asymptotic Analysis, 2019, 111 (3/4): 201- 215

[本文引用: 2]

Cahn J W , Hilliard J E .

Free energy of nonuniform system, Ⅰ. interfacial free energy

J Chemical Physis, 1958, 28 (2): 258- 267

[本文引用: 1]

Agmon S , Douglis A , Nirenberg L .

Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions Ⅱ

Communications on Pure and Applied Mathematics, 1964, 17 (1): 35- 92

[本文引用: 1]

Cholewa J W , Dlotko T . Global Attractors in Abstract Parabolic Problems. Cambridge: Cambridge University Press, 2000

[本文引用: 1]

Giorgi C , Grasselli M , Pata V .

Uniform attractors for a phase-field Model with memory and quadratic nonlinearity

Indiana University Mathematics Journal, 1999, 48 (4): 1395- 1444

[本文引用: 1]

Boyer F .

Mathematical study of multi-phase flow under shear through order parameter formulation

Asymptotic Analysis, 1999, 20 (4): 175- 212

[本文引用: 1]

Pal S , Haloi R .

On solution to the Navier-Stokes equations with Navier slip boundary condition for three dimensional incompressible fluid

Acta Mathematica Scientia, 2019, 39B (6): 1628- 1638

李凯, 杨晗, 王凡.

三维带有衰减项的不可压缩磁流体力学方程组弱解与强解的研究

数学物理学报, 2019, 39A (3): 518- 528

[本文引用: 1]

Li K , Yang H , Wang F .

Study on weak solution and strong solution of incompressible MHD equations with damping in three-dimensional systems

Acta Mathematica Scientia, 2019, 39A (3): 518- 528

[本文引用: 1]

/