数学物理学报, 2020, 40(6): 1590-1598 doi:

论文

带有双临界项的薛定谔-泊松系统非平凡解的存在性

冯晓晶,

Nontrivial Solution for Schrödinger-Poisson type Systems with Double Critical Terms

Feng Xiaojing,

收稿日期: 2019-11-6  

基金资助: 国家自然科学基金.  11571209
国家自然科学基金.  11671239
山西省自然科学基金.  201801D211001
山西省自然科学基金.  201801D121002
山西省自然科学基金.  201801D221012
山西省留学基金.  020-005

Received: 2019-11-6  

Fund supported: the NSFC.  11571209
the NSFC.  11671239
NSF of Shanxi Province.  201801D211001
NSF of Shanxi Province.  201801D121002
NSF of Shanxi Province.  201801D221012
the Shanxi Scholarship Council.  020-005

作者简介 About authors

冯晓晶,E-mail:fengxj@sxu.edu.cn , E-mail:fengxj@sxu.edu.cn

Abstract

The existence of a nontrivial solution to the Schrödinger-Poisson type system with both nonlinear critical growth and nonlocal critical growth is obtained by applying the concentration-compactness principle and mountain pass theorem. The double critical growth in the system presents an obstacle when showing the convergence of the bounded (PS) sequences. At the same time, it is difficult to estimate the critical level of the mountain pass. The key ingredient of the paper is to show that the critical level of the mountain pass is below the non-compactness level of the associated energy functional.

Keywords: Schrödinger-Poisson type system ; Critical exponent ; Variational method

PDF (323KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

冯晓晶. 带有双临界项的薛定谔-泊松系统非平凡解的存在性. 数学物理学报[J], 2020, 40(6): 1590-1598 doi:

Feng Xiaojing. Nontrivial Solution for Schrödinger-Poisson type Systems with Double Critical Terms. Acta Mathematica Scientia[J], 2020, 40(6): 1590-1598 doi:

1 引言及主要结果

该文考虑如下具有双临界的非线性薛定谔-泊松系统

$\left\{\begin{array}{ll} -\Delta u+u-\phi |u|^3u = |u|^4u+f(u), & x\in {{\Bbb R}} ^3, \\-\Delta \phi = |u|^5, & x\in {{\Bbb R}} ^3 \end{array}\right.$

非平凡解的存在性, 其中$ f $是一个非线性函数.薛定谔-泊松系统作为描述电荷粒子与电磁场相互作用的模型, 在物理学中应用广泛(参见文献[2]).近年来, 在各种假设条件下, 数学家们对薛定谔-泊松系统解的存在性和多重性进行了广泛的研究.例如Duan和Wu [7], Candela和Salvatore [4], Sun [21], Liu, Wang和Zhang [17]研究了无穷多个解的存在性. Wang和Zhou [23], Cerami和Vaira [5]对正解进行了研究. Azzollini和Pomponio [1], Tang和Chen [22], Ruiz [19]研究了基态解的存在性. Wang和Zhou [24], Ianni [13], Zhong和Tang [29], Shuai和Wang [20], Chen和Tang [6], Kim和Seok [14], Fang, Huang和Wang [8]考虑了变号解的存在性.一般来说, 临界薛定谔-泊松系统可以分为两类.一类为如下具有临界非线性项的薛定谔-泊松型系统

$\left\{\begin{array}{ll} -\Delta u+V(x)u+K(x)\phi u = f(x, u), & x\in {{\Bbb R}} ^3, \\-\Delta \phi = K(x)u^2, & x\in {{\Bbb R}} ^3, \end{array}\right.$

其中$ f(x, u) $中包含临界项(参见文献[10-12, 18, 26-29]).当$ f(x, u) = \lambda f(x)u+ |u|^{4}u $时, Zhong和Tang [29]利用约束变分法得到系统(1.2)至少有一个基态变号解.当$ V $$ K $满足一定的条件时, Liu和Guo [18]通过变分方法获得了系统(1.2)至少具有一个正基态解.在一般非线性条件下, 当$ K\equiv\mu $时, Zhang [27]获得了系统(1.2)解的存在性. Zhang [28]利用变分方法, 考虑了系统(1.2)基态解的存在性.基于集中紧性原理以及Brezis和Nirenberg方法, Zhao和Zhao [26]研究了具有临界Sobolev指数的系统(1.2)正解的存在性. Huang, Rocha和Chen [12]研究了系统(1.2)正解和变号解的存在性. He, Zou [11]和Li [10]讨论了一类具有临界增长的Schrödinger-Poisson系统基态解的存在性和集中性.

另一类是具有非局部临界增长的Schrödinger-Poisson系统. Liu [15]研究了以下系统

$\left\{\begin{array}{ll} -\Delta u+V(x)u-K(x)\phi |u|^{3}u = f(x, u), &x\in {{\Bbb R}} ^3, \\ -\Delta \phi = K(x)|u|^{5}, &x\in {{\Bbb R}} ^3, \end{array}\right.$

并利用山路定理和集中紧性原理, 得到了系统(1.3)正解的存在性. Li, Li和Shi [16]考虑了另一个具有非局部临界增长的Schrödinger-Poisson系统

$\left\{\begin{array}{ll} -\Delta u+bu+q\phi |u|^3u = f(u)&x\in {{\Bbb R}} ^3, \\-\Delta \phi = |u|^5, &x\in {{\Bbb R}} ^3, \end{array}\right.$

并利用变分方法证明了系统(1.4)正解的存在性.

受上述论文启发, 本文主要目的是研究具有非线性临界增长和非局部临界增长的系统(1.1)非平凡解的存在性.从目前技术的角度来看, 对临界指数情况的证明有两个困难.首先, 系统的临界增长对有界(PS)序列的收敛性造成一定的困难.其次, 由于该问题具有两个临界项, 所以很难估计出山路临界水平值.为了克服这些困难, 我们利用集中紧性原理和山路定理获得了系统(1.1)非平凡解的存在性.主要结果如下:

定理1.1   假设下列条件成立:

($ f_1 $) $ f\in C({{\Bbb R}} , {{\Bbb R}} ) $且存在$ q\in(4, 6) $$ C>0 $使得对所有的$ s\in{{\Bbb R}} $, 有$ |f(s)|\leq C(1+|s|^{q-1}); $

($ f_2 $) $ \lim\limits_{s\to 0}f(s)/s = 0 $;

($ f_3 $) $ 0<4 F(s) = 4\int_0^sf(t){\rm d}t\leq sf(s), \ s\in{{\Bbb R}} \setminus\{0\}; $

($ f_4 $) $ \lim\limits_{s\to\infty}F(s)/s^{4} = \infty $.

则系统(1.1)至少有一个非平凡解.

本文结构如下:在第二部分给出一些预备知识.第三部分证明定理1.1.

2 预备知识

在这一部分, 我们将给出一些符号和预备结果.记$ L^p({{\Bbb R}} ^3) $为通常的勒贝格空间, 其范数为$ \|u\|_p = (\int_{{{\Bbb R}} ^3}|u|^p)^{1/p} $.定义

为Sobolev空间$ H^1({{\Bbb R}} ^3) $的范数.此外, 我们定义$ C_0^\infty({{\Bbb R}} ^3) $在范数$ \|u\|^2_{D^{1, 2}} = \int_{{{\Bbb R}} ^3}|\nabla u|^2 $下的完备化空间为$ D^{1, 2} = D^{1, 2}({{\Bbb R}} ^3) $.$ S $为最佳Sobolev嵌入常数, 即

$ \begin{align} S = \inf\limits_{u\in D^{1, 2}\backslash\{0\}}\frac{\int_{{{\Bbb R}} ^3}|\nabla u|^2} {\left(\int_{{{\Bbb R}} ^3}|u|^{6}\right)^\frac{1}{3}}. \end{align} $

由Lax-Milgram定理, 对给定的$ u\in H^1({{\Bbb R}} ^3) $, 存在唯一$ \phi = \phi_u\in D^{1, 2} $满足$ -\Delta \phi_u = |u|^5 $.而且函数$ \phi_u $可以表示为

$ \begin{align} \phi_u(x) = \frac{1}{4\pi}\int_{{{\Bbb R}} ^3}\frac{|u(y)|^5}{|x-y|}{\rm d}y, \ x\in{{\Bbb R}} ^3, \end{align} $

且有如下性质:

引理2.1[16]   (ⅰ) 对任意的$ u\in H^1({{\Bbb R}} ^3) $, 有$ \phi_u\geq 0 $;

(ⅱ) 对任意的$ t>0 $$ u\in H^1({{\Bbb R}} ^3) $, 有$ \phi_{tu} = t^{5}\phi_u $;

(ⅲ) 对任意的$ u\in H^1({{\Bbb R}} ^3) $, 有$ \|\phi_u\|_{D^{1, 2}}\leq S^{-1/2}\|u\|^{5}_{6} $以及

$ \begin{align} \int_{{{\Bbb R}} ^3}\phi_u |u|^{5}\leq S^{-1}\|u\|^{10}_{6}, \end{align} $

其中$ S $为最佳Sobolev嵌入常数;

(ⅳ) 若$ u_n $$ H^1({{\Bbb R}} ^3) $中弱收敛于$ u $, 则存在子列使得$ \phi_{u_n} $$ D^{1, 2} $中弱收敛于$ u $.

此外, 系统$ (1.1) $的弱解为定义在$ H^1({{\Bbb R}} ^3) $上泛函

的临界点.由条件($ f_1 $)和($ f_2 $), 可知$ J $$ H^1({{\Bbb R}} ^3) $上有定义, 且$ J\in C^1(H^1({{\Bbb R}} ^3), {{\Bbb R}} ) $,

下面两个引理说明$ J $满足山路结构.

引理2.2   假设条件$ (f_1), (f_2) $成立, 则存在$ \rho>0 $, $ \eta>0 $使得$ \inf\{J(u):u\in H^1({{\Bbb R}} ^3), $$ \|u\| = \rho\}>\eta $.

  对任意的$ \varepsilon >0 $, 根据条件$ (f_1) $$ (f_2) $, 存在$ C_\varepsilon>0 $, 使得

并且

$ \begin{align} |F(s)|\leq\frac{\varepsilon}{2}|s|^2+\frac{C_\varepsilon}{q }|s|^{q}, \ s\in {{\Bbb R}} . \end{align} $

对于$ \rho>0 $, 令

因此, 由Sobolev不等式, 可得

$ \begin{align} \left|\int_{{{\Bbb R}} ^3}F(u)\right|\leq\frac{\varepsilon}{2}\int_{{{\Bbb R}} ^3}u^2 +\frac{C_\varepsilon}{q}\int_{{{\Bbb R}} ^3}|u|^q \leq \frac{\varepsilon}{2}\|u\|^2+\frac{CC_\varepsilon}{q}\|u\|^q, \end{align} $

其中$ C $为正常数.结合(2.1)、(2.3)及(2.5)式, 对于$ u\in \partial\Sigma_\rho $, $ C_1>0 $, 使得

因此, 固定$ \varepsilon\in (0, 1) $, 当$ \rho>0 $充分小时, 显然有$ \eta>0 $使得引理成立.证毕.

引理2.3   假设$ (f_3) $成立, 存在$ e\in H^1({{\Bbb R}} ^3) $$ \|e\|>\rho $使得$ J(e)<0 $, 其中$ \rho $为引理2.2中给出.

  根据引理2.1和$ (f_3) $, 对$ t\geq 0 $以及$ u\in H^1({{\Bbb R}} ^3)\setminus\{0\} $, 当$ t\to+\infty $, 有

定义$ h:[0, 1]\to H^1({{\Bbb R}} ^3) $$ h(t) = tTu $, 其中$ T>0 $为待定常数.当$ T>0 $足够大, 可得

故只要令$ e = h(1) $即可得证.

3 定理1.1的证明

这一部分致力于证明主要结果.由引理2.2、2.3, 我们知道泛函$ J $具有山路结构.记

$ \begin{align} c = \inf\limits_{\gamma\in \Gamma}\max\limits_{t\in[0, 1]}J(\gamma(t))>0, \end{align} $

其中$ \Gamma = \{\gamma\in C([0, 1], H^1({{\Bbb R}} ^3))|\gamma(0) = 0, J(\gamma(1))<0\} $.因此, 由文献[25], 可设$ \{u_n\} $$ J $$ H^1({{\Bbb R}} ^3) $上的一个$ (PS)_c $序列, 即有

$ \begin{align} J(u_n)\to c, \ J'(u_n)\to 0, \ n\to \infty. \end{align} $

引理3.1   假设$ \{u_n\}\subset H^1({{\Bbb R}} ^3) $且满足

$ \{u_n\} $$ H^1({{\Bbb R}} ^3) $中有界, 则存在$ \{y_n\}\subset{{\Bbb R}} ^3 $以及$ R, \delta>0 $, 使得

  引理的详细证明可参见文献[9].假设结论不成立, 首先由文献[25, lemma 1.21], $ u_n $$ L^p({{\Bbb R}} ^3) $中强收敛到$ 0\ (2<p<6) $.由条件$ (f_1) $$ (f_2) $, 对任意的$ \varepsilon >0 $, 存在$ C_\varepsilon>0 $, 使得

并且

因而, 我们得到

$ \begin{align} \lim\limits_{n\to\infty}\int_{{{\Bbb R}} ^3}f(u_n)u_n = \lim\limits_{n\to\infty}\int_{{{\Bbb R}} ^3}F(u_n) = 0. \end{align} $

进一步结合(3.3)式以及当$ n\to\infty $$ \langle J'(u_n), u_n\rangle = o(1) $, 推得当$ n\to\infty $时, 有

$ \begin{align} \|u_n\|^2-\int_{{{\Bbb R}} ^3}\phi_{u_n}|u_n|^{5}-\int_{{{\Bbb R}} ^3}|u_n|^{6} = o(1). \end{align} $

其次, 为了计算方便, 令$ a_n = \int_{{{\Bbb R}} ^3}\phi_{u_n}|u_n|^{5} $, $ b_n = \int_{{{\Bbb R}} ^3}|u_n|^{6} $.此外, 不失一般性, 假设当$ n\to\infty $时, $ \|u_n\|^2\to l $, $ a_n\to a $以及$ b_n\to b $.并且有

因此, 当$ n\to\infty $时, 有$ b\leq\frac{1}{2\varepsilon^2}a+\frac{\varepsilon^2}{2}l. $$ \varepsilon^2 = \frac{\sqrt{5}-1}{2} $, 结合(3.4)式, 可得$ a\geq\frac{3-\sqrt{5}}{2}l. $

再次由(3.3)和(3.4)式, 可得

另一方面, 根据(2.3)和(3.4)式知道$ l\leq S^{-6}l^5+S^{-3}l^3. $这意味着$ l = 0 $$ l^2\geq\frac{-1+\sqrt{5}}{2}S^3 $.因而推出矛盾.故引理3.1得证.

引理3.2[9]   设$ A, B, C>0 $, 定义函数$ h:[0, \infty)\to{{\Bbb R}} $$ h(t) = \frac{A}{2}t^2-\frac{B}{10}t^{10}-\frac{C}{6}t^{6}. $则有

定义一个截断函数$ \eta\in C_0^\infty(B_2(0)) $使得$ 0\leq\eta(x)\leq1 $, 在$ B_1(0) $上, $ \eta(x) = 1 $.众所周知$ S $通过$ U_\varepsilon(x) = (3\varepsilon)^{1/4}(\varepsilon+|x|^2)^{-1/2} $可达, 其中$ \varepsilon>0 $.$ u_\varepsilon = \eta(x)U_\varepsilon(x) $, 当$ \varepsilon\to 0^+ $时, 我们有(参见文献[3, 16])

$ \begin{align} \|\nabla u_\varepsilon\|_2^2 = S^{\frac{3}{2}}+O(\varepsilon^{\frac{1}{2}}), \ \|u_\varepsilon\|_{6}^{6} = S^{\frac{3}{2}}+O(\varepsilon^{\frac{3}{2}}), \end{align} $

$ \begin{align} \|u_\varepsilon\|_s^s = \left\{\begin{array}{ll} K_s\varepsilon^{\frac{s}{4}}, & s\in [2, 3), \\ K_3\varepsilon^{\frac{s}{4}}|\ln\varepsilon|, & s = 3, \\ K_s\varepsilon^{\frac{(6-s)}{4}}, & s\in (3, 6), \end{array}\right. \end{align} $

其中$ K_s (2 \leq s < 6) $为正常数.

下面几个引理可参见文献[9], 为了读者方便, 我们给出详细的证明过程.

引理3.3   令$ g(t) = \frac{t^2}{2}\|u_\varepsilon\|^2 -\frac{t^{10}}{10}\int_{{{\Bbb R}} ^3}\phi_{u_\varepsilon}|u_\varepsilon|^{5} -\frac{t^{6}}{6}\int_{{{\Bbb R}} ^3}|u_\varepsilon|^{6}, $则当$ \varepsilon\to 0^+ $时, 有

  由于$ -\Delta \phi_{u_\varepsilon} = |u_\varepsilon|^{5} $, 有

根据(3.5)式, 当$ \varepsilon>0 $充分小时, 有

结合引理3.2以及(3.5)式, 可推出对于$ \varepsilon>0 $充分小时, 有

引理3.3证毕.

引理3.4   若$ \{u_n\}\subset H^1({{\Bbb R}} ^3) $是一个满足(3.2)式的序列, 则$ \{u_n\} $$ H^1({{\Bbb R}} ^3) $中有界.

  当$ n $充分大时, 由条件$ (f_3) $, 可得

由此可知$ \{u_n\} $$ H^1({{\Bbb R}} ^3) $中有界.证毕.

下面, 我们给出山路水平值$ c $的上界.

引理3.5   证明: $ 0<c<\frac{13-\sqrt{5}}{30}\left(\frac{\sqrt{5}-1}{2}\right)^{\frac{1}{2}}S^{\frac{3}{2}} $.

  当$ t\to\infty $时, 有$ J(tu_\varepsilon)\to -\infty $, 则存在$ t_\varepsilon>0 $, 使得

对任意的$ \varepsilon>0 $, 存在$ t_\varepsilon' $, 使得$ \|t_\varepsilon'u_\varepsilon\| = \rho $, 于是根据引理2.2, 有$ 0<\eta\leq J(t'_\varepsilon u_\varepsilon)\leq J(t_\varepsilon u_\varepsilon). $根据$ J $的连续性, 存在$ \varepsilon_1>0 $以及$ T_1>0 $, 使得$ t_\varepsilon\geq T_1 $, 其中$ \varepsilon\in(0, \varepsilon_1) $.由条件$ (f_3) $, 引理2.1和(3.5)式, 存在正常数$ C_1, C_2 $, 使得当$ \varepsilon>0 $充分小时, 有

因此, 存在$ \varepsilon_2>0 $, $ T_2>0 $, 使得对任意的$ \varepsilon\in (0, \varepsilon_2) $, 都有$ t_\varepsilon\leq T_2 $.

根据条件$ (f_1)-(f_3) $, 存在$ L>0 $, 使得

$ \begin{align} F(t)+Lt^2\geq 0, \ t\in [0, \infty). \end{align} $

对任意$ M>0 $, 记$ M_1 = \frac{\frac{4}{3}M}{T_1^4|B_1(0)|} $.由条件$ (f_4) $, 存在$ T>0 $满足

$ \begin{align} F(t)\geq M_1t^{4}, \ t\in [T, \infty). \end{align} $

$ \varepsilon_0\in(0, \min\{\varepsilon_1, \varepsilon_2, 1\}) $, 使得$ T_1(\frac{4}{3}\varepsilon_0)^{-\frac{1}{4}}>T $.$ \varepsilon\in(0, \varepsilon_0) $, 当$ x\in B_{\sqrt{\varepsilon}}(0) $, 可知$ t_\varepsilon u_\varepsilon = t_\varepsilon U_\varepsilon\geq T_1(\frac{4}{3}\varepsilon)^{-\frac{1}{4}}>T $.因此, 根据(3.7)和(3.8)式, 可得

结合引理3.3和(3.6)式, 当$ \varepsilon>0 $足够小时, 我们有

进一步当$ M>0 $充分大时, 可得

引理3.5证毕.

定理1.1的证明   由于泛函$ J $满足山路定理, 则存在序列$ \{u_n\}\subset H^1({{\Bbb R}} ^3) $, 使得(3.1)式成立.由引理3.4知$ \{u_n\} $$ H^1({{\Bbb R}} ^3) $中有界.再根据引理3.1和3.5, 存在$ \delta>0, \ R>0 $以及$ y_n\in {{\Bbb R}} ^3 $, 使得$ \limsup_{n\to \infty}\int_{B_R(y_n)}|u_n(x)|^2\geq \delta $.$ v_n(x) = u_n(x+y_n) $, 则

$ \begin{align} \limsup\limits_{n\to \infty}\int_{B_R(0)}|v_n(x)|^2\geq \delta. \end{align} $

注意到$ \|u_n\| = \|v_n\| $, 取$ \{v_n\} $的子列仍记为$ \{v_n\} $, 存在$ v\in H^1({{\Bbb R}} ^3) $, 使得当$ n\rightarrow\infty $时, $ \{v_n\} $$ H^1({{\Bbb R}} ^3) $中弱收敛为$ v $, 以及$ v_n(x) $$ {{\Bbb R}} ^3 $中几乎处处收敛于$ v(x) $.根据(3.9)式和$ H^1{({{\Bbb R}} ^3)} $紧嵌入$ L^2_{loc}({{\Bbb R}} ^3) $, 可得$ v\neq 0 $.$ \varphi\in C_0^\infty({{\Bbb R}} ^3) $, 显然有

根据引理2.1, $ \phi_ {v_n} $$ D^{1, 2}({{\Bbb R}} ^3) $中弱收敛于$ \phi_v $, 可得$ \phi_ {v_n} $$ L^{6}({{\Bbb R}} ^3) $中弱收敛于$ \phi_v $.进而有

$ \begin{align} \int_{{{\Bbb R}} ^3}(\phi_ {v_n}- \phi_v)|v|^3v\varphi\to 0, \ n\to \infty. \end{align} $

$ v_n(x) $$ {{\Bbb R}} ^3 $中几乎处处收敛于$ v(x) $以及

推得

即当$ n\to\infty $时, 有

成立.进一步结合(3.10)式, 有

$ \begin{align} \int_{{{\Bbb R}} ^3}\phi_{v_n}|v_n|^3v_n\varphi \to \int_{{{\Bbb R}} ^3}\phi_{v}|v|^3v\varphi , \ n\to\infty. \end{align} $

另一方面, 显然有

$ \begin{align} \int_{{{\Bbb R}} ^3}|v_n|^4v_n\varphi \to \int_{{{\Bbb R}} ^3}|v|^4v\varphi , \ n\to\infty. \end{align} $

根据条件$ (f_1) $$ (f_2) $, 存在$ C>0 $, 使得

$ \int_{{{\Bbb R}} ^3}|v_n||\varphi|\to \int_{{{\Bbb R}} ^3}|v||\varphi| $以及$ \int_{{{\Bbb R}} ^3}|v_n|^{q-1}|\varphi|\to \int_{{{\Bbb R}} ^3}|v|^{q-1}|\varphi| $, $ n\to\infty $, 我们有

$ \begin{align} \int_{{{\Bbb R}} ^3}f(v_n)\varphi \to \int_{{{\Bbb R}} ^3}f(v)\varphi, \ {\rm}\ n\to\infty. \end{align} $

再进一步结合(3.11)–(3.13)式, 可得$ \langle J'(v), \varphi\rangle = \lim\limits_{n\to\infty}\langle J'(v_n), \varphi\rangle $.对任意的$ \varphi\in C_0^\infty({{\Bbb R}} ^3) $, 令$ \varphi_n(x) = \varphi(x-y_n) $, 我们有

综上, 可得泛函$ J $有一个非平凡临界点.定理1.1得证.

参考文献

Azzollini A , Pomponio A .

Ground state solutions for nonlinear Schrödinger-Maxwell equations

J Math Anal Appl, 2008, 345: 90- 108

[本文引用: 1]

Benci V , Fortunato D .

An eigenvalue problem for the Schrödinger-Maxwell equations

Topol Methods Nonlinear Anal, 1998, 11: 283- 293

[本文引用: 1]

Brezis H , Nirenberg L .

Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents

Comm Pure Appl Math, 1983, 36: 437- 477

[本文引用: 1]

Candela A , Salvatore A .

Multiple solitary waves for non-homogeneous Schrödinger-Maxwell equations

Mediterr J Math, 2006, 3: 483- 493

[本文引用: 1]

Cerami G , Vaira G .

Positive solutions for some non-autonomous Schrödinger-Poisson systems

J Differential Equations, 2010, 248: 521- 543

[本文引用: 1]

Chen S , Tang X .

Ground state sign-changing solutions for a class of Schrödinger-Poisson type problems in $ {{\mathbb{R}}^{3}} $

Z Angew Math Phys, 2016, 4: 1- 18

[本文引用: 1]

Duan S , Wu X .

Multiplicity of solutions for a class of Schrödinger-Maxwell systems

Mediterr J Math, 2017, 14: 197

[本文引用: 1]

Fang L W , Huang W N , Wang M Q .

Ground-state solutions for Schrödinger-Maxwell equations in the critical growth (in Chinese)

Acta Mathematica Scientia, 2019, 39A (3): 475- 483

[本文引用: 1]

Feng X .

Ground state solution for a class of Schrödinger-Poisson-type systems with partial potential

Z Angew Math Phys, 2020, 71: 37

[本文引用: 3]

He Y , Li G .

Standing waves for a class of Schrödinger-Poisson equations in $ {{\mathbb{R}}^{3}} $ involving critical Sobolev exponents

Ann Acad Sci Fenn Math, 2015, 40 (2): 729- 766

[本文引用: 2]

He X , Zou W .

Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth

J Math Phys, 2012, 53: 023702

[本文引用: 1]

Huang L , Rocha E , Chen J .

Positive and sign-changing solutions of a Schrödinger-Poisson system involving a critical nonlinearity

J Math Anal Appl, 2013, 408: 55- 69

[本文引用: 2]

Ianni I .

Sign-changing radial solutions for the Schrödinger-Poisson-Slater problem

Topol Methods Nonlinear Anal, 2013, 41: 365- 385

[本文引用: 1]

Kim S , Seok J .

On nodal solutions of the nonlinear Schrödinger-Poisson equations

Commun Contemp Math, 2012, 14 (6): 1250041

[本文引用: 1]

Liu H .

Positive solutions of an asymptotically periodic Schrödinger-Poisson system with critical exponent

Nonlinear Anal RWA, 2016, 32: 198- 212

[本文引用: 1]

Li F , Li Y , Shi J .

Existence of positive solutions to Schrödinger-Poisson type systems with critical exponent

Comm Contem Math, 2014, 16: 1450036

[本文引用: 3]

Liu Z L , Wang Z Q , Zhang J J .

Infnitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system

Ann Mat, 2016, 195: 775- 794

[本文引用: 1]

Liu Z , Guo S .

On ground state solutions for the Schrödinger-Poisson equations with critical growth

J Math Anal Appl, 2014, 412: 435- 448

[本文引用: 2]

Ruiz D .

The Schrödinger-Poisson equation under the effect of a nonlinear local term

J Funct Anal, 2006, 237: 655- 674

[本文引用: 1]

Shuai W , Wang Q F .

Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger-Poisson system in $ {{\mathbb{R}}^{3}} $

Z Angew Math Phys, 2015, 66: 3267- 3282

[本文引用: 1]

Sun J .

Infinitely many solutions for a class of sublinear Schrödinger-Maxwell equations

J Math Anal Appl, 2012, 390: 514- 522

[本文引用: 1]

Tang X , Chen S .

Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials

Disc Contin Dyn Syst Ser A, 2017, 37 (9): 4973- 5002

[本文引用: 1]

Wang Z , Zhou H .

Positive solution for a nonlinear stationary Schrödinger-Poisson system in $ {{\mathbb{R}}^{3}} $

Discrete Contin Dyn Syst, 2007, 18: 809- 816

[本文引用: 1]

Wang Z , Zhou H .

Sign-changing solutions for the nonlinear Schrödinger-Poisson system in $ {{\mathbb{R}}^{3}} $

Calc Var Partial Differ Equ, 2015, 52: 927- 943

[本文引用: 1]

Willem M . Minimax Theorems. Boston: Birkhäuser, 1996

[本文引用: 2]

Zhao L , Zhao F .

Positive solutions for Schrödinger-Poisson equations with a critical exponent

Nonlinear Anal, 2009, 70: 2150- 2164

[本文引用: 2]

Zhang J .

On the Schrödinger-Poisson equations with a general nonlinearity in the critical growth

Nonlinear Anal, 2012, 75: 6391- 6401

[本文引用: 1]

Zhang J .

Ground state and multiple solutions for Schrödinger-Poisson equations with critical nonlinearity

J Math Anal Appl, 2016, 440: 466- 482

[本文引用: 1]

Zhong X J , Tang C L .

Ground state sign-changing solutions for a Schrödinger-Poisson system with a critical nonlinearity in $ {{\mathbb{R}}^{3}} $

Nonlinear Anal RWA, 2018, 39: 166- 184

[本文引用: 3]

/