数学物理学报, 2020, 40(6): 1552-1567 doi:

论文

源于非线性层晶格模型的一耦合Boussinesq型广义方程组的Cauchy问题

陈翔英,1, 陈国旺,2

Cauchy Problem for a Generalized System of Coupled Boussinesq Type Equations Arising from Nonlinear Layered Lattice Model

Chen Xiangying,1, Chen Guowang,2

通讯作者: 陈翔英, E-mail: chenxiangying@126.com

收稿日期: 2019-10-25  

基金资助: 国家自然科学基金.  11671367
国家自然科学基金.  11171311

Received: 2019-10-25  

Fund supported: the NSFC.  11671367
the NSFC.  11171311

作者简介 About authors

陈国旺,E-mail:chenguowang@zzu.edu.cn , E-mail:chenguowang@zzu.edu.cn

Abstract

In this paper, we prove that the Cauchy problem for a generalized system of the coupled Boussinesq-type equations arising from nonlinear layered lattice modelhas a unique global generalized solution in $C([0, \infty);H^s(\ {\Bbb R})\times H^s(\ {\Bbb R}))(s\geq2$ is a real number) and a unique global classical solution in $C^2([0, \infty);C_B^2(\ {\Bbb R})\times C_B^2(\ {\Bbb R}))(s>\frac{5}{2})$. The sufficient conditions for the blow up of the solution to the Cauchy problem above are given.

Keywords: Generalized system of coupled Boussinesq-type equations ; Cauchy problem ; Global solution ; Blow up of solution

PDF (369KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陈翔英, 陈国旺. 源于非线性层晶格模型的一耦合Boussinesq型广义方程组的Cauchy问题. 数学物理学报[J], 2020, 40(6): 1552-1567 doi:

Chen Xiangying, Chen Guowang. Cauchy Problem for a Generalized System of Coupled Boussinesq Type Equations Arising from Nonlinear Layered Lattice Model. Acta Mathematica Scientia[J], 2020, 40(6): 1552-1567 doi:

1 引言

本文研究非线性层晶格模型的耦合Boussinesq型广义方程组的Cauchy问题

$\begin{eqnarray}&u_{tt}-a_{1}u_{xx}-a_{2}u_{xxtt}+a_{3}(u-w)=f(u_{x})_{x}, \qquad x\in\mathbb{R}, \ t>0, \end{eqnarray}$

$\begin{eqnarray}&w_{tt}-b_{1}w_{xx}-b_{2}w_{xxtt}+b_{3}(w-u)=g(w_{x})_{x}, \qquad x\in\mathbb{R}, \ t>0, \end{eqnarray}$

$\begin{eqnarray}&u(x, 0)=u_0(x), \quad u_t(x, 0)=u_1(x), \qquad x\in\mathbb{R}, \end{eqnarray}$

$\begin{eqnarray}&w(x, 0)=w_0(x), \quad w_t(x, 0)=w_1(x), \qquadx\in\mathbb{R}, \label{1.4}\end{eqnarray}$

其中$u(x, t)$, $w(x, t)$是未知函数; $f(s)$$g(s)$是给定的非线性函数; $a_1$, $a_2$, $b_1$, $b_2>0$, $a_3\neq0$$b_3\neq0$是常数; $u_0(x)$, $u_1(x)$, $w_0(x)$$w_1(x)$是定义在$\mathbb{R} $上的初值函数.

我们还研究Cauchy问题(1.5), (1.6), (1.3), (1.4) (见第4节).

在文献[1]中, 作者在一两层不完整有界结构中利用非线性晶格模型研究非线性波.模型的主要元素是震荡偶级无线的一非谐链, 它能看作相对于一维宏观波导管的基本晶格.在一具有光滑的中间(或有界)层晶格的长非线性纵波由下列耦合Boussinesq型方程组

$\begin{eqnarray}&&u_{tt}-a_{1}u_{xx}-a_{2}u_{xxtt}+a_{3}(u-w)=-\frac{a_4}{2}(u^2_{x})_{x}, \end{eqnarray}$

$\begin{eqnarray}&&w_{tt}-b_{1}w_{xx}-b_{2}w_{xxtt}+b_{3}(w-u)=-\frac{b_4}{2}(w^2_{x})_{x}\end{eqnarray}$

控制, 其中$a_1$, $a_2$, $b_1$, $b_2>0$, $a_3\neq0$, $b_3\neq0$, $a_4\neq0$$b_4\neq0$是常数.显然, 方程组(1.1), (1.2)包含了方程组(1.5), (1.6).但是关于方程组(1.5), (1.6)的定解问题在文献[1]中没有任何讨论.

贯穿本节, 我们应用下列符号, $L^p$$(1\leq p\leq\infty)$表示通常所有在$\mathbb{R} $$L^p$ -函数具有范数$\|\cdot\|_p=\|\cdot\|_{L^p}$$\|\cdot\|=\|\cdot\|_2$的空间; $H^s$表示在$\mathbb{R} $上具有范数$\|h\|_{H^s}=\|(I-\partial^2_x)^{\frac{s}{2}}h\|$的Sobolev空间, 其中$s$是一实数, $\partial_x=\frac{\partial}{\partial x}$, $I$是单位向量.

此文在第2节中首先证明Cauchy问题(1.1)-(1.4)局部解的存在唯一性; 其次, 证明当$s\geq2$时, 在$C([0, \infty);H^s(\mathbb{R} )\times H^s(\mathbb{R} ))$中存在整体广义解, 当$s>\frac{5}{2}$时, 存在唯一的整体古典解$C^2([0, \infty);C_B^2(\mathbb{R} )\times C_B^2(\mathbb{R} ))$.在第3节中, 证明Cauchy问题(1.1)-(1.4)解的爆破.

2 问题(1.1)-(1.4)在$\!C^2([0, \infty);C_B^2(\mathbb{R} )\!\times\! C_B^2(\mathbb{R} ))\!$中整体解的存在性与唯一性

(A)   Cauchy问题(1.1)-(1.4)局部广义解的存在性与唯一性

现在, 我们将利用二阶常微分方程的基本解化Cauchy问题(1.1)-(1.4)为一积分方程组.应用压缩映射原理证明积分方程组局部广义解的存在性与唯一性, 即证明Cauchy问题(1.1)-(1.4)存在唯一局部广义解.

$(u, w)\in C^2([0, T];H^s)$ (即$u\in C^2([0, T];H^s)$, $w\in C^2([0, T];H^s))$$(s\geq2)$是Cauchy问题(1.1)-(1.4)的一广义解.方程组(1.1)-(1.2)可以改写为

$\begin{eqnarray}&&\left(u_{tt}+\frac{a_1}{a_2}u\right)-a_2\left(u_{tt}+\frac{a_1}{a_2}u\right)_{xx}=\frac{a_1}{a_2}u-a_3(u-w)+f(u_x)_{x}, \end{eqnarray}$

$\begin{eqnarray}&&\left(w_{tt}+\frac{b_1}{b_2}w\right)-b_2\left(w_{tt}+\frac{b_1}{b_2}w\right)_{xx}=\frac{b_1}{b_2}w-b_3(w-u)+g(w_x)_{x}.\end{eqnarray}$

由(2.1)和(2.2)式有

$\begin{eqnarray}u_{tt}+\frac{a_1}{a_2}u&=&(I-a_2\partial^2_x)^{-1}\left[\frac{a_1}{a_2}u-a_3(u-w)+f(u_x)_{x}\right]\nonumber\\&=&G_1\ast\left[\frac{a_1}{a_2}u-a_3(u-w)+f(u_x)_{x}\right], \end{eqnarray}$

$\begin{eqnarray}w_{tt}+\frac{b_1}{b_2}w&=&(I-b_2\partial^2_x)^{-1}\left[\frac{b_1}{b_2}w-b_3(w-u)+g(w_x)_{x}\right]\nonumber\\&=&G_2\ast\left[\frac{b_1}{b_2}w-b_3(w-u)+g(w_x)_{x}\right], \end{eqnarray}$

其中$G_1(x)$是二阶常微分方程

的基本解, 其中$\delta(x)$是Dirac函数, 即$G_1(x)=\frac{1}{2\sqrt{a_2}}e^{-\frac{|x|}{\sqrt{a_2}}}$, $x\in\mathbb{R} $; $G_2(x)$是二阶常微分方程

的基本解, 即$G_2(x)=\frac{1}{2\sqrt{b_2}}e^{-\frac{|x|}{\sqrt{b_2}}}$, $x\in\mathbb{R} $. $u\ast v$表示$u$$v$的卷积, 定义为

(2.3)和(2.4)式分别对$t$积分两次, 并注意到初值(1.3)-(1.4), Cauchy问题(2.3), (2.4), (1.3), (1.4)变换为下面的积分方程组

$\begin{equation}V(x, t)=V_0(x)+V_1(x)t-\int_0^t(t-\tau)AV(x, \tau){\rmd}\tau+\int_0^t(t-\tau)F(V(x, \tau)){\rm d}\tau, \end{equation}$

其中

定义 2.1  对于任意的$T>0$, 如果$s>\frac{1}{2}$, $V_0, V_1\in H^s\times H^s$$(V_0\in H^s\times H^s$意思是$u_0\in H^s$$w_0\in H^s)$$V\in C([0, T];H^s\times H^s)$满足积分方程组$(2.5)$, 则$V(x, t)$称为积分方程组$(2.5)$的连续解或Cauchy问题$(2.1)$, $(2.2)$, $(1.3)$, $(1.4)$的广义解.如果$T<\infty$, 则$V(x, t)$称为Cauchy问题$(2.1)$, $(2.2)$, $(1.3)$, $(1.4)$的局部广义解.如果$T=\infty$, 则$V(x, t)$称为Cauchy问题$(2.1)$, $(2.2)$, $(1.3)$, $(1.4)$的整体广义解.

引理 2.1  $(1)$$G_1(x)$, $G_2(x)$$\mathbb{R} $上有定义且连续, $G_1(x)$, $G_2(x)>0$;

$(2)$$G_1(x)$, $G_2(x)\in L^q$$\|G_1\|_1=\|G_2\|_1=1$, 其中$1\leq q\leq\infty$;

$(3)$$\|G_1\ast h\|_{H^s}=\|h\|_{H^{s-2}}$, $\|G_2\ast h\|_{H^s}=\|h\|_{H^{s-2}}$, $s-2\geq0$.

  性质(1)和(2)是显然的.我们仅证明性质(3).

成立, 于是

其中$\hat{h}(\xi)=(1/\sqrt{2\pi})\int_{\mathbb{R} }h(x){\rm e}^{-{\rm i}x\xi}{\rm d}x$表示$h$的Fourier变换.类似地, 可以证明$\|G_2\ast h\|_{H^s}=\|h\|_{H^{s-2}}$.

为了证明积分方程组(2.5)局部连续解的存在性与唯一性, 我们引进下面的引理.

引理 2.2[2]  设$v(u)\in C^k(\mathbb{R} )$, $v(0)=0$, $u\in H^s\cap L^\infty$, $k=[s]+1$, 其中$s\geq0$.如果$\|u\|_\infty\leq M_0$, 则有

其中$K(M_0)$是依赖于常数$M_0$的正常数.

引理 2.3[3]  设$s\geq0$, $v(u)\in C^k(\mathbb{R} ), $$k=[s]+1$.如果$u$, $z\in H^s\cap L^\infty$, 则

如果$\|u\|_\infty+\|u\|_{H^{s}}$, $\|z\|_\infty+\|z\|_{H^s}\leq M_1$, 其中$K_1(M_1)$是依赖于常数$M_1$的正常数.

引理 2.4[4]  设$s=m+\frac{1}{2}+\lambda$, $\lambda\in(0, 1)$, $m\in\mathbb{Z}_+$\ $(\mathbb{Z}_+$是一非负整数集合), 则

并对于任意的$f\in H^s$

其中$"\hookrightarrow"$表示嵌入关系.

下面, 假定$f(0)=0$, $g(0)=0$.否则我们可以分别用$f(s)-f(0)$代替$f(s)$, 用$g(s)-g(0)$代替$g(s)$, 并假定对于$s>\frac{1}{2}$, $V_0\in H^s$, 即$u_0\in H^s$, $w_0\in H^s$, $V_1\in H^s$.

现在, 考虑Banach空间

赋予范数

其中$V\in C([0, T];H^s)$, 即$u\in C([0, T];H^s)$, $w\in C([0, T];H^s)$.

由Sobolev嵌入定理[4]

$\|V\|_{L^\infty}\leq K_2\|V\|_{H^s}$.

定义映射$S$如下:对于$\psi\in X(T)$, 有

$\begin{equation}S\Psi(x, t)=V_0(x)+V_1(x)t+\int_0^t(t-\tau)A\Psi(x, \tau){\rmd}\tau+\int_0^t(t-\tau)F(\Psi(x, \tau)){\rm d}\tau, \label{2.6}\end{equation}$

其中$\Psi(x, t)=\left( \begin{array}{c} \varphi(x, t)\\ \psi(x, t) \end{array} \right)$.显然, 如果$f$, $g\in C^{[s]+1}(\mathbb{R} )$, 则$S: X(T)\mapsto X(T)$.

现在, 对于初值$V_0$, $V_1\in H^s\times H^s$, 令$\|V_0\|_{H^s}+\|V_1\|_{H^s}=M$, 定义

显然, 对于每一对$M$, $T>0$, $Q(M, T)$$X(T)$的一非空有界闭凸子集.我们的目的是指出, $S$$Q(M, T)$内有唯一不动点.

引理 2.5  设$s>\frac{1}{2}$, $V_0$, $V_1\in H^s\times H^s$, $f$, $g\in C^{[s]+1}(\mathbb{R} )$, $f(0)=0$, $g(0)=0$.$S$$Q(M, T)$$Q(M, T)$$S: Q(M, T)\mapsto Q(M, T)$是严格压缩的, 如果$T$相对于$M$适当小.

  首先我们对充分小的$T$证明$S$$Q(M, T)$到自身.令$\Psi\in Q(M, T)$是给定的.由引理2.1和2.2, 有

$\begin{eqnarray}\|F(\Psi(\cdot, t))\|_{H^s}&=&\left\|G_1\ast\left[\frac{a_1}{a_2}\varphi-a_3(\varphi-\psi)+f(\varphi_x)_{x}\right](\cdot, \tau)\right\|_{H^s}\nonumber\\&&+\left\|G_2\ast\left[\frac{b_1}{b_2}\psi-b_3(\psi-\varphi)+g(\psi_x)_{x}\right](\cdot, \tau)\right\|_{H^s}\nonumber\\&=&\left\|\frac{a_1}{a_2}\varphi(\cdot, \tau)-a_3(\varphi(\cdot, \tau)-\psi(\cdot, \tau))+f(\varphi_x(\cdot, \tau))_{x}\right\|_{H^{s-2}}\nonumber\\&&+\left\|\frac{b_1}{b_2}\psi(\cdot, \tau)-b_3(\psi(\cdot, \tau)-\varphi(\cdot, \tau))+g(\psi_x(\cdot, \tau))_{x}\right\|_{H^{s-2}}\nonumber\\&\leq&\left(\frac{a_1}{a_2}+a_3+b_3\right)\|\varphi(\cdot, \tau)\|_{H^{s-2}}+\left(\frac{b_1}{b_2}+a_3+b_3\right)\|\psi(\cdot, \tau)\|_{H^{s-2}}\nonumber\\&&+K(K_2(M+1))\|\varphi_x(\cdot, \tau)\|_{H^{s-1}}+K(K_2(M+1))\|\psi_x(\cdot, \tau)\|_{H^{s-1}}\nonumber\\&\leq&\left\{\left(\frac{a_1}{a_2}+\frac{b_1}{b_2}+2|a_3|+2|b_3|\right)+2K(K_2(M+1))\right\}(M+1), \label{2.7}\end{eqnarray}$

其中$K(K_2(M+1))$表示$K$是依赖于$K_2(M+1)$的常数.

由(2.6)和(2.7)式可得

$\begin{eqnarray}\|S\Psi\|_{H^{s}}&\leq& \|V_0\|_{H^{s}}+\|V_1\|_{H^{s}}T+\int_0^t(t-\tau)\|A\Psi(\cdot, \tau)\|_{H^{s}}{\rm d}\tau+\int_0^t(t-\tau)\|F(\Psi(\cdot, \tau))\|_{H^{s}}{\rm d}\tau\nonumber\\&\leq&M+MT+\left[\frac{a_1}{a_2}+\frac{b_1}{b_2}+|a_3|+|b_3|+K(K_2(M+1))\right](M+1)T^2.\label{2.8}\end{eqnarray}$

如果$T$满足

$\begin{equation}T\leq\min\left\{1, \frac{1}{2M+2(M+1)\left[\frac{a_1}{a_2}+\frac{b_1}{b_2}+|a_3|+|b_3|+K(K_2(M+1))\right]}\right\}, \label{2.9}\end{equation}$

$\|S\Psi\|_{X(T)}\leq M+1$.所以, 如果(2.9)式成立, 则$S$$Q(M, T)$$Q(M, T)$.

现在, 证明映射$S$是严格压缩的.令$\Psi_1$, $\Psi_2\in Q(M, T)$是给定的, 其中$\Psi_i(x, t)=\left( \begin{array}{c} \varphi_i(x, t)\\ \psi_i(x, t) \end{array} \right)$$(i=1, 2)$.利用Minkowski积分不等式, 引理2.3和(2.6)式, 得

$\begin{eqnarray}\|S\Psi_1(\cdot, t)-S\Psi_2(\cdot, t)\|_{H^{s}}&\leq& \int_0^t(t-\tau)\|A(\Psi_1(\cdot, \tau)-\Psi_2(\cdot, \tau))\|_{H^{s}}{\rm d}s\nonumber\\&&+\int_0^t(t-\tau)\|F(\Psi_1(\cdot, \tau))-F(\Psi_2(\cdot, \tau))\|_{H^{s}}{\rmd}\tau.\label{2.10}\end{eqnarray}$

由引理2.1和引理2.3知

$\begin{eqnarray}&&\|F(\Psi_1(\cdot, \tau))-F(\Psi_2(\cdot, \tau))\|_{H^s}\nonumber\\&=&\left\|G_1\ast\left[\frac{a_1}{a_2}\varphi_1-a_3(\varphi_1-\psi_1)+f(\varphi_{1x})_{x}\right](\cdot, \tau)\right.\nonumber\\&&\left.-G_1\ast\left[\frac{a_1}{a_2}\varphi_2-a_3(\varphi_2-\psi_2)+f(\varphi_{2x})_{x}\right](\cdot, \tau)\right\|_{H^s}\nonumber\\&&+\left\|G_2\ast\left[\frac{b_1}{b_2}\psi_1-b_3(\psi_1-\varphi_1)+g(\psi_{1x})_{x}\right](\cdot, \tau)\right.\nonumber\\&&\left.-G_2\ast\left[\frac{b_1}{b_2}\psi_2-b_3(\psi_2-\varphi_2)+g(\psi_{2x})_{x}\right](\cdot, \tau)\right\|_{H^s}\nonumber\\&=&\left\|G_1\ast\left[\frac{a_1}{a_2}(\varphi_1-\varphi_2)-a_3(\varphi_1-\varphi_2)+a_3(\psi_1-\psi_2)+f(\varphi_{1x})_{x}-f(\varphi_{2x})_{x}\right](\cdot, \tau)\right\|_{H^s}\nonumber\\&&+\left\|G_2\ast\left[\frac{b_1}{b_2}(\psi_1-\psi_2)-b_3(\psi_1-\psi_2)+b_3(\varphi_1-\varphi_2)+g(\psi_{1x})_{x}-g(\psi_{2x})_{x}\right](\cdot, \tau)\right\|_{H^s}\nonumber\\&\leq&\frac{a_1}{a_2}\|(\varphi_1-\varphi_2)(\cdot, \tau)\|_{H^{s-2}}+|a_3|\|(\varphi_1-\varphi_2)(\cdot, \tau)\|_{H^{s-2}}+|a_3|\|(\psi_1-\psi_2)(\cdot, \tau)\|_{H^{s-2}}\nonumber\\&&+\|f(\varphi_{1x}(\cdot, \tau))-f(\varphi_{2x}(\cdot, \tau))\|_{H^{s-1}}+\frac{b_1}{b_2}\|(\psi_1-\psi_2)(\cdot, \tau)\|_{H^{s-2}}+|b_3|\|(\psi_1-\psi_2)(\cdot, \tau)\|_{H^{s-2}}\nonumber\\&&+|b_3|\|(\varphi_1-\varphi_2)(\cdot, \tau)\|_{H^{s-2}}+\|g(\psi_{1x}(\cdot, \tau))-g(\psi_{2x}(\cdot, \tau))\|_{H^{s-1}}\nonumber\\&\leq&\left(\frac{a_1}{a_2}+|a_3|+|b_3|\right)\|(\varphi_1-\varphi_2)(\cdot, \tau)\|_{H^{s-2}}+\left(\frac{b_1}{b_2}+|a_3|+|b_3|\right)\|(\psi_1-\psi_2)(\cdot, \tau)\|_{H^{s-2}}\nonumber\\&&+K_1(K_2(M+1))\|\varphi_{1x}(\cdot, \tau)-\varphi_{2x}(\cdot, \tau)\|_{H^{s-1}}+K_1(K_2(M+1))\|\psi_{1x}(\cdot, \tau)-\psi_{2x}(\cdot, \tau)\|_{H^{s-1}}\nonumber\\&\leq&\left[\frac{a_1}{a_2}+2|a_3|+2|b_3|+\frac{b_1}{b_2}+K_1(K_2(M+1))\right]\|\Psi_1(\cdot, \tau)-\Psi_2(\cdot, \tau)\|_{H^{s}}.\label{2.11}\end{eqnarray}$

将(2.11)式代入(2.10)式, 得

如果$T$满足(2.9)式和

$\begin{equation}T\leq\min\left\{1, \frac{1}{2\left[\frac{a_1}{a_2}+\frac{b_1}{b_2}+|a_3|+|b_3|+K_1(K_2(M+1))\right]}\right\}, \label{2.12}\end{equation}$

于是$\|S\Psi_1-S\Psi_2\|_{X(T)}\leq\frac{1}{2}\|\Psi_1-\Psi_2\|_{X(T)}$.$S$$Q(M, T)$$Q(M, T)$$S$是严格压缩的.

定理 2.1  设$s\geq2$, $V_0$, $V_1\in H^s\times H^s$, $f$, $g\in C^{[s]+1}(\mathbb{R} )$, $f(0)=0$, $g(0)=0$.则Cauchy问题$(2.1)$, $(2.2)$, $(1.3)$, $(1.4)$存在唯一局部广义解$V\in C([0, T_0);H^s\times H^s)$, 其中$[0, T_0)$是最大时间区间.同时, 如果

$\begin{equation}\sup\limits_{t\in[0, T_0)}[\|V(\cdot, t)\|_{H^s\timesH^s}+\|V_t(\cdot, t)\|_{H^s\times H^s}]<\infty, \label{2.13}\end{equation}$

$T_0=\infty$.

  由引理2.5和压缩映射原理推出, 对于适当选择的$T>0$, $S$有唯一的不动点$V\in Q(M, T)$, 它显然是积分方程组(2.5)的一解.对于每一个$T^\prime>0$, 积分方程组(2.5)最多有一解属于$X(T^\prime)$.事实上, 令$V_1$, $V_2\in X(T^\prime)$是积分方程组的两个解, 其中$V_i(x, t)=\left( \begin{array}{c} u_i(x, t)\\ w_i(x, t) \end{array} \right)\ (i=1, 2)$, 则对于$0\leq t\leq T^\prime$,

$\begin{eqnarray}V_1(x, t)-V_2(x, t)&=&-\int_0^t(t-\tau)[AV_1(x, \tau)-AV_2(x, \tau)]{\rmd}\tau\nonumber\\&&+\int_0^t(t-\tau)[F(V_1(x, \tau))-F(V_2(x, \tau))]{\rmd}\tau.\end{eqnarray}$

根据空间$X(T^\prime)$的定义, 可以假定

其中$C_1(T^\prime)$是一依赖于$T^\prime$的正常数.因此, 由(2.14)式, 引理2.1, 引理2.3和Minkowski不等式, 得

$\begin{equation}\|V_1(\cdot, t)-V_2(\cdot, t)\|_{H^s}\leqC_2(T^\prime)\int_0^t\|V_1(\cdot, t)-V_2(\cdot, t)\|_{H^s}{\rmd}\tau, \label{2.15}\end{equation}$

其中$C_2(T^\prime)$是一依赖于$T^\prime$的正常数.由(2.15)式和Gronwall不等式, 有

即积分方程组最多有一解属于$X(T^\prime)$.

现在, 令$[0, T_0)$$V\in X(T_0)$存在的最大时间区间.余下仅指出, 如果(2.13)式成立, 则$T_0=\infty$.

令(2.13)式成立, 且$T_0<\infty$.对于任意的$T^\prime\in[0, T_0)$, 考虑积分方程组

$\begin{equation}W(x, t)=V(x, T^\prime)+V_t(x, T^\prime)t-\int_0^t(t-\tau)W(x, \tau){\rmd}\tau+\int_0^t(t-\tau)F(W(x, \tau)){\rm d}\tau.\label{2.16}\end{equation}$

根据(2.13)式, $\|V(\cdot, T^\prime)\|_{H^s\times H^s}+\|V_t(\cdot, T^\prime)\|_{H^s\times H^s}$关于$T^\prime\in[0, T_0)$是一致有界的, 这允许我们选择$T^\ast\in(0, T_0)$, 使得对于每一个$T^\prime\in[0, T_0)$, 积分方程组(2.16)有唯一解$W(x, t)\in X(T^\ast)$.由引理2.5和压缩映射原理推出确实存在一个这样的$T^\ast$.特别地, (2.9)和(2.12)式揭示$T^\ast$的选择不依赖于$T^\prime\in[0, T_0)$.$T^\prime=T_0-\frac{T^\ast}{2}$, 令$W(x, t)$表示积分方程组(2.16)对应的解, 由

$\begin{eqnarray}\widetilde{V}(x, t)=\left\{\begin{array}{ll}V(x, t), &t\in[0, T^\prime], \\W(x, t-T^\prime), & t\in[T^\prime, T_0+\frac{T^\ast}{2}]\end{array}\right.\label{2.17}\end{eqnarray}$

定义$\widetilde{V}(x, t)$.根据解的构造, $\widetilde{V}(x, t)$是在$[0, T_0+\frac{T^\ast}{2}]$上积分方程组(2.5)的一个解, 且根据局部解的唯一性, $\widetilde{V}$$V$的延拓.这与$[0, T_0)$是最大时间区间矛盾.因此, 如果(2.13)式成立, 则$T_0=\infty$.证毕.

注 2.1  如果$V\in C([0, T_0);H^s\times H^s)$是问题$(2.1)$, $(2.2)$, $(1.3)$, $(1.4)$的一局部广义解, 从$(2.5)$式知, $V\in C^2([0, T_0);H^s\times H^s)$, 且方程组$(2.3)$-$(2.4)$成立; 如果$V\in C([0, T_0);H^s\times H^s)$是问题$(2.1)$, $(2.2)$, $(1.3)$, $(1.4)$的一局部广义解, 则当$s>\frac{5}{2}$时, $V\in C^2([0, T_0);C^2(\mathbb{R} ))$是问题$(2.1)$, $(2.2)$, $(1.3)$, $(1.4)$一局部古典解.

(B)   Cauchy问题(1.1)-(1.4)整体解的存在性与唯一性

现在, 我们从解的延拓条件(2.13)变换到条件(2.18).

定理 2.2  设$s\geq2$, $V_0$, $V_1\in H^s\times H^s$, $f$, $g\in C^{[s]+1}(\mathbb{R} )$, $f(0)=0$, $g(0)=0$.则Cauchy问题$(2.1)$, $(2.2)$, $(1.3)$, $(1.4)$存在唯一局部广义解$V\in C([0, T_0);H^s\times H^s)$, 其中$[0, T_0)$是最大的时间区间, 如果

$\begin{equation}\sup\limits_{t\in[0, T_0)}\|V_x(\cdot, t)\|_{\infty\times\infty}\leqM<\infty, \label{2.18}\end{equation}$

$T_0=\infty$.

  应用Minkowski积分不等式, 引理2.1, 引理2.2和(2.18)式, 由(2.5)式可得

$\begin{eqnarray}\|V(\cdot, t)\|_{H^s\times H^s}&\leq&\|V_0\|_{H^s\times H^s}+\|V_1\|_{H^s\times H^s}t+\int_0^t(t-\tau)\|AV(\cdot, t)\|_{H^s\times H^s}{\rm d}\tau\nonumber\\&&+\int_0^t(t-\tau)\|F(V(\cdot, t))\|_{H^s\times H^s}{\rm d}\tau\nonumber\\&\leq&C_2(T)+C_3(T)\int_0^t\|V(\cdot, t)\|_{H^s\times H^s}{\rmd}\tau.\end{eqnarray}$

利用Gronwall不等式, 由(2.19)式有

$\begin{equation}\|V(\cdot, t)\|_{H^s\times H^s}\leq C_4(T), \qquad 0\leq t\leqT.\end{equation}$

(2.5)式对$t$求导, 知

$\begin{equation}V_t(x, t)=V_1(x)-\int_0^tAV(x, \tau){\rmd}\tau+\int_0^tF(V(x, \tau)){\rm d}\tau.\label{2.21}\end{equation}$

从Minkowski积分不等式, 引理2.2和(2.21)式得

$\begin{equation}\|V_t(\cdot, t)\|_{H^s\times H^s}\leq \|V_1\|_{H^s\timesH^s}+C_5\int_0^t\|V(\cdot, \tau)\|_{H^s\times H^s}{\rm d}\tau\leqC_6(T), \quad 0\leq t\leq T.\end{equation}$

由(2.20)和(2.22)式发现

$T_0=\infty$.证毕.

为了得到问题$(2.1)$, $(2.2)$, $(1.3)$, $(1.4)$的整体解的条件, 我们建立问题$(2.1)$, $(2.2)$, $(1.3)$, $(1.4)$解的两个能量等式.

引理 2.6  设$V_0$, $V_1\in H^1\times H^1$, $f$, $g\in C(\mathbb{R} )$, $\varphi(u_x)=\int_0^{u_x}f(y){\rm d}y$, $\psi(w_x)=\int_0^{w_x}g(y){\rm d}y$, $\varphi(u_{0x})\in L^1$, $\psi(w_{0x})\in L^1$, 则Cauchy问题$(2.1)$, $(2.2)$, $(1.3)$, $(1.4)$的广义解$V\in C^2([0, T_0);$$H^s\times H^s)$$(s\geq2)$满足下列等式

$\begin{eqnarray}E_1(t)&=&\|u_t\|^2+a_3\|u\|^2+a_1\|u_x\|^2+a_2\|u_{xt}\|^2-2a_3\int_0^t\int_{-\infty}^{\infty}u_\tau w{\rm d}x{\rm d}\tau+2\int_{-\infty}^{\infty}\varphi(u_x){\rm d}x\\&=&E_1(0), \end{eqnarray}$

$\begin{eqnarray}E_2(t)&=&\|w_t\|^2+b_3\|w\|^2+b_1\|w_x\|^2+b_2\|w_{xt}\|^2-2b_3\int_0^t\int_{-\infty}^{\infty}uw_\tau {\rm d}x{\rm d}\tau+2\int_{-\infty}^{\infty}\psi(w_x){\rm d}x\\&=&E_2(0).\end{eqnarray}$

  (1.1)式两端同乘以$2u_t$, 在$(-\infty, \infty)\times(0, t)$上积分, 根据引理2.4并分部积分得(2.23)式.

(1.2)式两端同乘以$2w_t$, 在$(-\infty, \infty)\times(0, t)$上积分, 根据引理2.4并分部积分得(2.24)式.证毕.

引理 2.7  设引理2.5的假设成立, $V_0$, $V_1\in H^s\times H^s(s\geq2)$, $\varphi(u_x)\geq0$, $\psi(w_x)\geq0$.如果存在$\rho$$(1\leq\rho\leq\infty)$, 使得

$\begin{equation}|f(u_x)|\leq A_0\varphi(u_x)^{\frac{1}{\rho}}|u_x|+B_0, \qquad|g(w_x)|\leq C_0\psi(w_x)^{\frac{1}{\rho}}|w_x|+D_0, \label{2.25}\end{equation}$

其中$A_0$, $B_0$, $C_0$$D_0$是正常数, 则问题(1.1)-(1.2)的广义解$V(x, t)$有估计

$\begin{equation}\|V_x(\cdot, t)\|_{\infty\times\infty}\leq C_7(T), \qquad 0\leq t\leqT.\label{2.26}\end{equation}$

  (2.3)式对$x$求导, 且两端同乘以$2u_{xt}$, 有

$\begin{equation}\frac{{\rm d}}{{\rmd}t}\left(u_{xt}^2+\frac{a_1}{a_2}u_x^2+\varphi(u_x)\right)=2G_1\ast\left[\frac{a_1}{a_2}u_x-a_3(u_x-w_x)+f(u_x)\right]u_{xt}.\end{equation}$

(2.4)式对$x$求导, 且两端同乘以$2w_{xt}$, 得

$\begin{equation}\frac{{\rm d}}{{\rmd}t}\left(w_{xt}^2+\frac{b_1}{b_2}w_x^2+\psi(w_x)\right)=2G_2\ast\left[\frac{b_1}{b_2}w_x-b_3(w_x-u_x)+g(w_x)\right]w_{xt}.\end{equation}$

由引理2.1, 2.6, 2.7和(2.25)式, 利用Young不等式和Hölder不等式, 知

$\begin{eqnarray}|[G_1\ast f(u_x)](x, t)|&\leq&[G_1\ast|f(u_x)|](x, t)\\&\leq &A_0G_1\ast[\varphi(u_x)^{\frac{1}{\rho}}|u_x|]+B_0\nonumber\\&\leq&A_0\|G_1\|_q\|\varphi(u_x)^{\frac{1}{\rho}}|u_x|\|_\rho+B_0\\&\leq &A_0\|G_1\|_q\|u_x\|_\infty\|\varphi(u_x)\|_1^{\frac{1}{\rho}}+B_0\nonumber\\&\leq& C_8\|u_x\|_\infty+B_0, \end{eqnarray}$

其中$\frac{1}{\rho}+\frac{1}{q}=1$.类似地, 有

$\begin{equation}|[G_2\ast g(w_x)](x, t)|\leq C_9\|w_x\|_\infty.\end{equation}$

应用卷积Young不等式, 得

$\begin{equation}|G_1\ast u_x|\leq\|u_x\|_\infty, \ \ |G_1\astw_x|\leq\|w_x\|_\infty, \ \ |G_2\ast u_x|\leq\|u_x\|_\infty, \ \|G_2\ast w_x|\leq\|w_x\|_\infty.\end{equation}$

从(2.27)式和上述不等式看出

$\begin{eqnarray}&&\frac{{\rm d}}{{\rm d}t}\left(u_{xt}^2+\frac{a_1}{a_2}u_x^2+2\varphi(u_x)\right)\nonumber\\&\leq&2\left(\frac{a_1}{a_2}+a_3+C_8\right)\|u_x\|_\infty\|u_{xt}\|_\infty+2C_3\|w_x\|_\infty\|u_{xt}\|_\infty+2B\|u_{xt}\|_\infty\nonumber\\&\leq&C_9+C_{10}(\|u_x\|^2_\infty+\|u_{xt}\|^2_\infty+\|w_x\|^2_\infty).\label{2.32}\end{eqnarray}$

类似地, 有

$\begin{equation}\frac{{\rm d}}{{\rmd}t}\left(w_{xt}^2+\frac{b_1}{b_2}w_x^2+2\psi(w_x)\right)\leqC_{11}+C_{12}(\|w_x\|^2_\infty+\|w_{xt}\|^2_\infty+\|u_x\|^2_\infty).\label{2.33}\end{equation}$

将(2.32)式加到(2.33)式上, 知

上述不等式对$t$积分并应用Sobolev嵌入定理, 我们有

于是

Gronwall不等式给出$\|V_x(\cdot, t)\|_{\infty\times\infty}\leq C_{17}(T)$.

由定理2.2和引理2.7推出以下定理成立.

定理 2.3  设

(i)   $s\geq2$, $f$, $g\in C^{[s]+1}(\mathbb{R} )$, $f(0)=0$, $g(0)=0$, $\varphi(u_x)\geq0$, $\psi(w_x)\geq0$, $\varphi(u_{0x})$, $\psi(w_{0x})\in L^\infty(\mathbb{R} )$;

(ii)   $u_0, u_1, w_0, w_1\in H^s(\mathbb{R} )$;

(iii)   $ |f(u_x)|\leq A_0\varphi(u_x)^{\frac{1}{\rho}}|u_x|+B_0, $$|g(w_x)|\leq C_0\psi(w_x)^{\frac{1}{\rho}}|w_x|+D_0, $

其中$A_0$, $B_0$, $C_0$$D_0$是正常数, 且$1\leq\rho\leq\infty$.那么, 问题(1.1)-(1.4)存在唯一整体广义解$V\in C([0, \infty);H^s(\mathbb{R} ) \times H^s(\mathbb{R} ))$.

 2.2  假定$V\in C([0, \infty);H^s(\mathbb{R} )\times H^s(\mathbb{R} ))$是Cauchy问题(1.1)-(1.4)的广义解, 如果$s>\frac{5}{2}$, 于是Cauchy问题(1.1)-(1.4)存在唯一整体古典解$V\in C^2([0, \infty);C^2_B(\mathbb{R} )\times C^2_B(\mathbb{R} ))$, 其中$C^2_B(\mathbb{R} )$由所有$C^2(\mathbb{R} )$中在$\mathbb{R} $上有界的函数组成, 这里我们用到的定理:设$s>\frac{1}{2}+j, j$是非负整数, 则$H^s(\mathbb{R} )\hookrightarrow C^3_B(\mathbb{R} )$ (参见文献[4]).

3 Cauchy问题(1.1)-(1.4)解的爆破

在这节, 我们应用凸性方法考虑Cauchy问题(1.1)-(1.4)解的爆破.

引理 3.1[6]  设$\phi(t)\in C^2[0, \infty)$是一正函数, 对于所有$t\geq0$满足不等式

$\begin{equation}\ddot{\phi}(t)\phi(t)-(1+\gamma)\dot{\phi}(t)^2\geq-A_1\phi(t)\dot{\phi}(t)-A_2\phi(t)^2, \label{3.1}\end{equation}$

其中$\gamma>0$$A_1$, $A_2\geq0$是常数.

$(1)$如果$A_1=A_2=0$, $\phi(0)>0$, $\dot{\phi}(0)>0$, 于是存在$t_1\leq t_2=\frac{\phi(0)}{\gamma\dot{\phi}(0)}$, 使得$t\rightarrow t_1$时, $\phi(t)\rightarrow\infty$.

$(2)$如果$A_1+A_2>0$, $\phi(0)>0$, $\dot{\phi}(0)>-\gamma_2\gamma^{-1}\phi(0)$, 则当$t\rightarrow t_1\leq t_2$时, $\phi(t)\rightarrow\infty$, 其中

定理 3.1  设$f$, $g\in C(\mathbb{R} )$, $u_0$, $u_1$, $w_0$, $w_1\in H^1(\mathbb{R} )$, $\int_{\mathbb{R} }u_0w_0{\rm d}x>0$, $\varphi$, $\psi\in L^1(\mathbb{R} )$, $a_3=b_3>0$, 存在常数$\gamma>0$, 使得

$\begin{equation}f(y)y\geq(3+4\gamma)\varphi(y), \ \forall y\in\mathbb{R}, \qquadg(y)y\geq(3+4\gamma)\psi(y), \ \forall y\in\mathbb{R}, \label{3.2}\end{equation}$

则问题(1.1)-(1.4)的广义解或古典解$V(x, t)$在有限时刻爆破, 如果满足下列条件之一:

(i)   $E_1(0)+E_2(0)<0$;

(ii)   $E_1(0)+E_2(0)=0$

(iii)   $E_1(0)+E_2(0)>0$

其中

  设问题(1.1)-(1.4)的解存在的最大时间区间为无穷.令

$\begin{equation}\phi(t)=\|u\|^2+a_2\|u_{x}\|^2+\|w\|^2+b_2\|w_{x}\|^2+\beta_0(t+t_0)^2, \label{3.3}\end{equation}$

其中$\beta_0$$t_0$是待定的非负常数. (3.3)式对$t$求导, 有

$\begin{equation}\dot{\phi}(t)=2\left[\int_{\mathbb{R} }uu_t{\rmd}x+a_2\int_{\mathbb{R} }u_xu_{xt}{\rm d}x+\int_{\mathbb{R} }ww_t{\rmd}x +b_2\int_{\mathbb{R} }w_xw_{xt}{\rmd}x+\beta_0(t+t_0)\right].\label{3.4}\end{equation}$

应用Schwarz不等式, 得

$\begin{equation}(\dot{\phi}(t))^2\leq4\phi(t)[\|u_t\|^2+a_2\|u_{xt}\|^2+\|w_t\|^2+b_2\|w_{xt}\|^2+\beta_0].\label{3.5}\end{equation}$

(3.4)式对$t$求导, 应用方程(1.1)-(1.2)和引理2.4, 知

$\begin{eqnarray}\ddot{\phi}(t)&=&2\Big[\|u_t\|^2+\int_{\mathbb{R} }uu_{tt}{\rmd}x+a_2\|u_{xt}\|^2+a_2\int_{\mathbb{R} }u_xu_{xtt}{\rm d}x+\|w_t\|^2+\int_{\mathbb{R} }ww_{tt}{\rm d}x\nonumber\\&&+b_2\|w_{xt}\|^2+b_2\int_{\mathbb{R} }w_xw_{xtt}{\rm d}x+\beta_0\Big]\nonumber\\&=&2\Big[\|u_t\|^2+a_2\|u_{xt}\|^2+\|w_t\|^2+b_2\|w_{xt}\|^2+\int_{\mathbb{R} }u(u_{tt}-a_2u_{xxtt}){\rm d}x\nonumber\\&&+\int_{\mathbb{R} }w(w_{tt}-b_2w_{xxtt}){\rm d}x+\beta_0\Big]\nonumber\\&=&2\Big\{\|u_t\|^2+a_2\|u_{xt}\|^2+\|w_t\|^2+b_2\|w_{xt}\|^2+\int_{\mathbb{R} }u[f(u_x)_x+a_1u_{xx}-a_3(u-w)]{\rm d}x\nonumber\\&&+\int_{\mathbb{R} }w[g(w_x)_x+b_1w_{xx}-a_3(w-u)]{\rm d}x+\beta_0\Big\}\nonumber\\&=&2\Big\{\|u_t\|^2-a_3\|u\|^2+a_2\|u_{xt}\|^2-a_1\|u_{x}\|^2+\|w_t\|^2-b_3\|w\|^2+b_2\|w_{xt}\|^2-b_1\|w_{x}\|^2\nonumber\\&&+2a_3\int_{\mathbb{R} }uw{\rm d}x-\int_{\mathbb{R} }f(u_x)u_x{\rmd}x-\int_{\mathbb{R} }g(w_x)w_x{\rm d}x+\beta_0\Big\}.\label{3.6}\end{eqnarray}$

从(3.3), (3.5), (3.6), (2.23)和(2.24)式, 可得

$\begin{eqnarray}&&\phi(t)\ddot{\phi}(t)-(1+\gamma)\dot{\phi}(t)^2\nonumber\\&\geq&\phi(t)\Big\{2\|u_t\|^2-2a_3\|u\|^2+2a_2\|u_{xt}\|^2-2a_1\|u_{x}\|^2+2\|w_t\|^2\nonumber\\&&-2b_3\|w\|^2+2b_2\|w_{xt}\|^2-2b_1\|w_{x}\|^2+4a_3\int_{\mathbb{R} }uw{\rm d}x-2\int_{\mathbb{R} }f(u_x)u_x{\rm d}x\nonumber\\&&-2\int_{\mathbb{R} }g(w_x)w_x{\rmd}x+2\beta_0-4(1+\gamma)[\|u_t\|^2+a_2\|u_{xt}\|^2+\|w_t\|^2+b_2\|w_{xt}\|^2+\beta_0]\Big\}\no\\&\geq&-\phi(t)\Big\{(3+4\gamma)(a_2\|u_{xt}\|^2+b_2\|w_{xt}\|^2)+(2+4\gamma)(\|u_t\|^2+\|w_t\|^2)-4a_3\int_{\mathbb{R} }uw{\rm d}x\nonumber\\&&+2a_1\|u_{x}\|^2+2b_1\|w_{x}\|^2+(2+4\gamma)\beta_0+2\int_{\mathbb{R} }f(u_x)u_x{\rm d}x+2\int_{\mathbb{R} }g(w_x)w_x{\rm d}x\Big\}\nonumber\\&=&-\phi(t)\Big\{(3+4\gamma)(E_1(0)+E_2(0))-\|u_t\|^2-\|w_t\|^2+(2+4\gamma)\beta_0-(1+4\gamma)a_3\|u\|^2\nonumber\\&&-(1+4\gamma)a_3\|w\|^2-(1+4\gamma)a_1\|u_x\|^2-(1+4\gamma)b_1\|w_x\|^2\nonumber\\&&+2(3+4\gamma)a_3\int_0^t\int_{\mathbb{R} }u_\tau w{\rm d}x{\rmd}\tau -2(3+4\gamma)\int_{\mathbb{R} }\varphi(u_x){\rm d}x\nonumber\\ &&+2(3+4\gamma)a_3\int_0^t\int_{\mathbb{R} }uw_\tau{\rm d}x{\rmd}\tau\nonumber-2(3+4\gamma)\int_{\mathbb{R} }\psi(w_x){\rm d}x+2\int_{\mathbb{R} }f(u_x)u_x{\rm d}x\nonumber\\&&+2\int_{\mathbb{R} }g(w_x)w_x{\rm d}x-4a_3\int_{\mathbb{R} }uw{\rm d}x\Big\}\nonumber\\&=&-\phi(t)\Big\{(3+4\gamma)(E_1(0)+E_2(0))-\|u_t\|^2-\|w_t\|^2+(2+4\gamma)\beta_0-(1+4\gamma)a_3\|u\|^2\nonumber\\&&-(1+4\gamma)a_3\|w\|^2-(1+4\gamma)a_1\|u_x\|^2-(1+4\gamma)b_1\|w_x\|^2-2(3+4\gamma)\int_{\mathbb{R} }\varphi(u_x){\rm d}x\nonumber\\&&-2(3+4\gamma)\int_{\mathbb{R} }\psi(w_x){\rm d}x+2\int_{\mathbb{R} }f(u_x)u_x{\rm d}x+2\int_{\mathbb{R} }g(w_x)w_x{\rm d}x\nonumber\\&&+2a_3(1+4\gamma)\int_{\mathbb{R} }uw{\rm d}x-2a_3(3+4\gamma)\int_{\mathbb{R} }u_0w_0{\rm d}x\Big\}\nonumber\\&\geq&-\phi(t)\{(3+4\gamma)(E_1(0)+E_2(0))+(2+4\gamma)\beta_0\}.\label{3.7}\end{eqnarray}$

(i) 如果$E_1(0)+E_2(0)<0$, 取$\beta_0=-\frac{3+4\gamma}{2+4\gamma}(E_1(0)+E_2(0))>0$, $t_0$充分大, 于是

$\phi(0)$, $\dot{\phi}(0)>0$.根据引理3.1知如果$t\rightarrow T_1\leq t_2=\frac{\phi(0)}{\gamma\dot{\phi}(0)}$时, $\phi(t)\rightarrow\infty.$

(ii) 如果$E_1(0)+E_2(0)=0$, 取$\beta_0=0$, 于是(3.7)式变成

$\phi(0)>0$是显然的.根据假定(ii)知$\dot{\phi}(0)>0$.应用引理3.1, 如果$t\rightarrow T_1\leq t_2=\frac{\phi(0)}{\gamma\dot{\phi}(0)}$时, 有$\phi(t)\rightarrow\infty$.

(iii) 如果$E_1(0)+E_2(0)>0$, 取$\beta_0=0$.由(3.7)式, 得

$Q(t)=\phi^{-\gamma}(t)$, 则

$\begin{eqnarray}\ddot{\phi}(t)&=&(\gamma+1)\gamma\phi^{-\gamma-2}(t)(\dot{\phi}(t))^2-\gamma\phi^{-\gamma-1}(t)\ddot{\phi}(t)\nonumber\\&\leq&(3+4\gamma)\gamma(E_1(0)+E_2(0))\phi^{-\gamma-1}(t).\label{3.8}\end{eqnarray}$

根据假定(iii), 知

$t^\ast=\sup\{\tau|\dot{Q}(\tau)<0, \tau\in[0, t)\}$, 因此由于$\dot{Q}(t)$的连续性, $t^\ast$是正的.用$2\dot{Q}(t)$同乘(3.8)式两端, 得

$\begin{eqnarray}\frac{{\rm d}}{{\rm d}t}(\dot{Q}(t))^2&\geq&-2\gamma^2(3+4\gamma)(E_1(0)+E_2(0))\phi^{-2\gamma-2}(t)\dot{\phi}(t)\nonumber\\&=&\frac{2\gamma^2(3+4\gamma)}{1+2\gamma}(E_1(0)+E_2(0))\frac{{\rmd}}{{\rm d}t}[\phi^{-2\gamma-1}(t)], \quad t\in[0, t^\ast].\label{3.9}\end{eqnarray}$

(3.9)式在$[0, t)$$(0\leq t<t^\ast)$上对$t$积分, 有

$\begin{equation}(\dot{Q}(t))^2\geq(\dot{Q}(0))^2+\frac{2\gamma^2(3+4\gamma)}{1+2\gamma}(E_1(0)+E_2(0))[\phi^{-2\gamma-1}(t)-\phi^{-2\gamma-1}(0)], \ t\in[0, t^\ast).\label{3.10}\end{equation}$

根据假定(iii), 可见

$\begin{equation}(\dot{Q}(0))^2-\frac{2\gamma^2(3+4\gamma)}{1+2\gamma}(E_1(0)+E_2(0))\phi^{-2\gamma-1}(0)>0.\label{3.11}\end{equation}$

$\dot{Q}(t)$的连续性, 由(3.10)和(3.11)式得

$\begin{equation}\dot{Q}(t)\leq-\left[(\dot{Q}(0))^2-\frac{2\gamma^2(3+4\gamma)}{1+2\gamma}(E_1(0)+E_2(0))\phi^{-2\gamma-1}(0)\right]^{\frac{1}{2}}, \quad t\in[0, t^\ast).\label{3.12}\end{equation}$

$t^\ast$的定义, 对于$t\geq0$, (3.12)式成立.所以

$\begin{equation}Q(t)\leqQ(0)-\left[(\dot{Q}(0))^2-\frac{2\gamma^2(3+4\gamma)}{1+2\gamma}(E_1(0)+E_2(0))\phi^{-2\gamma-1}(0)\right]^{\frac{1}{2}}t, \quad t>0.\label{3.13}\end{equation}$

由(3.13)式, 存在$T_1>0$, 使得$Q(T_1)=0$$0<T_1\leq T_0$成立, 其中

因此, 如果$t\rightarrow T_1\leq T_0$, $\phi(t)\rightarrow\infty$.

这样, 在假定条件(i)-(iii)下, 在$T_1$, $\phi(t)$总是变为无穷大.这与解存在的最大时间是无穷的事实矛盾.因此解存在的最大时间是有限的.证毕.

4 Cauchy问题(1.5), (1.6), (1.3), (1.4)

现在利用定理2.1, 2.3和3.1研究Cauchy问题(1.5), (1.6), (1.3), (1.4).

考虑Cauchy问题(1.5), (1.6), (1.3), (1.4)

其中$a_1$, $a_2$, $b_1$, $b_2>0$, $a_3\neq0$, $b_3\neq0$, $a_4\neq0$, $b_4\neq0$.

方程组(1.5)-(1.6)可以重写如下

$\begin{eqnarray}&&u_{tt}+\frac{a_1}{a_2}u-a_2\left(u_{tt}+\frac{a_1}{a_2}u\right)_{xx}=\frac{a_1}{a_2}u-a_3(u-w)-\frac{a_4}{2}(u_x^2)_{x}, \label{4.1}\end{eqnarray}$

$\begin{eqnarray}&&w_{tt}+\frac{b_1}{b_2}w-b_2\left(w_{tt}+\frac{b_1}{b_2}w\right)_{xx}=\frac{b_1}{b_2}w-b_3(w-u)-\frac{b_4}{2}(w_x^2)_{x}.\label{4.2}\end{eqnarray}$

方程(4.1)和(4.2)化为

$\begin{eqnarray}u_{tt}+\frac{a_1}{a_2}u&=&(I-a_2\partial^2_x)^{-1}\left[\frac{a_1}{a_2}u-a_3(u-w)-\frac{a_4}{2}(u_x^2)_{x}\right]\nonumber\\&=&G_1\ast\left[\frac{a_1}{a_2}u-a_3(u-w)-\frac{a_4}{2}(u_x^2)_{x}\right], \label{4.3}\end{eqnarray}$

$\begin{eqnarray}w_{tt}+\frac{b_1}{b_2}w&=&(I-b_2\partial^2_x)^{-1}\left[\frac{b_1}{b_2}w-b_3(w-u)-\frac{b_4}{2}(w_x^2)_{x}\right]\nonumber\\&=&G_2\ast\left[\frac{b_1}{b_2}w-b_3(w-u)-\frac{b_4}{2}(w_x^2)_{x}\right].\label{4.4}\end{eqnarray}$

(4.3)和(4.4)式对$t$积分两次, 且注意到条件(1.3)-(1.4), Cauchy问题(1.5), (1.6), (1.3), (1.4)变为下列积分方程组

其中

根据定理2.1易证下面的定理.

定理 4.1  设$s\geq2$, $V_0$, $V_1\in H^s\times H^s$, $f$, $g\in C^{[s]+1}(\mathbb{R} )$, $f(0)=0$, $g(0)=0$.则Cauchy问题$(1.5)$, $(1.6)$, $(1.3)$, $(1.4)$存在唯一局部广义解$V\in C([0, T_0);H^s\times H^s)$, 其中$[0, T_0)$是最大时间区间.同时, 如果

$\begin{equation}\sup\limits_{t\in[0, T_0)}[\|V(\cdot, t)\|_{H^s\timesH^s}+\|V_t(\cdot, t)\|_{H^s\times H^s}]<\infty, \label{4.5}\end{equation}$

$T_0=\infty$.

根据引理2.5易证以下引理.

引理 4.1  设$V_0$, $V_1\in H^1\times H^1$, $f$, $g\in C(\mathbb{R} )$, $\varphi(u_x)=-\frac{a_4}{6}u_x^3$, $\psi(w_x)=-\frac{b_4}{6}w_x^3$, $\varphi(u_{0x})\in L^1$, $\psi(w_{0x})\in L^1$, 则Cauchy问题$(1.5)$, $(1.6)$, $(1.3)$, $(1.4)$的广义解$V\in C^2([0, T_0);H^s\times H^s)$$(s\geq2)$满足下列等式

$\begin{eqnarray}E_1(t)&=&\|u_t\|^2+a_3\|u\|^2+a_1\|u_x\|^2+a_2\|u_{xt}\|^2-2a_3\int_0^t\int_{-\infty}^{\infty}u_\tau w{\rm d}x{\rm d}\tau-\frac{a_4}{3}\int_{-\infty}^{\infty}u_x^3{\rmd}x\\&=&E_1(0), \label{4.6}\end{eqnarray}$

$\begin{eqnarray}E_2(t)&=&\|w_t\|^2+b_3\|w\|^2+b_1\|w_x\|^2+b_2\|w_{xt}\|^2-2b_3\int_0^t\int_{-\infty}^{\infty}uw_\tau {\rm d}x{\rm d}\tau-\frac{b_4}{3}\int_{-\infty}^{\infty}w_x^3{\rmd}x\\&=&E_2(0).\label{4.7}\end{eqnarray}$

因为在Cauchy问题(1.5), (1.6), (1.3), (1.4)中, $\varphi(u_x)=-\frac{a_4}{6}u_x^3>0$$\psi(w_x)=-\frac{b_4}{6}w_x^3>0$, 其中$a_4>0$, $b_4>0$$a_4<0$, $b_4<0$不成立. $|f(u_x)|\leq A_0\varphi(u_x)^{\frac{1}{\rho}}|u_x|+B_0$, $|g(w_x)|\leq C_0\psi(w_x)^{\frac{1}{\rho}}|w_x|+D_0$也不成立, 其中$1\leq\rho\leq\infty$.根据定理2.3, Cauchy问题(1.5), (1.6), (1.3), (1.4)也不存在唯一整体解.

根据定理3.1易证下面的定理.

定理 4.2  设$f$, $g\in C(\mathbb{R} )$, $u_0$, $u_1$, $w_0$, $w_1\in H^1(\mathbb{R} )$, $\int_{\mathbb{R} }u_0w_0{\rm d}x>0$, $\varphi$, $\psi\in L^1(\mathbb{R} )$, $a_3=b_3>0$, 且存在一常数$\gamma>0$, 使得

$\begin{equation}\begin{array}{ll} -\frac{a_4}{2}y^3\geq(3+4\gamma)(-\frac{a_4}{6}y^3), \ \y\in\mathbb{R}, \\[3mm] -\frac{b_4}{2}y^3\geq(3+4\gamma)(-\frac{b_4}{6}y^3), \ \y\in\mathbb{R}, \label{4.8}\end{array}\end{equation}$

于是Cauchy问题$(1.5)$, $(1.6)$, $(1.3)$, $(1.4)$的广义解或古典解$V(x, t)$在有限时刻爆破, 如果下列条件之一成立:

(i)   $E_1(0)+E_2(0)<0$;

(ii)   $E_1(0)+E_2(0)=0$,

(iii)   $E_1(0)+E_2(0)>0$,

其中

参考文献

Khusnutdinova Karima R , Samsonov Alexander M , Zakharov Alexey S .

Nonlinear layered lattice model and generalized solitary waves in imperfectly bonded structures

Physical Review E, 2009, 79: 056606

URL     [本文引用: 2]

Wang S B , Chen G W .

Small amplitude solutions of the generalized IMBq equation

J Math Anal Appl, 2002, 274: 846- 866

URL     [本文引用: 1]

Kato T , Pouce G .

Commutator estimates and the Euler and Navie-Stokes equations

Commun Pure Appl Math, 1988, 41: 891- 907

URL     [本文引用: 1]

陈国旺. 索伯列夫空间导论. 北京: 科学出版社, 2013

[本文引用: 3]

Chen G W . Introduction to Sobolev Space. Beijing: Science Press, 2013

[本文引用: 3]

Adams Robert A , Fournier John J . Sobolev Spaces. New York: Academic Press, 2003

Kalatarov V K , Ladyzhenskaya O A .

The occurrence of collapse for quasi-linear equation of parabolic and hyperbolic types

J Soviet Math, 1978, 10: 53- 70

URL     [本文引用: 1]

/