数学物理学报, 2020, 40(6): 1537-1551 doi:

论文

一类带强迫项的高阶半线性分数阶微分方程的广义Lyapunov不等式

马德香,1, ÖzbeklerAbdullah,2

Generalized Lyapunov Inequalities for a Higher-Order Sequential Fractional Differential Equation with Half-Linear Terms

Ma Dexiang,1, Özbekler Abdullah,2

通讯作者: 马德香, E-mail: mdxcxg@163.com

收稿日期: 2019-06-14  

Received: 2019-06-14  

作者简介 About authors

AbdullahÖzbekler,E-mail:aozbekler@gmail.com , E-mail:aozbekler@gmail.com

Abstract

In this paper, we establish some new Lyapunov-type inequalities and Hartman-type inequalities for a higher-order sequential Riemann-Liouville fractional boundary value problem with some half-linear terms and a forcing term. We generalize some existing results in literature.

Keywords: Fractional derivative ; Green's function ; Lyapunov-type inequality ; Hartman-type inequality

PDF (346KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

马德香, ÖzbeklerAbdullah. 一类带强迫项的高阶半线性分数阶微分方程的广义Lyapunov不等式. 数学物理学报[J], 2020, 40(6): 1537-1551 doi:

Ma Dexiang, Özbekler Abdullah. Generalized Lyapunov Inequalities for a Higher-Order Sequential Fractional Differential Equation with Half-Linear Terms. Acta Mathematica Scientia[J], 2020, 40(6): 1537-1551 doi:

1 引言

对于方程

$\begin{equation}\label{gg}x"(t)+\nu(t)x(t)=0, \end{equation}$

有如下结论:如果$a$$ b$ ($a<b$)是方程的非零解$x(t)$的两个连续零点, 那么必有

$\begin{equation}\label{w2}\int_a^b|\nu(t)|{\rm d}t>\frac{4}{b-a}.\end{equation}$

上述结果参见文献[1]. (1.2)式被称为Lyapunov不等式.在文献[2]中, Wintner将(1.2)式改进如下

$\begin{equation}\label{v08.}\int_a^b\nu^+(t){\rm d}t>\frac{4}{b-a}, \end{equation}$

其中$\nu^+(t)=\max\{\nu(t), 0\}$.称(1.3)式为Lyapunov型不等式.研究表明, Lyapunov型不等式(1.3)中的常数$4$不可能被更大的数代替(参见文献[1]和[3, 定理5.1]).后来, 对于方程(1.1), Hartman在文献[3]中得到下述Hartman型不等式

$\begin{equation}\label{v08..} \int_a^b(b - t)(t - a)\nu^+(t){\rm d}t>{b-a}. \end{equation} $

由于对任意$t\in (a, b), $都有$(b-t)(t-a)\leq (b-a)^2/4, $因此由不等式(1.4)可得不等式(1.3).

微分方程Lyapunov不等式及广义Lyapunov不等式(如Lyapunov型不等式和Hartman型不等式)被广泛应用在研究振荡理论、渐近理论、非共轭区间的估计以及特征值估计.鉴于其广泛应用, 该研究热点被推广到各种不同的微分方程, 例如对带线性项的偶数阶线性微分方程的研究, 参见文献[4-10]; 对带线性项的奇数阶线性微分方程的研究, 参见文献[5, 11-12]; 对带半线性项的偶数阶线性微分方程的研究, 参见文献[13-14]; 对带半线性项的二阶半线性微分方程的研究, 参见文献[14-19]; 对带线性项的高阶线性微分方程的研究和带半线性项的高阶半线性微分方程的研究, 分别参见文献[20-21]和[22-23].

随着分数阶微积分的发展, 对Lyapunov不等式的研究已经推广到分数阶微分方程

$\begin{equation}\label{f1} (_a {\cal D}^{v}x)(t)+\nu(t)x(t)=0, \qquad a<t<b. \end{equation}$

显然, 如果取$v=n\in {\Bbb N}$, 则$(_a D^{v}x)=x^{(n)}$, 从而分数阶微分方程(1.5)退化为整数阶微分方程, 因此对分数阶微分方程Lyapunov不等式的研究是对整数阶微分方程相应研究内容的推广.关于分数阶微分方程(1.5)的Lyapunov型不等式的研究结果, 当$v\in(1, 2]$时参见文献[24-27]; 当$v\in(2, 3]$时参见文献[28-29]; 当$v\in(3, 4]$时参见文献[30].最近, Agarwal等[31]将Lyapunov不等式的研究推广到下面带强迫项的混合半线性分数阶微分方程

$\begin{equation} \label{f2} (_a {\cal D}^{v}x)(t)+p(t)\Phi_{\mu}(x(t))+q(t)\Phi_{\gamma}(x(t))=f(t), \qquad a<t<b, \:v\in(1, 2], \end{equation} $

其中$ 0<\mu<1<\gamma<2, $$\Phi_{*}(s)=|s|^{*-1}s$.文献[31]中非常重要的改进是将(1.5)式中的线性项$\nu(t)x(t)$推广到(1.6)式中的混合半线性项$p(t)\Phi_{\mu}(x(t))+q(t)\Phi_{\gamma}(x(t))$.

显然, 当$\gamma\rightarrow 1^+$$\mu\rightarrow{1^-}$时, (1.6)式退化成

其中$\nu(t)=p(t)+q(t)$.因此, 半线性问题(1.6)是线性问题(1.5)的推广.

考虑方程(1.6)的两种特殊情况.其一是次线性项的权因子$p(t)=0$, 则微分方程退化为

$\begin{equation} \label{f2.} (_a {\cal D}^{v}x)(t)+q(t)\Phi_{\gamma}(x(t))=f(t), \qquad a<t<b, \:v\in(1, 2], \:1<\gamma<2; \end{equation} $

其二是超线性项的权因子$q(t)=0$, 则微分方程退化为

$ \begin{equation} \label{f2..} (_a {\cal D}^{v}x)(t)+p(t)\Phi_{\mu}(x(t))=f(t), \qquad a<t<b, \:v\in(1, 2], \:0<\mu<1. \end{equation}$

截至目前, 还没有文献讨论当方程(1.7), (1.8)和(1.6)中的参数$\mu$$\gamma$取任意正数时的结果.正如文献[31]中提到, 讨论微分方程

在参数$\gamma\geq2$时的Lyapunov不等式是非常有意义的.本文正是基于此, 讨论一类更广泛的带强迫项的高阶半线性分数阶微分方程的广义Lyapunov不等式.本文研究结果统一并推广了许多现有文献的结果.特别的, 上述提出的问题刚好是本文的特殊情况.

本文讨论下述带强迫项的高阶半线性分数阶微分方程的广义Lyapunov不等式

$\begin{equation}\label{wenti}\left\{\begin{array}{llll}(-1)^{n+1}(_a {\cal D}^{ [\alpha_n]} x)(t)+p(t)\Phi_{\beta}(x(t))=f(t), \qquad t\in(a, b), \\(_a {\cal D}^{ [\alpha_i]} x)(a)=(_a {\cal D}^{ [\alpha_i]} x)(b)=0, \quad \qquad i=0, 1, 2, \cdots , n-1.\end{array}\right.\end{equation}$

为方便起见, 关于(1.9)式, 做如下说明

(i) $\alpha_i\in(1, 2](i=1, 2, \cdots , n, n\in {\Bbb N}$);

(ii) $\beta>0$, $\Phi_\beta(x)=|x|^{\beta-1}x$, $x\in{\Bbb R}$;

(iii) 权因子项$p(t)$和强迫项$f(t)$$[a, b]$上连续;

(iv) 对$i=1, 2, \cdots , n, $

$ \begin{equation}\label{hb} (_a {\cal D}^{[\alpha_i]}x)(t)=(_a {\cal D}^{\alpha_i}(_a {\cal D}^{[\alpha_{i-1}]}x))(t), \qquad i=1, 2, \cdots , n, \end{equation} $

其中$(_a {\cal D}^{ [\alpha_0]} x)(t)=x(t)$; 对$i=1, 2, \cdots , n, $$_a {\cal D}^{\alpha_i}$$\alpha_i$阶黎曼-刘维尔分数阶导数.

注 1.1  在研究方程(1.9)之前, 我们指出文献[31]中的几点问题.

(i) 在文献[31]的不等式(2.11)中, 可以证明对任意的$A>0$$B>0, $若取$z_0=\big(\frac{\alpha B}{2A}\big)^{\frac{1}{2-\alpha}}, $则不等式中的等号都是成立的, 并非如原文献中所述:不等式(2.11)中的等号成立当且仅当$B=z=0.$换句话说, 当$A>0, B>0$时, 不等式(2.11)在$(0, +\infty)$上不是严格不等式.

(ii) 文献[31]中的不等式(2.11)是非严格不等式, 而应该表述如下

$\begin{equation}\label{9} (P_0+Q_0)x^2(c)-x(c)+\mu_0P_0+\gamma_0Q_0+F_0\geq0.\end{equation}$

因为利用其引理2.1中结论只能得到

而非原文中如下的严格不等式

由此由(1.11)式只可得到

而非原文中的

从而, 文献[31]中不等式(2.3), (2.12)和(2.16), 定理2.9(i)中不等式, 定理2.10(i)中不等式, 以及不等式(2.18)都是非严格不等式.本文接下来的陈述中凡提到上述不等式(例如注3.1, 注3.2, 注3.3以及注4.2), 均指非严格不等式.

(iii) 为了得到$(P_0+Q_0)(\mu_0P_0+\gamma_0Q_0+F_0)\geq\frac{1}{4}$ (文献[31]中为$(P_0+Q_0)(\mu_0P_0+\gamma_0Q_0+F_0)>\frac{1}{4}$), 条件$P_0+Q_0>0$是必要的.为此文献[31]中必须增加条件$p^+(t)\not\equiv 0$$q^+(t)\not\equiv 0.$事实上, $p^+(t)\not\equiv 0$$q^+(t)\not\equiv 0$在证明文献[31]中所有定理和推论时都是必须的.

定义 1.1  称$x(t)$是方程(1.9)在$[a, b]$上的非零解, 指$x(t)\in C[a, b]$满足方程(1.9), 且对任意$t\in(a, b), $都有$x(t)\neq 0.$

定义 1.2[32]  $g$是定义在$[a, b]$上的实函数, $\alpha\geq 0.$函数$g$$\alpha$阶黎曼-刘维尔分数阶积分定义如下

其中$t\in [a, b]$, $\Gamma(\alpha)=\int_0^\infty t^{\alpha-1}e^{-t}{\rm d}t$是Gamma函数.

定义 1.3[32]  $g$是定义在$[a, b]$上的实函数, $\alpha\geq 0.$函数$g$$\alpha$阶黎曼-刘维尔分数阶导数定义如下

其中$t\in [a, b], $$m$是大于等于$\alpha$的最小正整数.

注 1.2  对任意$\alpha\in{\Bbb N}$$\alpha\geq0$, 有

(i) $(_a {\cal D}^{\alpha}g)=g^{(\alpha)}$;

(ii) 对任意$\beta\geq 0$, $(_a {\cal D}^{\alpha+\beta}g)=(_a {\cal D}^{\beta}g)^{(\alpha)}$.

接下来, 本文在第2部分将给出一些引理, 主要结果在第3部分给出, 第4部分中会把主要结果推广到更一般的问题.最后给出例子作为理论结果的应用.

2 引理

引理 2.1  设$\delta>0$是固定常数.则对任意$m>\delta$, 都有

$\begin{equation}\label{lemeq1}z^m+(m-\delta)\delta^{\delta/(m-\delta)}m^{-m/(m-\delta)}\geq z^\delta, \qquad z\in(0, +\infty).\end{equation}$

(2.1)式中的等号成立当且仅当$z_0=\big(\frac{\delta}{m}\big)^{\frac{1}{m-\delta}}.$

  对任意$m>\delta$, 定义函数$ {\cal F}(z)=z^m-z^\delta, \ z\in(0, +\infty). $容易知道定义在$(0, \infty)$上的函数${\cal F}$在点$z_0=\big(\delta/m\big)^{1/(m-\delta)}$取得最小值且最小值点唯一, 同时

即(2.1)式成立, 且知(2.1)式中的等号成立当且仅当$z_0=\big(\delta/m\big)^{1/(m-\delta)}.$证毕.

引理 2.2[24]  $x(t)$是分数阶微分方程边值问题

$\begin{equation}\label{jian1}\left\{ \begin{array}{lll}(_{a} {\cal D}^{\alpha}x)(t)=-q(t)x(t), \qquad a<t\leq b, \quad \alpha\in(1, 2], \\x(a)=x(b)=0, \end{array}\right.\end{equation}$

$[a, b]$上的连续解当且仅当其满足积分方程

其中$G^\alpha(t, s)$是问题(2.2)的Green函数且

$\begin{equation}\label{green1}G^\alpha(t, s)=\frac{(b-a)^{1-\alpha}}{\Gamma(\alpha)}\left\{\begin{array}{ll}[(t-a)(b-s)]^{\alpha-1}-[(b-a)(t-s)]^{\alpha-1}, &a\leq s\leq t\leq b\\{}[(t-a)(b-s)]^{\alpha-1}, &a\leq t\leq s\leq b\end{array}\right..\end{equation}$

引理 2.3[24]  (2.3)式中定义的Green函数$G^\alpha(t, s)$满足下述性质

(i) 对任意$t, s\in[a, b]$,

(ii) 对任意$s\in [a, b]$,

引理 2.4[33]  (2.3)式中定义的Green函数$G^\alpha(t, s)$满足

为方便, 对$i=1, 2, \cdots , n$, 若记

那么, 由引理2.3和引理2.4可得

(a) 对任意$t, s\in[a, b]$和任意$\alpha_i (i=1, 2, \cdots , n)$,

$\begin{equation}\label{m}G^{\alpha_i}(t, s)\geq 0;\end{equation}$

(b) 对任意$s\in[a, b]$和任意$\alpha_i (i=1, 2, \cdots , n)$,

$\begin{equation}\label{d}\max\limits_{t\in [a, b]}G^{\alpha_i}(t, s)=G^{\alpha_i}(s, s)=\frac{\left[(s-a)(b-s)\right]^{{\alpha_i}-1}}{\Gamma({\alpha_i})(b-a)^{{\alpha_i}-1}}\leq \frac{(b-a)^{\alpha_i-1}}{4^{\alpha_i-1}\Gamma(\alpha_i)};\end{equation}$

(c) 对任意$\alpha_i (i=1, 2, \cdots , n)$,

$\begin{equation}\label{x}\max\limits_{t\in [a, b]}\int_a^bG^{\alpha_i}(t, s){\rm d}s=\frac{(b-a)^{{\alpha_i}}({\alpha_i}-1)^{{\alpha_i}-1}}{{\alpha_i}^{{\alpha_i}}\Gamma({\alpha_i}+1)}:={G_0^{\alpha_i}}.\end{equation}$

引理 2.5  对任意$t\in [a, b]$,

  由(2.6)式可知

因此对任意$t\in [a, b]$

依此类推得

引理2.5证毕.

3 主要结果

为方便起见, 记$u^\pm=\max\{\pm u, 0\};$引入常数

$\begin{equation}\label {0con1}{\mathcal G}=G_0^{\alpha_1}\cdots{G_0^{\alpha_{n-2}}}{G_0^{\alpha_{n-1}}}>0;\end {equation}$

$\begin{equation}\label{con2}\gamma=(m-\beta)\beta^{\beta/(m-\beta)}m^{-m/(m-\beta)};\end {equation}$

其中(3.2)式中$m$定义如下

$\begin{equation}\label {con1}m=\max\{n_0, 2\}, \textrm{而}\ n_0\in {\Bbb N}\ \textrm{满足}\ n_0-1\leq\beta< n_0.\end {equation}$

定理 3.1  假设在$[a, b]$$p^+(t)\not\equiv0$且方程(1.9)在$[a, b]$上有非零解$x(t)$, 那么有下面结论:

(A) 如果在$(a, b)$$x(t)$恒正即$x(t)>0$, 那么有

$\begin{eqnarray}\label{ma1}&&\bigg(\int_a^b{\left[(s-a)(b-s)\right]^{\alpha_n-1}}\big(\gamma p^+(s)+f^-(s)\big){\rm d}s\bigg)^{m-1}\nonumber\\&&\times\bigg(\int_a^b{\left[(s-a)(b-s)\right]^{\alpha_n-1}}p^+(s){\rm d}s\bigg)\geq\bigg(\frac{{\Gamma(\alpha_n)}(m-1)^{1-1/m}}{m{\mathcal G}(b-a)^{1-\alpha_n}}\bigg)^m, \end{eqnarray}$

$\begin{equation}\label{ma2}\bigg(\int_a^b\big(\gamma p^+(s)+f^-(s)\big){\rm d}s\bigg)^{m-1}\bigg(\int_a^bp^+(s){\rm d}s\bigg)>\bigg(\frac{4^{\alpha_n-1}\Gamma(\alpha_n)(m-1)^{1-1/m}}{m{\mathcal G}(b-a)^{\alpha_n-1}}\bigg)^m;\end{equation}$

(B) 如果在$(a, b)$$x(t)$恒负即$x(t)<0$, 那么有

$\begin{eqnarray}\label{d1}&&\bigg(\int_a^b{\left[(s-a)(b-s)\right]^{\alpha_n-1}}\big(\gamma p^+(s)+f^+(s)\big){\rm d}s\bigg)^{m-1}\nonumber\\&&\times\bigg(\int_a^b{\left[(s-a)(b-s)\right]^{\alpha_n-1}}p^+(s){\rm d}s\bigg)\geq\bigg(\frac{{\Gamma(\alpha_n)}(m-1)^{1-1/m}}{m{\mathcal G}(b-a)^{1-\alpha_n}}\bigg)^m, \end{eqnarray}$

$\begin{equation}\label{d2}\bigg(\int_a^b\big(\gamma p^+(s)+f^+(s)\big){\rm d}s\bigg)^{m-1}\bigg(\int_a^bp^+(s){\rm d}s\bigg)>\bigg(\frac{4^{\alpha_n-1}\Gamma(\alpha_n)(m-1)^{1-1/m}}{m{\mathcal G}(b-a)^{\alpha_n-1}}\bigg)^m;\end{equation}$

(C) 如果在$(a, b)$$x(t)$取值正负不定, 那么有

$\begin{eqnarray}\label{r1}&&\bigg(\int_a^b{\left[(s-a)(b-s)\right]^{\alpha_n-1}}\big(\gamma p^+(s)+|f(s)|\big){\rm d}s\bigg)^{m-1}\nonumber\\&&\times\bigg(\int_a^b{\left[(s-a)(b-s)\right]^{\alpha_n-1}}p^+(s){\rm d}s\bigg)\geq\bigg(\frac{{\Gamma(\alpha_n)}(m-1)^{1-1/m}}{m{\mathcal G}(b-a)^{1-\alpha_n}}\bigg)^m, \end{eqnarray}$

$\begin{equation}\label{r2}\bigg(\int_a^b\big(\gamma p^+(s)+|f(s)|\big){\rm d}s\bigg)^{m-1}\bigg(\int_a^bp^+(s){\rm d}s\bigg)>\bigg(\frac{4^{\alpha_n-1}\Gamma(\alpha_n)(m-1)^{1-1/m}}{m{\mathcal G}(b-a)^{\alpha_n-1}}\bigg)^m.\end{equation}$

  令$||x||=\max\limits_{t\in [a, b]}|x(t)|.$

(A) 记$x(t)$是方程(1.9)在$[a, b]$上的非零解, 且在$(a, b)$$x(t)>0$.则有

$\begin{equation}\label{0c2}(-1)^{n}(_a {\cal D}^{[\alpha_n]} x)(t)=p(t)\Phi_{\beta}(x(t))-f(t)=p(t)x^\beta(t)-f(t)\leq p^+(t)x^{\beta}(t)+f^-(t), \end{equation}$

$\begin{equation}(_a {\cal D}^{ [\alpha_i]} x)(a)=(_a {\cal D}^{ [\alpha_i]} x)(b)=0, \quad \qquad i=0, 1, 2, \cdots , n-1. \label{c2}\end{equation}$

$i=1, 2, \cdots , n$, 令$y_{i-1}(t)=(_a {\cal D}^{[\alpha_{i-1}]}x)(t).$那么由(1.10)式和(3.11)式可得

$\begin{equation}\label{hb1}\left\{\begin{array}{lll}(_a {\cal D}^{\alpha_{i}}y_{i-1})(t)=(_a {\cal D}^{\alpha_i}(_a {\cal D}^{[\alpha_{i-1}]}x))(t)=(_a {\cal D}^{[\alpha_i]}x)(t), \\y_{i-1}(a)=y_{i-1}(b)=0.\end{array}\right.\end{equation}$

利用引理2.2, 由(3.12)式得

$\begin{equation}y_{i-1}(t)=-\int_a^bG^{\alpha_i}(t, s_i)(_a {\cal D}^{[\alpha_i]}x)(s_i){\rm d}s_i, \end{equation}$

$\begin{equation}\label{ou2g}(_a {\cal D}^{[\alpha_{i-1}]}x)(t)=-\int_a^bG^{\alpha_i}(t, s_i)(_a {\cal D}^{[\alpha_i]}x)(s_i){\rm d}s_i, \quad i=1, 2, \cdots , n.\end{equation}$

在(3.14)式中取$i=1$

$\begin{equation}\label{oua1}x(t)=(_a {\cal D}^{ [\alpha_{0}]} x)(t)=-\int_a^bG^{\alpha_{1}}(t, s_{1})(_a {\cal D}^{[\alpha_1]}x)(s_{1}){\rm d}s_{1}.\end{equation}$

在(3.14)式中取$i=2$并将所得结果带入(3.15)式得

$\begin{eqnarray}\label{oua2}x(t)&=&-\int_a^bG^{\alpha_{1}}(t, s_{1})\bigg[-\int_a^bG^{\alpha_{2}}(s_1, s_2)(_a {\cal D}^{ [\alpha_2]} x)(s_2){\rm d}s_2\bigg]{\rm d}s_{1}\nonumber\\&=&(-1)^2\int_{[a, b]^2}G^{\alpha_{1}}(t, s_{1})G^{\alpha_{2}}(s_1, s_2)(_a {\cal D}^{[\alpha_2]}x)(s_2){\rm d}s_2{\rm d}s_{1}.\end{eqnarray}$

在(3.14)式中取$i=3$并将所得结果带入(3.16)式得

依此类推, 重复上述过程$n$次, 最终可得

$\begin{eqnarray}\label{ou3}x(t)=(-1)^n\int_{[a, b]^n}G^{\alpha_{1}}(t, s_{1})G^{\alpha_{2}}(s_{1}, s_{2})\cdots G^{\alpha_n}(s_{n-1}, s_n)(_a {\cal D}^{[\alpha_n]} x)(s_n){\rm d}s_n\cdots{\rm d}s_1.\end{eqnarray}$

将(3.10)式带入(3.17)式得

$\begin{equation}\label{oou3}x(t)\leq\int_{[a, b]^n}G^{\alpha_{1}}(t, s_{1})G^{\alpha_{2}}(s_{1}, s_{2})\cdots G^{\alpha_n}(s_{n-1}, s_n)[p^+(s_n)x^{\beta}(s_n)+f^-(s_n)]{\rm d}s_n\cdots{\rm d}s_1.\end{equation}$

另一方面, 由(2.5)式可知

$\begin{equation}\label{gm1}G^{\alpha_n}(s_{n-1}, s_n)\leq G^{\alpha_n}(s_{n}, s_n).\end{equation}$

将(3.19)式带入(3.18)式并且运用引理2.5得到

$\begin{eqnarray}\label{ou3o}x(t)&\leq&\int_{[a, b]^n}G^{\alpha_{1}}(t, s_{1})G^{\alpha_{2}}(s_{1}, s_{2})\cdots G^{\alpha_n}(s_{n}, s_n)\left[p^+(s_n)x^{\beta}(s_n)+f^-(s_n)\right]{\rm d}s_n\cdots{\rm d}s_1\nonumber\\&=&\int_{[a, b]^{n-1}}G^{\alpha_{1}}(t, s_{1})G^{\alpha_{2}}(s_{1}, s_{2})\cdots G^{\alpha_{n-1}}(s_{n-2}, s_{n-1}){\rm d}s_{n-1}\cdots{\rm d}s_1\nonumber\\&&\times\int_a^bG^{\alpha_n}(s, s)\left[p^+(s)x^{\beta}(s)+f^-(s)\right]{\rm d}s\nonumber\\&\leq&{\mathcal G}\int_a^bG^{\alpha_n}(s, s)\left[p^+(s)x^{\beta}(s)+f^-(s)\right]{\rm d}s\nonumber\\&\leq&{\mathcal G}\int_a^bG^{\alpha_n}(s, s)\left[p^+(s)\|x\|^{\beta}+f^-(s)\right]{\rm d}s.\end{eqnarray}$

显然, 由(3.20)式知

$\begin{equation}\label{ou4}||x||\leq{\mathcal G}\int_a^bG^{\alpha_n}(s, s)p^+(s)||x||^{\beta}{\rm d}s+{\mathcal G}\int_a^bG^{\alpha_n}(s, s)f^-(s){\rm d}s.\end{equation}$

注意到(3.3)式中定义的常数$m$满足$m>\beta$, 因此运用引理2.1得

$\begin{equation}\label{ou5}||x||^{\beta}\leq||x||^m+\gamma, \end{equation}$

其中$\gamma$是(3.21)式中定义的常数.

将(3.22)式带入(3.21)式得

其中

$p^+(t)\not\equiv0$可知${\cal A}_0>0$${\cal C}_0>0.$考虑到$z=||x||>0$为变量, 因此

此式即为(3.4)式.

考虑到

$\begin{equation}\label{mm}{\left[(s-a)(b-s)\right]^{{\alpha_n}-1}}\leq\frac{(b-a)^{2(\alpha_n-1)}}{4^{\alpha_n-1}}.\end{equation}$

${\left[(s-a)(b-s)\right]^{{\alpha_n}-1}}\not\equiv\frac{(b-a)^{2(\alpha_n-1)}}{4^{\alpha_n-1}}$$p^+(t)\not\equiv0, $可得

$\begin{equation}\label{mm1}\int_a^b{\left[(s-a)(b-s)\right]^{\alpha_n-1}}p^+(s){\rm d}s<\frac{(b-a)^{2(\alpha_n-1)}}{4^{\alpha_n-1}}\int_a^bp^+(s){\rm d}s, \end{equation}$

$\begin{equation}\label{mm2}\int_a^b{\left[(s-a)(b-s)\right]^{\alpha_n-1}}\left[\gamma p^+(s)+f^-(s)\right]{\rm d}s <\frac{(b-a)^{2(\alpha_n-1)}}{4^{\alpha_n-1}}\int_a^b\left[\gamma p^+(s)+f^-(s)\right]{\rm d}s.\end{equation}$

由(3.24)式和(3.25)式, 结合(3.4)式易得(3.5)式.

(B) 记$x(t)$是方程(1.9)在$[a, b]$上的非零解, 且在$(a, b)$$x(t)<0$.$z(t)=-x(t)$必是下述问题

$\begin{equation}\label{t1}\left\{\begin{array}{lll}(-1)^{n+1}(_a {\cal D}^{ [\alpha_n]} z)(t)+p(t)\Phi_{\beta}(z(t))=-f(t), \qquad t\in(a, b), \\(_a {\cal D}^{ [\alpha_i]} z)(a)=(_a {\cal D}^{ [\alpha_i]} z)(b)=0, \qquad\qquad i=0, 1, 2, \cdots , n-1\end{array}\right.\end{equation}$

$[a, b]$上的非零解, 且在$(a, b)$$z(t)>0$.由(A)中结论可得

$\begin{eqnarray}\label{tt2}&&\bigg(\int_a^b{\left[(s-a)(b-s)\right]^{\alpha_n-1}}\left[\gamma p^+(s)+(-f)^-(s)\right]{\rm d}s\bigg)^{m-1}\nonumber\\&&\times\bigg(\int_a^b{\left[(s-a)(b-s)\right]^{\alpha_n-1}}p^+(s){\rm d}s\bigg)\geq\bigg(\frac{{\Gamma(\alpha_n)}(m-1)^{1-1/m}}{m{\mathcal G}(b-a)^{1-\alpha_n}}\bigg)^m;\end{eqnarray}$

$\begin{equation}\label{tt3}\bigg(\int_a^b\left[\gamma p^+(s)+(-f)^-(s)\right]{\rm d}s\bigg)^{m-1}\bigg(\int_a^bp^+(s){\rm d}s\bigg)>\bigg(\frac{4^{\alpha_n-1}\Gamma(\alpha_n)(m-1)^{1-1/m}}{m{\mathcal G}(b-a)^{\alpha_n-1}}\bigg)^m.\end{equation}$

考虑到$(-f)^-=f^+$, 则不等式(3.27)和(3.28)分别为(3.6)和(3.7)式.

(C) 记$x(t)$是方程(1.9)在$[a, b]$上的非零解.那么必有$x(t)>0, t\in(a, b)$$x(t)<0, t\in(a, b)$.考虑到$f^\pm(t)\leq|f(t)|$, 由(3.4)和(3.6)式易得(3.8)式; 由(3.5)和(3.7)式易得(3.9)式.定理3.1证毕.

$n=1$时, 方程(1.9)退化为

$\begin{equation}\label{wentik}\left\{\begin{array}{lll} (_a {\cal D}^{ \alpha} x)(t)+p(t)\Phi_{\beta}(x(t))=f(t), \qquad t\in(a, b), \quad\alpha\in (1, 2], \quad\beta>0, \\ x(a)=x(b)=0. \end{array}\right.\end{equation} $

此时由定理3.1(C)得下面推论.

推论 3.1  假设在$[a, b]$$p^+(t)\not\equiv0$且问题\reff{wentik}在$[a, b]$上有非零解$x(t)$, 那么有

$ \begin{eqnarray}\label{k3} &&\bigg(\int_a^b{\left[(s-a)(b-s)\right]^{\alpha-1}}[\gamma p^+(s)+|f(s)|]{\rm d}s\bigg)^{m-1}\nonumber\\ &&\times\bigg(\int_a^b{\left[(s-a)(b-s)\right]^{\alpha-1}}p^+(s){\rm d}s\bigg)\geq\bigg(\frac{{\Gamma(\alpha)}(m-1)^{1-1/m}}{m(b-a)^{1-\alpha}}\bigg)^m, \end{eqnarray}$

$\begin{equation}\label{k4} \bigg(\int_a^b(\gamma p^+(s)+|f(s)|){\rm d}s\bigg)^{m-1}\bigg(\int_a^bp^+(s){\rm d}s\bigg)>\bigg(\frac{4^{\alpha-1}\Gamma(\alpha)(m-1)^{1-1/m}}{m(b-a)^{\alpha-1}}\bigg)^m. \end{equation}$

注 3.1  当$\beta\in(0, 1)$时, 由(3.3)式得$m=2$.此时推论3.1的结论即为文献[31]中定理2.9.

注 3.2  当$\beta\in(1, 2)$时, 由(3.3)式得$m=2$.此时推论3.1的结论即为文献[31]中定理2.10.

注 3.3  当$\beta=1$时, 分别由(3.3)和(3.2)式得$m=2$$\gamma=1/4$.此时推论3.1的结论即为文献[31]中推论2.11.

在方程(1.9)中如果取$\beta=1$, $f=0, $$\alpha_i=2(i=1, 2, \cdots , n)$, 那么方程(1.9)退化为

$\begin{equation}\label{wenti1}\left\{\begin{array}{lll}x^{(2n)}(t)+(-1)^{n-1}p(t)x(t)=0, \qquad t\in(a, b), \\x^{(2i)}(a)=x^{(2i)}(b)=0, \qquad i=0, 1, 2, \cdots , n-1.\end{array}\right.\end{equation}$

此时常数${\mathcal G}$, $m$, $\gamma$分别是${(b-a)^{2(n-1)}}/{8^{n-1}}$, $2$, $1/4$, 由定理3.1(C)得下面推论.

推论 3.2  假设在$[a, b]$$p^+(t)\not\equiv 0$, $p^-(t)\not \equiv 0$, 且方程(3.32)在$[a, b]$上有非零解$x(t)$, 那么有

$\begin{equation}\label{p11} \frac{2^{3n-3}}{(b-a)^{2n-3}}\leq \left\{ \begin{array}{ll} \displaystyle\int_a^b(s-a)(b-s)p^+(s){\rm d}s, &\quad n=2r+1\\[4mm] \displaystyle\int_a^b(s-a)(b-s)p^-(s){\rm d}s, &\quad n=2r+2 \end{array}, r=0, 1, 2, 3\cdots; \right. \end{equation}$

$\begin{equation}\label{p12} \frac{2^{3n-1}}{(b-a)^{2n-1}}< \left\{ \begin{array}{ll} \displaystyle\int_a^bp^+(s){\rm d}s, &\quad n=2r+1\\ [4mm]\displaystyle\int_a^bp^-(s){\rm d}s, &\quad n=2r+2 \end{array}, r=0, 1, 2, 3\cdots;\right. \end{equation} $

$\begin{equation}\label{p120} \frac{2^{3n-1}}{(b-a)^{2n-1}}< \displaystyle\int_a^b|p(s)|{\rm d}s, n=1, 2, 3\cdots. \end{equation} $

注 3.4  问题(3.32)的Lyapunov不等式在文献[4-10]中被广泛研究.在文献[8]的定理2和文献[9]的定理2.1中, 不等式(3.35)左侧的常数是$\frac{2^{2n}}{(b-a)^{2n-1}}$.因此, 当$n>1$时, 本文中的Lyapunov不等式(3.35)要优于文献[8-9]中结论; 当$n=1$时, 本文中的Lyapunov不等式(3.35)与文献[8-9]中结论一致.当然, 不等式(3.33)和(3.34)是全新结果.

4 结论的推广

研究如下带强迫项的混合半线性分数阶微分方程的Lyapunov型和Hartman型不等式

$\left\{ {\begin{array}{*{20}{l}}{{{( - 1)}^{n + 1}}{(_a}{D^{[{\alpha _n}]}}x)(t) + \sum\limits_{j = 1}^k {{p_j}} (t){\Phi _{{\beta _j}}}(x(t)) = f(t), \qquad t \in (a, b), }\\{{(_a}{D^{[{\alpha _i}]}}x)(a) = {(_a}{D^{[{\alpha _i}]}}x)(b) = 0, \qquad \quad i = 0, 1, 2, \cdots , n - 1, }\end{array}} \right.$

其中$n, k\in{\Bbb N}$$n\geq 1, k\geq 2$; 对$i=1, 2, \cdots , n, $$\alpha_i\in(1, 2];$$j=1, 2, \cdots , k, $$\beta_j>0$且对$i\neq j, $$\beta_i\neq \beta_j;$$ j=1, 2, \cdots , k, $$p_j(t)\in C([a, b], {\Bbb R});$$f(t)\in C([a, b], {\Bbb R})$.

为方便, 记

$\begin{equation}\label{con11}m=\max\{n_0, 2\}, ~~\textrm{而}\ n_0\in{\Bbb N}\ \textrm{满足}\ n_0-1\leq\max\limits_{1\leq j\leq k}\beta_j< n_0;\end {equation}$

$\begin{equation}\label{con21}\gamma_j=(m-\beta_j)\beta_j^{\beta_j/(m-\beta_j)}m^{-m/(m-\beta_j)}, \quad j=1, 2, \cdots k.\end {equation}$

定理 4.1  假设存在$j_0\in\{1, 2, \cdots , k\}$使得在$[a, b]$$p_{j_0}^+(t)\not\equiv0, $且方程(4.1)在$[a, b]$上有非零解$x(t)$.

(A*)如果在$(a, b)$$x(t)$恒正即$x(t)>0$, 那么有

$\begin{eqnarray}\label{ch1}&&\bigg(\int_a^b{\left[(s-a)(b-s)\right]^{\alpha_n-1}}\bigg(\sum\limits_{j=1}^{k}\gamma_j p^+_j(s)+f^-(s)\bigg){\rm d}s\bigg)^{m-1}\nonumber\\&&\times\bigg(\int_a^b{\left[(s-a)(b-s)\right]^{\alpha_n-1}}\sum\limits_{j=1}^{k}p^+_j(s){\rm d}s\bigg)\geq\bigg(\frac{{\Gamma(\alpha_n)}(m-1)^{1-1/m}}{m{\mathcal G}(b-a)^{1-\alpha_n}}\bigg)^m, \end{eqnarray}$

$\begin{equation}\label{ch2}\bigg(\int_a^b\bigg(\sum\limits_{j=1}^{k}\gamma_j p^+_j(s)+f^-(s)\bigg){\rm d}s\bigg)^{m-1}\int_a^b\sum\limits_{j=1}^{k}p^+_j(s){\rm d}s>\bigg(\frac{4^{\alpha_n-1}\Gamma(\alpha_n)(m-1)^{1-1/m}}{m{\mathcal G}(b-a)^{\alpha_n-1}}\bigg)^m;\end{equation}$

(B*)如果在$(a, b)$$x(t)$恒负即$x(t)<0$, 那么有

$\begin{eqnarray}\label{cd1}&&\bigg(\int_a^b{\left[(s-a)(b-s)\right]^{\alpha_n-1}}\bigg(\sum\limits_{j=1}^{k}\gamma_j p^+_j(s)+f^+(s)\bigg){\rm d}s\bigg)^{m-1}\nonumber\\&&\times\bigg(\int_a^b{\left[(s-a)(b-s)\right]^{\alpha_n-1}}\sum\limits_{j=1}^{k}p^+_j(s){\rm d}s\bigg)\geq\bigg(\frac{{\Gamma(\alpha_n)}(m-1)^{1-1/m}}{m{\mathcal G}(b-a)^{1-\alpha_n}}\bigg)^m, \end{eqnarray}$

$\begin{equation}\label{cd2}\bigg(\int_a^b\bigg(\sum\limits_{j=1}^{k}\gamma_j p^+_j(s)+f^+(s)\bigg){\rm d}s\bigg)^{m-1}\int_a^b\sum\limits_{j=1}^{k}p^+_j(s){\rm d}s>\bigg(\frac{4^{\alpha_n-1}\Gamma(\alpha_n)(m-1)^{1-1/m}}{m{\mathcal G}(b-a)^{\alpha_n-1}}\bigg)^m;\end{equation}$

(C*)如果在$(a, b)$$x(t)$取值正负不定, 那么有

${(\int_a^b {{{\left[ {(s - a)(b - s)} \right]}^{{\alpha _n} - 1}}} (\sum\limits_{j = 1}^k {{\gamma _j}} p_j^ + (s) + |f(s)|){\rm{d}}s)^{m - 1}} \\\times (\int_a^b {{{\left[ {(s - a)(b - s)} \right]}^{{\alpha _n} - 1}}} \sum\limits_{j = 1}^k {p_j^ + } (s){\rm{d}}s) \ge {(\frac{{\Gamma ({\alpha _n}){{(m - 1)}^{1 - 1/m}}}}{{m{\cal G}{{(b - a)}^{1 - {\alpha _n}}}}})^m},{\rm{ }}$

$\begin{equation}\label{t2}\bigg(\int_a^b\bigg(\sum\limits_{j=1}^{k}\gamma_j p^+_j(s)+|f(s)|\bigg){\rm d}s\bigg)^{m-1}\int_a^b\sum\limits_{j=1}^{k}p^+_j(s){\rm d}s>\bigg(\frac{4^{\alpha_n-1}\Gamma(\alpha_n)(m-1)^{1-1/m}}{m{\mathcal G}(b-a)^{\alpha_n-1}}\bigg)^m.\end{equation}$

  (A*)证明过程与定理3.1(A)类似, 关键不同在于$m$的取值.同定理3.1(A)的证明, 从开始直到得到(3.21)式, 这里我们得到的是

$\begin{equation}\label{ou41}\|x\|\leq{\mathcal G}\int_a^bG^{\alpha_n}(s, s)\sum\limits_{j=1}^{k} p_j^+(s)\|x\|^{\beta_j}{\rm d}s+{\mathcal G}\int_a^bG^{\alpha_n}(s, s)f^-(s) {\rm d}s.\end{equation}$

由(4.2)式可断定$m>\beta_j(j=1, 2, \cdots , k)$, 因此由引理2.1可得

$\begin{equation}\label{ou51}\|x\|^{\beta_j}\leq \|x\|^m+\gamma_j;\qquad j=1, 2, \cdots , k, \end{equation}$

其中$\gamma_j (j=1, 2, \cdots , k)$是(4.3)式中定义的常数.记

$p^+_{j_0}(t)\not\equiv0$可知$\overline{{\cal A}_0}>0, \overline{{\cal C}_0}>0.$

将(4.11)式带入(4.10)式得

考虑到$\|x\|$为变量, 因此

此即为不等式(4.4).

接下来, 与(3.24)和(3.25)式推导过程类似, 可得

从而有

$\begin{equation}\label{1c}\bigg(\int_a^b{\left[(s-a)(b-s)\right]^{\alpha_n-1}}\sum\limits_{j=1}^{k}p^+_j(s){\rm d}s\bigg)<\frac{(b-a)^{2(\alpha_n-1)}}{4^{\alpha_n-1}}\int_a^b\sum\limits_{j=1}^{k}p^+_j(s){\rm d}s, \end{equation}$

$\begin{eqnarray} &&\int_a^b{\left[(s-a)(b-s)\right]^{\alpha_n-1}}\bigg(\sum\limits_{j=1}^{k}\gamma_j p^+_j(s)+f^-(s)\bigg){\rm d}s\\&<& \frac{(b-a)^{2(\alpha_n-1)}}{4^{\alpha_n-1}}\int_a^b\bigg[\sum\limits_{j=1}^{k}\gamma_j p^+_j(s)+f^-(s)\bigg]{\rm d}s, \end{eqnarray}$

由(4.12)和(4.13)式, 结合(4.4)式即得(4.5)式.

(B*)和(C*)的证明由(A*)即得, 此处略.

推论 4.1  假设存在$j_1, j_2\in\{1, 2, \cdots , k\}$使得$p_{j_1}^+(t)\not\equiv 0$$p_{j_2}^+(t)\not\equiv0.$如果方程(4.1)在$[a, b]$上有非零解$x(t)$, 那么不等式(4.4), (4.6)和(4.8)都是严格不等式.

  证明过程与定理4.1类似, 从不等式(4.11)开始有所不同.对(4.11)式, 由引理2.1我们知道, 对$j=1, 2, \cdots, k, $不等式(4.11)中得等号成立当且仅当$z_0^j=\big(\frac{\beta_j}{m}\big)^{\frac{1}{m-\beta_j}}.$考虑到$\big(\frac{x}{m}\big)^{\frac{1}{m-x}}$关于$x$是单调上升的, 因此由$\beta_i\neq \beta_j$$z_0^i\neq z_0^j$.也即对(4.11)式中的$k$个不等式, 至多有一个不等式是不严格的, 而其它$k-1$个不等式都是严格的.由条件$p_{j_1}^+(t)\not\equiv 0$$p_{j_2}^+(t)\not\equiv 0, $可知

也即

考虑到$\|x\|$是一个变量, 得

此式说明不等式(4.4)是严格不等式.因而, (4.6)和(4.8)式都是严格不等式.

注 4.1  由推论4.1知, 必须在文献[31]的定理2.1, 2.2和2.3中增加条件$p^+(t)\not\equiv 0$$q^+(t)\not\equiv 0, $文献[31]中的不等式(2.3), (2.12)和(2.16)才是严格不等式, 涉及其后面的推论亦如此.

$n=1$$k=2$时, 方程(4.1)退化为

$\begin{equation}\label{wenti8}\left\{\begin{array}{lll}(_a {\cal D}^{ \alpha} x)(t)+p_1(t)\Phi_{\mu}(x(t))+p_2(t)\Phi_{\gamma}(x(t))=f(t), \quad t\in(a, b), \alpha\in (1, 2], \\ x(a)= x(b)=0, \end{array}\right.\end{equation} $

其中, $\mu>0, \gamma>0.$

注 4.2  文献[31]中研究了方程(4.14)的Lyapunov型不等式.本文中, 我们去掉了文献[31]中的条件$0<\mu<1<\gamma<2$, 而允许$\mu$$\gamma$为任意正数.当然, 若$0<\mu<1<\gamma<2$, 那么按本文中(4.2)式可得$m=2$, 此时易验证定理4.1(A*)与文献[31]中定理2.1和定理2.5一致, 定理4.1(B*)与文献[31]中定理2.2和2.6一致, 定理4.1(C*)与文献[31]中定理2.3和定理2.7一致.

$f_0=0$, $\alpha_i=2(i=1, 2, \cdots n)$时, 方程(4.1)退化为

$\begin{equation}\label {wenti0}\left\{\begin{array}{lll} x^{(2n)}(t)+(-1)^{n-1}\sum\limits_{j=1}^{k}f_j(t)\Phi_{\beta_j}(x(t))=0, \qquad t\in(a, b), \\[3mm] x^{(2i)}(a)=x^{(2i)}(b)=0, \qquad i=0, 1, 2, \cdots, n-1. \end{array}\right.\end{equation} $

注 4.3  关于方程(4.15)的Lyapunov型不等式, 文献[13]中研究了$n\geq 1$的情形, 文献[14]研究了$n=1$的情形.这里特别指出, 文献[13]和[14]中都要求$\beta_j\in(0, 2)\setminus\{1\}$, $j=1, 2, \cdots , k$, 但本文中去掉了这些限制.

例 4.1  考虑下面带强迫项的混合半线性分数阶微分方程

$\begin{equation}\label{ex1}\left\{\begin{array}{lll}-(_a {\cal D}^{\frac{7}{2}}x)(t)+p_1(t)|x(t)|^{-\frac{1}{2}}x(t)+p_2(t)|x(t)|^{\frac{1}{2}}x(t)+p_3(t)|x(t)|^{\frac{3}{2}}x(t)=f(t), \ t\in(a, b), \\x(a)=x(b)=(_a {\cal D}^{\frac{3}{2}}x)(a)=(_a {\cal D}^{\frac{3}{2}}x)(b)=0, \end{array}\right.\end{equation}$

其中$p_j(j=1, 2, 3)$$f$均在$[a, b]$上连续; $p^+_1(t)\not\equiv 0$$p^+_2(t)\not\equiv 0$$p^+_3(t)\not\equiv 0.$

由注  知$ (_a {\cal D}^{\frac{7}{2}}x)(t)=(_a {\cal D}^{\frac{3}{2}}x)"(t)=(_a {\cal D}^{ 2}(_a {\cal D}^{\frac{3}{2}}x))(t).$将问题(4.16)与(4.1)进行比对, 可见$n=2$, $k=3$, $\alpha_1=\frac{3}{2}$, $\alpha_2=2$, $\beta_1=\frac{1}{2}$, $\beta_2=\frac{3}{2}$以及$\beta_3=\frac{5}{2}$.按(4.2)和(4.3)式计算得$m=3$, $\gamma_1=5\times6^{-\frac{6}{5}}$, $\gamma_2=\frac{1}{4}$, $\gamma_3=5^5\times6^{-6}$以及$ {\mathcal G}=\frac{8\sqrt{3}}{27\sqrt{\pi}}(b-a)^{\frac{3}{2}}. $

由定理4.1(C*)可以断定, 如果方程(4.16)在$[a, b]$上有非零解, 则有

$\begin{eqnarray}\label{eqex1}(b-a)^{-\frac{3}{2}}&\leq& \int_a^b(s-a)(b-s)\big(p^+_1(s)+p^+_2(s)+p^+_3(s)\big){\rm d}s\nonumber\\&&\times\bigg(\int_a^b(s-a)(b-s)\big(c_1p^+_1(s)+c_2p^+_2(s)+c_3p^+_3(s)+c_4|f(s)|\big){\rm d}s\bigg)^2, \end{eqnarray}$

$\begin{eqnarray}\label{eqex2}(b-a)^{-\frac{15}{2}}&\leq&\int_a^b\big(p^+_1(s)+p^+_2(s)+p^+_3(s)\big){\rm d}s\nonumber\\&&\times\bigg(\int_a^b\big(k_1p^+_1(s)+k_2p^+_2(s)+k_3p^+_3(s)+k_4|f(s)|\big){\rm d}s\bigg)^2, \end{eqnarray}$

其中

进一步, 由定理4.1(A*)可知, 如果在$(a, b)$$x(t)>0$, 那么在不等式(4.17)和(4.18)中将$|f(s)|$替换为$f^-(s)$时不等式仍成立; 由定理4.1(B*)可知, 如果在$(a, b)$$x(t)<0$, 那么在不等式(4.17)和(4.18)中将$|f(s)|$替换为$f^+(s)$时不等式亦成立.

参考文献

Liapunov A M .

Probleme général de la stabilité du mouvement (French Translation of a Russian paper dated 1893)

Ann Fac Sci Univ Toulouse, 1907, 2: 27- 247

URL     [本文引用: 2]

Wintner A .

On the non-existence of conjugate points

Amer J Math, 1951, 73: 368- 380

[本文引用: 1]

Hartman P . Ordinary Differential Equations. New York: Wiley, 1964

[本文引用: 1]

Yang X , Kim Y , Lo K .

Lyapunov-type inequalities for a class of higher-order linear differential equations

Appl Math Lett, 2014, 34: 86- 89

[本文引用: 2]

Yang X .

On Liapunov-type inequality for certain higher-order differential equations

Appl Math Comput, 2003, 134: 307- 317

URL     [本文引用: 1]

Zhang Q, He X. Lyapunov-type inequalities for a class of even order differential equations. J Inequal Appl, 2012, Article number: 5. DOI: 10.1186/1029-242X-2012-5

Watanabe K , Yamagishi H , Kametaka Y .

Riemann zeta function and Lyapunov-type inequalities for certain higher order differential equations

Appl Math Comput, 2011, 218: 3950- 3953

URL    

Çakmak D .

Lyapunov-type integral inequalities for certain higher order differential equations

Appl Math Comput, 2010, 216: 368- 373

URL     [本文引用: 3]

Dhar S , Kong Q .

Lyapunov-type inequalities for higher order half-linear differential equations

Appl Math Comput, 2016, 273: 114- 124

URL     [本文引用: 3]

Yang X , Kim Y , Lo K .

Lyapunov-type inequality for a class of even-order linear differential equations

Appl Math Comput, 2014, 245: 145- 151

URL     [本文引用: 2]

Aktaş M F , Çakmak D , Tiryaki A .

On the Lyapunov-type inequalities of a three-point boundary value problem for third order linear differential equations

Appl Math Lett, 2015, 45: 1- 6

URL     [本文引用: 1]

Parhi N , Panigrahi S .

On Liapunov-type inequality for third-order differential equations

J Math Anal Appl, 1999, 233: 445- 460

URL     [本文引用: 1]

Agarwal R P, Özbekler A. Lyapunov type inequalities for even order differential equations with mixed nonlinearities. J Inequal Appl, 2015, Article number: 142. DOI: 10.1186/s13660-015-0633-4

[本文引用: 3]

Agarwal R P , Özbekler A .

Disconjugacy via Lyapunov and Vallée-Poussin type inequalities for forced differential equations

Appl Math Comput, 2015, 265: 456- 468

URL     [本文引用: 4]

Yang X .

Lyapunov type inequalities for second-order half-linear differential equations

J Math Anal Appl, 2011, 382: 792- 801

URL    

Yang X .

On inequalities of Lyapunov type

Appl Math Comput, 2003, 134: 293- 300

URL    

Lee C , Yeh C , Hong C , Agarwal R P .

Lyapunov and Wirtinger inequalities

Appl Math Lett, 2004, 17: 847- 853

URL    

Tiryaki A , Çakmak D , AktaşM F .

Lyapunov-type inequalities for a certain class of nonlinear systems

Comput Math Appl, 2012, 64: 1804- 1811

URL    

Agarwal R P , Özbekler A .

Lyapunov type inequalities for second order sub and super half-linear differential equations

Dyn Syst Appl, 2015, 24: 211- 220

URL     [本文引用: 1]

Yang X , Lo K .

Lyapunov-type inequality for a class of even-order differential equations

Appl Math Comput, 2010, 215: 3884- 3890

URL     [本文引用: 1]

Yang X , Kim Y , Lo K .

Lyapunov-type inequality for a class of odd-order differential equations

J Comput Appl Math, 2010, 234: 2962- 2968

URL     [本文引用: 1]

Panigrahi S .

Lyapunov-type integral inequalities for certain higher-order differential equations

Electron J Differ Equa, 2009, 28: 1- 14

[本文引用: 1]

Dhar S , Kong Q .

Lyapunov-type inequalities for third-order half-linear equations and applications to boundary value problems

Nonlinear Anal, 2014, 110: 170- 181

URL     [本文引用: 1]

Ferreira R A C .

A Lyapunov-type inequality for a fractional boundary value problem

Fract Calc Appl Anal, 2013, 16: 978- 984

URL     [本文引用: 3]

Ferreira R A C .

On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function

J Math Anal Appl, 2014, 412: 1058- 1063

URL    

Jleli M , Samet B .

Lyapunov-type inequalities for a fractional differential equation with mixed boundary conditions

Math Inequal Appl, 2015, 18: 443- 451

URL    

Rong J , Bai C .

Lyapunov-type inequality for a fractional differential equation with fractional boundary conditions

Adv Differ Equa, 2015, 82: 1- 10

URL     [本文引用: 1]

Cabrera I , Sadarangani K , Samet B .

Hartman-Wintner-type inequalities for a class of nonlocal fractional boundary value problems

Math Meth Appl Sci, 2016,

DOI:10.1002/mma.3972      [本文引用: 1]

Ma D. A generalized Lyapunov inequality for a higher-order fractional boundary value problem. J Inequal Appl, 2016, Article number: 261. DOI: 10.1186/s13660-016-1199-5

[本文引用: 1]

O'Regan D, Samet B. Lyapunov-type inequalities for a class of fractional differential equations. J Inequal Appl, 2015, Article number: 247. DOI: 10.1186/s13660-015-0769-2

[本文引用: 1]

Agarwal R P , Özbekler A .

Lyapunov-type inequalities for mixed nonlinear Riemann-Liouville fractional differential equations with a forcing term

J Comput Appl Math, 2017, 314: 69- 78

URL     [本文引用: 20]

Kilbas A A , Srivastava H M , Trujillo J J . Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier, 2006

[本文引用: 2]

Ferreira R A C. Existence and uniqueness of solutions for two-point fractional boundary value problems. Electron J Differential Equations, 2016, Article number: 202

[本文引用: 1]

/