Processing math: 33%

数学物理学报, 2020, 40(6): 1492-1510 doi:

论文

Stein流形的解析簇上拓广的Koppelman-Leray公式

陈叔瑾,

The Extensional Koppelman-Leray Type Integral Formulas in the Analytic Varieties of Stein Manifolds

Chen Shujin,

通讯作者: 陈叔瑾, E-mail: shjchen39@163.com

收稿日期: 2018-08-15  

Received: 2018-08-15  

Abstract

In this paper, we study how to establish integral formulas for differential forms in the analytic varieties of Stein manifolds. Firstly using different method and technique we derive the corresponding integral representation formulas of differential forms for the complex n-m(0 ≤ m < n) dimensional analytic varieties in two types of bounded domains of Stein manifolds. Secondly we obtain the unified integral representation formulas of differential forms for the complex n-m dimensional analytic varieties in the general bounded domains of Stein manifolds, i.e. Koppelman-Leray type integral formulas for the complex n-m dimensional analytic varieties in the bounded domains of Stein manifolds. In particular, when m=0, the formulas obtained in this paper are the extension of Koppelman-Leray formula in the Stein manifolds.

Keywords: Stein manifold ; Analytic varieties ; Unified formula ; Extension ; Differential form ; Integral formula

PDF (373KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陈叔瑾. Stein流形的解析簇上拓广的Koppelman-Leray公式. 数学物理学报[J], 2020, 40(6): 1492-1510 doi:

Chen Shujin. The Extensional Koppelman-Leray Type Integral Formulas in the Analytic Varieties of Stein Manifolds. Acta Mathematica Scientia[J], 2020, 40(6): 1492-1510 doi:

1 引言

X是一复n维Stein流形, T(X)T(X)分别表示X上切丛和余切丛, Tz(X)Tz(X)分别表示对于zX的纤维.用s(z,ς)s(z,ς)分别表示T(X)T(X)的全纯截面和C1截面.因为我们的兴趣在于函数或微分形式的积分表示, 所以我们可令X是更大Stein流形的相对紧集.

Henkin和Leiterer[1]已获得如下两个重要结果:

(A) 若X是更大Stein流形的相对紧集, 则存在全纯映射s: X×XT(X)X×X上全纯函数φ满足如下条件: (a)对于所有z,ςX, S(z,ς)Tz(X); (b)对于每一固定的zX, S(z,z)=0s(z,ς):XTz(X)ςX的邻域中是双全纯的; (c)对于所有zX, φ(z,z)=1; (d)若Fs是一解析层, 它是由X×XM生成的, 则φFs((X×X){(z,z):zX}); (e)存在一个κ0, 对于T(X)中每一范数我们有函数φκs2(X×X){(z,z):zX}上是C2的.

(B) 若X是更大Stein流形的相对紧集, 则对于每一全纯函数FjX×X的局部有限开复盖{Vj}, 存在全纯映射α(j):VjT(X), 使得α(j)(z,ς)Tz(X), 且对于所有(z,ς)Vj, 我们有

φ(z,ς)(Fj(ς)Fj(z))=nr=1α(j)r(z,ς)s(j)r(z,ς)
(1.1)

以及对于zDςδj={zD:|Fj(z)|=1}, j=1,2,,N, 还有

nr=1α(j)r(z,ς)φ(z,ς)(Fj(ς)Fj(z))s(j)r(z,ς)=1.
(1.2)

作者在Cn中对于一般有界域解析簇上已获得Koppelman-Leray型积分表示式[2-3].本文我们研究在Stein流形的解析簇上如何建立微分形式的积分公式.首先, 使用不同的方法和技巧我们导出在Stein流形的两类有界域中对于复nm(0m<n)维解析簇上微分形式的相应的积分表示式.其次, 我们得到在Stein流形的一般有界域中对于复nm(0m<n)维解析簇上微分形式的统一的积分表示式.特别, 当m=0时本文所得公式正是Koppelman-Leray公式在Stein流形中的拓广.

我们还注意到:(a)对于Ⅱ -型有界域微分形式的积分表示至今还很少研究, 更谈不上研究两型有界域的统一积分表示式[2-3]. (b)我们可进一步获得积分算子的一些估计式[7-8] (为节省篇幅, 本文不予处理, 我们将另文给予讨论). (c)在Stein流形的解析簇上如何建立微分形式的积分公式至今仍缺少研究.其困难在于我们需证明本文的引理2.3, 本文填补了这个空缺.

2 一些引理

C映射σ:T(X)T(X)T(X)的每一纤维中, 确定一个范数

s(z,ς)σ=σs(z,ς),s(z,ς)120.

选择{Xj}是从属于{Uj}的单位分解.对于zUjX, s(z,ς)Tz(x)σjs(z,ς)Tz(X), 定义σs(z,ς)=jXj(z)σjs(z,ς), 且记ˉs(z,ς)=σs(z,ς)(ˉs(z,ς)用于替代Cn中的ˉςˉz).选择全纯截面s1,s2,,snTz(X)C1截面sb,1,ν,sb,2,ν,,sb,n,νTz(X), b=1,2,,β, ν=1,2,,αl+1(1lαk).

Jα={j1,,jα}{1,2,,K}的有序子集, j1<<jα.我们置

ΔK={μ:(μ0,μ1,,μK)RK+1,μj0,j=0,1,,K,Kj=0μj=1},

Δ0Jαk+1={(μ0,μj1,,μjαk+1):μ0+μj1++μjαk+1=1,μ0,μj1,,μjαk+10},

ΔJαk+1={(μj1,,μjαk+1):μj1++μjαk+1=1,μj1,,μjαk+10},

Δ0={μ0=1},

为了简单起见, 我们用(μ1,μ2,,μαk+1)替代(μj1,,μjαk+1), Λ(β1)表示β维实空间Rββ1维链, Λ(0)=1.

T=(T1,T2,,Tn)τTp=Tp(ζ,z,λ,μ)=αl+1ν=1μνT(ν)p,T(ν)p=tpβ,ν/Mβ,ν, 其中tpβ,ν=βb=1λbsb,p,ν(z,ς), Mβ,ν=np=1sp(z,ς)tpβ,ν.特别地,

l=k时, T=Q=(Q1,,Qn)τ, Qp=Qp(ς,z,λ)=tpβ,1/Mβ,1,tpβ,1=βb=1λbsb,p,1(z,ς), Mβ,1=np=1sp(z,ς)tpβ,1;

β=1时, T=˜Q0=(˜Q01,,˜Q0n)τ˜Q0p=˜Q0p(ζ,z,μ)=αl+1ν=1μν˜Q0(ν)p,˜Q0(ν)p=tp1,ν/M1,ν, 其中tp1,ν=s1,p,ν(z,ς),M1,ν=np=1sp(z,ς)s1,p,ν(z,ς);

β=1l=k时, T=Q0=(Q01,,Q0n)τQ0p=tp1,1/M1,1, 其中tp1,1=s1,p,1(z,ζ), M1,1=np=1sp(z,ς)s1,p,1(z,ς).这里以及本文剩余部分, τ均表示矩阵转置.

若对于ςD,zD,λΛ(β1), Mβ,ν(ς,z,λ)0φ(z,ς)D×DD×X的邻域中是全纯函数, 函数φκ(z,ς)/Mβ,νC1的, 其中κ是一适当的非负整数, 则记Mβ,νB.

若全纯函数Fj(ς,z)可表示成

φ(z,ς)Fj(ς,z)=φ(z,ς)(Fj(ς)Fj(z))=nr=1αjr(z,ς)s(j)r(z,ς),

且对任何固定的zD, 在ςσjD=Kj=1σj处, φ(z,ς)Fj(ς,z)0, 则记Fj(ς,z)A.本文我们总假设Mβ,1B, Fj(ς,z)A.

我们记hjν=(hjν1,,hjνn)τ, 其中hjνp=αjνp(z,ς)/φ(z,ς)Fjν(ζ,z).

E[ρ]l=(hj1,,[hjρ],,hjl),El=(hj1,,hjl).
(2.1)

我们假设在Stein流形X中的有界域D的边界D(这里以及本文剩余部分总假设D是逐块光滑的)构成缝空间的链, 且可表示成

ˉDDˉσ(1)ˉσ(θ)ˉσ(θ+1)ˉσ(β1)ˉσ(β)
(2.2)

其中ˉσ(θ)σ(θ)的闭包(θ=1,2,,β), 则Stein流形中的有界域将分成如下两类型:

(Ⅰ) σ(θ)的维数恰比σ(θ+1)增加一维.这种有界域称为Ⅰ -型的.例如解析多面体D的边界构成缝空间的链, 且D可表示成ˉDDˉσ(1)ˉσ(θ)ˉσ(θ+1)ˉσ(β), 其中σ(θ)σ(θ+1)分别是解析多面体D的实2nθ维和实2nθ1维的棱边.

(Ⅱ) σ(θ)的维数至少比σ(θ+1)增加一维.这种有界域称为Ⅱ -型的.例如典型域R的边界构成缝空间的链, 且缝空间的维数至少比其缝增加一维.

但它们可写为统一的形式:

ˉDDˉσ(1)ˉσ(θ)ˉσ(θ+1)ˉσ(β1)ˉσ(β)ˉσ(β1)(1)ˉσ(β1(l)ˉσ(β1)(l+1)ˉσ(β1)(k),
(2.3)

其中ˉσ(θ)σ(θ)的闭包(θ=1,2,,β), 且σ(θ)的维数至少比σ(θ+1)增加一维, 且σ(β)2nβ维边缘链, 即存在2nβ+1维链B0, 使得B0=ε0σ(β), 其中ε0的值是由σ(β)的定向确定, 且通常我们可选择:当β=1时, ε0=1; 当β>1时, ε0=(1)n+1; 而ˉσ(β1)(l)σ(β1)(l)的闭包(l=1,2,,k), 且σ(θ)的维数恰比σ(θ+1)增加一维.置

σ(β1)(l)=1j1<<jlKσ(β1)j1jl=Jlσ(β1)Jl(Kn).

Φ1,,Φm是在ˉD的邻域UˉD中的全纯函数, 则置

Z(Φ1,,Φm)={zUˉD:Φ1(z)==Φm(z)=0},m<n.

我们假设Z({{\Phi }_{1}}, \cdots, {{\Phi }_{m}})横截相交于\partial D.\tilde{D}=Z({{\Phi }_{1}}, \cdots, {{\Phi }_{m}})\bigcap D, 考虑

\begin{eqnarray}\label{eq24} \bar{\tilde{D}}\supset \partial \tilde{D}&\equiv&{{\bar{\tilde{\sigma }}}^{(1)}}\supset \cdots \supset {{\bar{\tilde{\sigma }}}^{(\theta )}}\supset {{\bar{\tilde{\sigma }}}^{(\theta +1)}}\supset \cdots \supset {{\bar{\tilde{\sigma }}}^{(\beta -1)}}\supset {{\bar{\tilde{\sigma }}}^{(\beta )}}\\ &\cong &\bar{\tilde{\sigma }}_{(1)}^{(\beta -1)}\supset \cdots \supset\bar{\tilde{\sigma }}_{(l)}^{(\beta -1}\supset \bar{\tilde{\sigma }}_{(l+1)}^{(\beta -1)}\supset \cdots \supset \bar{\tilde{\sigma }}_{(k)}^{(\beta -1)}\mbox{, } \end{eqnarray}
(2.4)

其中{{\tilde{\sigma }}^{(\theta )}}=Z({{\Phi }_{1}}, \cdots, {{\Phi }_{m}}) \bigcap {{\sigma }^{(\theta )}} (\theta =1, 2, \cdots, \beta )\tilde{\sigma }_{(l)}^{\beta -1}=Z({{\Phi }_{1}}, \cdots, {{\Phi }_{m}})\bigcap \sigma _{(l)}^{(\beta -1)}(l=1, 2, \cdots, k).\tilde{\sigma }_{(l)}^{(\beta -1)}=\sum\limits_{1\le {{j}_{1}}<\cdots <{{j}_{l}}\le K}{\tilde{\sigma }_{{{j}_{1}}\cdots {{j}_{l}}}^{(\beta -1)}}=\sum\limits_{{{J}_{l}}}{\tilde{\sigma }_{{{J}_{l}}}^{(\beta -1)}}.

由(B), 我们有

\begin{equation}\label{eq25}\varphi (z, \varsigma )({{\Phi }_{j}}(\varsigma )-{{\Phi }_{j}}(z))=\sum\limits_{r=1}^{n}{\beta _{r}^{*(j)}}(z, \varsigma )s_{r}^{(j)}(z, \varsigma )\mbox{, }\end{equation}
(2.5)

和全纯映射{{\beta }^{*(j)}}(z, \varsigma ):{{V}_{j}}\to {{T}^{*}}(X), 其中j=1, 2, \cdots, m, 或

\begin{equation}\label{eq26}{{\Phi }_{j}}(\varsigma )-{{\Phi }_{j}}(z)=\sum\limits_{r=1}^{n}{\frac{\beta _{r}^{*(j)}(z, \varsigma )}{\varphi (z, \varsigma )}}s_{r}^{(j)}(z, \varsigma ). \end{equation}
(2.6)

我们记{{H}_{jr}}(z, \varsigma )=\frac{\beta _{r}^{*(j)}(z, \varsigma )}{\varphi (z, \varsigma )}.

{{\Psi }_{j}}=({{H}_{1}}, \cdots, {{H}_{j}}), 这里{{H}_{j}}={{({{H}_{j1}}, \cdots, {{H}_{jn}})}^{\tau }}, j=1, \cdots, m.

\left| \begin{array}{cc} 0 \\ {{H}_{11}} \\ \vdots \\ {{H}_{1n}} \\\end{array}\ \begin{array}{cc} \cdots \\ \cdots \\ \vdots \\ \cdots \\\end{array}\ \begin{array}{cc} 0 \\ {{H}_{m1}} \\ \vdots \\ {{H}_{mn}} \\\end{array}\ \begin{array}{cc} 1 \\ {{T}_{1}} \\ \vdots \\ {{T}_{n}} \\\end{array}\ \begin{array}{cc} 1 \\ {{h}_{{{j}_{1}}1}} \\ \vdots \\ {{h}_{{{j}_{1}}n}} \\\end{array}\ \begin{array}{cc} \cdots \\ \cdots \\ \vdots \\ \cdots \\\end{array}\ \begin{array}{cc} 1 \\ {{h}_{{{j}_{l}}1}} \\ \vdots \\ h{}_{{{j}_{l}}n} \\\end{array}\ \begin{array}{cc} 0 \\ {{\partial }_{\bar{\zeta }\bar{z}\lambda \mu }}{{T}_{1}} \\ \vdots \\ {{\partial }_{\bar{\zeta }\bar{z}\lambda \mu }}{{T}_{n}} \\\end{array}\ \begin{array}{cc} \cdots \\ \cdots \\ \vdots \\ \cdots \\\end{array}\ \begin{array}{cc} 0 \\ {{\partial }_{\bar{\zeta }\bar{z}\lambda \mu }}{{T}_{1}} \\ \vdots \\ {{\partial }_{\bar{\zeta }\bar{z}\lambda \mu }}{{T}_{n}} \\\end{array} \right|{{\varphi }^{\nu }}(z, \varsigma )=0,

因为在Z({{\Phi }_{1}}, \cdots, {{\Phi }_{m}}){{\Delta }_{{{J}_{\alpha -l+1}}}}上,

其中{{\partial }_{\bar{\varsigma }\bar{z}\lambda \mu }}={{\partial }_{{\bar{\varsigma }}}}\mbox{+}{{\partial }_{{\bar{z}}}}\mbox{+}{{\mbox{d}}_{\lambda }}+{{d}_{\mu }}, 我们有

\begin{eqnarray}\label{eq27}&&{{\varphi }^{\upsilon }}(z, \varsigma )\sum\limits_{\rho =1}^{l}{{{(-1)}^{l+\rho }}}{{\det }_{(m, l-1, 1, n-m-l)}}({{\Psi }_{m}}, E_{l}^{[\rho ]}, T, {{\partial }_{\bar{\zeta }\bar{z}\lambda \mu }}T)\\&=&{{\varphi }^{\upsilon }}(z, \varsigma ){{\det }_{(m, l, n-m-l)}}({{\Psi }_{m}}, E_{l}^{{}}, {{\partial }_{\bar{\zeta }\bar{z}\lambda \mu }}T) \mbox{, }\end{eqnarray}
(2.7)

其中\upsilon取成适当大.特别地,

\begin{eqnarray}\label{eq28}&&{{\varphi }^{\upsilon }}(z, \varsigma )\sum\limits_{\rho =1}^{l}{{{(-1)}^{l+\rho }}}{{\det }_{(m, l-1, 1, n-m-l)}}({{\Psi }_{m}}, E_{l}^{[\rho ]}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\\&=&{{\varphi }^{\upsilon }}(z, \varsigma ){{\det }_{(m, l, n-m-l)}}({{\Psi }_{m}}, E_{l}^{{}}, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q), \end{eqnarray}
(2.8)

\begin{eqnarray}\label{eq29}&&{{\varphi }^{\upsilon }}(z, \varsigma )\sum\limits_{\rho =1}^{l}{{{(-1)}^{l+\rho }}}{{\det }_{(m, l-1, 1, n-m-l)}}({{\Psi }_{m}}, E_{l}^{[\rho ]}, {{Q}^{0}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\\&=&{{\varphi }^{\upsilon }}(z, \varsigma ){{\det }_{(m, l, n-m-l)}}({{\Psi }_{m}}, {{E}_{l}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}}), \end{eqnarray}
(2.9)

且当l=1时, 我们有

\begin{equation}\label{eq210}{{\varphi }^{\upsilon }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}({{\Psi }_{m}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)={{\varphi }^{\upsilon }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}({{\Psi }_{m}}, h_{{{j}_{1}}}^{{}}, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q), \end{equation}
(2.10)

\begin{equation}\label{eq211}{{\varphi }^{\upsilon }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}({{\Psi }_{m}}, {{Q}^{0}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})={{\varphi }^{\upsilon }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}({{\Psi }_{m}}, {{h}_{{{j}_{1}}}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}}).\end{equation}
(2.11)

\begin{eqnarray}\label{eq212}&&B_{j-1}^{\Phi }(s(z, \varsigma ))\\&=&\frac{(n-j+1)!}{{{\left| \nabla _{j-1}^{\Phi }s(z, \varsigma ) \right|}^{2}}}\sum\limits_{1\le {{j}_{1}}<\cdots <{{j}_{j-1}}\le n}{{{(-1)}^{{{j}_{1}}+\cdots +{{j}_{j-1}}}}}\frac{\overline{\partial ({{\Phi }_{1}}, \cdots, {{\Phi }_{j-1}})}}{\partial ({{s}_{{{j}_{1}}}}, \cdots, {{s}_{{{j}_{j-1}}}})}\bigwedge_{l\ne {{j}_{1}}, \cdots, {{j}_{j-1}}}{\rm d}{{s}_{l}}(z, \varsigma ), \end{eqnarray}
(2.12)

其中

\begin{equation}\label{eq213}{{\left| \nabla _{j-1}^{\Phi }(s(z, \varsigma )) \right|}^{2}}={{\sum\limits_{1\le {{j}_{1}}<\cdots <{{j}_{j-1}}\le n}{\left| \frac{\partial ({{\Phi }_{1}}, \cdots, {{\Phi }_{j-1}})}{\partial ({{s}_{{{j}_{1}}}}, \cdots, {{s}_{{{j}_{j-1}}}})} \right|}}^{2}}\ne 0, \zeta \in \partial \tilde{D}\mbox{, }\end{equation}
(2.13)

B_{0}^{\Phi }(s(z, \varsigma ))=n!\omega (s(z, \varsigma )), 这里\omega (s(z, \varsigma ))={\rm d}{{s}_{1}}\wedge \cdots \wedge {\rm d}{{s}_{n}}.

经计算得(参见文献[4-5])

\begin{equation}\label{eq214}B_{j-1}^{\Phi }(s(z, \varsigma ))=\tilde{e}(n-j+1)!{{\bigg(\frac{\partial ({{\Phi }_{1}}, \cdots, {{\Phi }_{j-1}})}{\partial ({{s}_{n-j+2}}, \cdots, {{s}_{n}})}\bigg)}^{-1}} \bigwedge_{i=1}^{n-j+1}{\rm d}{{s}_{i}}\mbox{, }\end{equation}
(2.14)

其中\tilde{e}={{(-1)}^{(j-1)(n-j+1)}}{{(-1)}^{j(j-1)/2}}.且当j>1, 使用(2.14)式我们得

\begin{equation}\label{eq215}B_{j}^{\Phi }(s(z, \varsigma ))\wedge {\rm d}{{\Phi }_{j}}=\frac{{{(-1)}^{n+j-1}}}{n-j+1}B_{j-1}^{\Phi }(s(z, \varsigma )).\end{equation}
(2.15)

j=1时, 我们有

\begin{equation}\label{eq216}B_{1}^{\Phi }(s(z, \varsigma ))\wedge {\rm d}{{\Phi }_{1}}=\frac{{{(-1)}^{n}}}{n}B_{0}^{\Phi }(s(z, \varsigma ))={{(-1)}^{n}}(n-1)!{\rm d}{{s}_{1}}\wedge \cdots \wedge {\rm d}{{s}_{n}}.\end{equation}
(2.16)

本文总假设Z({{\Phi }_{1}}, \cdots, {{\Phi }_{j}})横截\partial D\left| \nabla _{j}^{\Phi }(s(z, \varsigma )) \right|\ne 0, 其中1\le j\le m.

引理 2.1[3-4]  令{{D}_{j}}=Z({{\Phi }_{1}}, \cdots, {{\Phi }_{j}})\bigcap D, {{D}_{0}}=D, {{D}_{m}}=\tilde{D}{{M}_{1, 1}}\in B.z\in \tilde{D}, 则

\begin{eqnarray}\label{eq217}&&{{c}_{m}}\int_{\partial {{D}_{m}}}{{{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, {{Q}^{0}}, {{\partial }_{{\bar{\varsigma }}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \varsigma ))\\&=&\frac{1}{{{(2\pi{\rm i})}^{n}}}\int_{\partial D}{{{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(1, n-1)}}}({{Q}^{0}}, {{\partial }_{{\bar{\varsigma }}}}{{Q}^{0}})\wedge \omega (s(z, \varsigma )), \end{eqnarray}
(2.17)

其中{{c}_{m}}={{(-1)}^{m(n+1)}}{{(-1)}^{m(m\mbox{+}1)/2}}/(n-m)!{{(2\pi {\rm i})}^{n-m}}.

因为

{{(-1)}^{{{j}_{1}}+\cdots +{{j}_{n}}}}\bigwedge\limits^n_{{i=1}\atop {i\ne j_1, \cdots, j_m}}{\rm d}{{s}_{i}}=\delta \frac{\partial ({{\Phi }_{1}}, \cdots, {{\Phi }_{m}})}{\partial ({{s}_{{{j}_{1}}}}, \cdots, {{s}_{{{j}_{m}}}})}{{\bigg(\frac{\partial ({{\Phi }_{1}}, \cdots, {{\Phi }_{m}})}{\partial ({{s}_{n-m+1}}, \cdots, {{s}_{n}})}\bigg)}^{-1}} \bigwedge\limits_{i=1}^{n-m}{\rm d}{{s}_{l}},

其中\delta = {{(-1)}^{m(n-m)}}{{(-1)}^{m(m+1)/2}}/(n-m)!{{(2\pi {\rm i})}^{n-m}}, 我们有

\begin{eqnarray}\label{eq218}B_{m}^{\Phi }(s(z, \varsigma ))&=&\frac{(n-m)!\delta }{{{\left| \nabla _{m}^{\Phi }(s) \right|}^{2}}}\sum\limits_{{{j}_{1}}<\cdots <{{j}_{m}}}{\overline{\frac{\partial ({{\Phi }_{1}}, \cdots, {{\Phi }_{m}})}{\partial ({{s}_{{{j}_{1}}}}, \cdots, {{s}_{{{j}_{m}}}})}}\frac{\partial ({{\Phi }_{1}}, \cdots, {{\Phi }_{m}})}{\partial ({{s}_{{{j}_{1}}}}, \cdots {{s}_{{{j}_{m}}}})}}\\&&\times {{\bigg(\frac{\partial ({{\Phi }_{1}}, \cdots, {{\Phi }_{m}})}{\partial ({{s}_{n-m+1}}, \cdots, {{s}_{n}})}\bigg)}^{-1}} \bigwedge_{i=1}^{n-m} {\rm d}{{s}_{i}}\\ &=&\delta (n-m)!{{\bigg(\frac{\partial ({{\Phi }_{1}}, \cdots, {{\Phi }_{m}})} {\partial ({{s}_{n-m+1}}, \cdots, {{s}_{n}})}\bigg)}^{-1}} \bigwedge_{i=1}^{n-m}{\rm d}{{s}_{i}}.\end{eqnarray}
(2.18)

\begin{equation}\label{eq219}U_{m}^{\Phi }(s(z, \varsigma ))=\delta (n-m)!{{\bigg(\frac{\partial ({{\Phi }_{1}}, \cdots, {{\Phi }_{m}})}{\partial ({{s}_{n-m+1}}, \cdots, {{s}_{n}})}\bigg)}^{-1}}\mbox{, }\end{equation}
(2.19)

\begin{equation}\label{eq220}B_{m}^{\Phi }(s(z, \varsigma ))=U_{m}^{\Phi }(s(z, \varsigma )) \bigwedge_{i=1}^{n-m}{\rm d}{{s}_{i}}.\end{equation}
(2.20)

由引理2.1我们可得:

引理 2.2  对于\tilde{D}中的任何固定点z, 令{{\tilde{U}}_{r}}=\{(z, \varsigma )\in {{U}_{\Delta }}\times {{U}_{\Delta }}:\left\| s(z, \varsigma ) \right\|<r\}是足够小, 其中{{U}_{\Delta }}\subseteq X\times X\Delta =\{(z, z):z\in \tilde{D}\subset X\}的邻域, 则有

\begin{equation}\label{eq221}{{c}_{m}}\int_{\partial {{{\tilde{U}}}_{r}}}{{{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}\bigg({{\Psi }_{m}}, \frac{\bar{s}(z, \varsigma )}{\left\| s(z, \varsigma ) \right\|_{\sigma }^{2}}, {{\partial }_{{\bar{\varsigma }}}}\frac{\bar{s}(z, \varsigma )}{\left\| s(z, \varsigma ) \right\|_{\sigma }^{2}}\bigg)\wedge B_{m}^{\Phi }(s(z, \varsigma ))=1.\end{equation}
(2.21)

  设\vartheta (\varsigma )\theta (\varsigma )分别是\bar{s}(z, \varsigma )s(z, \varsigma )关于全纯图册({{U}_{{{j}_{0}}}}, {{\pi }_{{{j}_{0}}}})的表示, 和z\in {{U}_{{{j}_{0}}}}.

\eta (\varsigma, z, \lambda )={{\varphi }^{\nu }}(z, \varsigma )\bigg[(1-\lambda )\frac{\left\langle \theta (\varsigma ), \vartheta (\varsigma ) \right\rangle \overline{\theta (\varsigma )}}{{{\left| \theta (\varsigma ) \right|}^{2}}}+\lambda \vartheta (\varsigma )\bigg],

则通过计算我们得

\begin{eqnarray}\label{eq222}&&\frac{1}{{{(2\pi {\rm i})}^{n}}}\int_{\partial {{U}_{r}}}{{{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(1, n-1)}}}\bigg(\frac{\bar{s}(z, \varsigma )}{\left\| s(z, \varsigma ) \right\|_{\sigma }^{2}}, {{\partial }_{{\bar{\varsigma }}}}\frac{\bar{s}(z, \varsigma )}{\left\| s(z, \varsigma ) \right\|_{\sigma }^{2}}\bigg)\wedge \omega (s(z, \varsigma ))\\&=&\frac{1}{{{(2\pi {\rm i})}^{n}}}\int_{\partial {{U}_{r}}}{{{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(1, n-1)}}}\bigg(\frac{\vartheta (\varsigma )}{\left\langle \vartheta (\varsigma ), \theta (\varsigma ) \right\rangle }, {{\partial }_{{\bar{\varsigma }}}}\frac{\vartheta (\varsigma )}{\left\langle \vartheta (\varsigma ), \theta (\varsigma ) \right\rangle }\bigg)\wedge \omega (\theta (\varsigma ))\\&=&\frac{1}{{{(2\pi {\rm i})}^{n}}}\int_{\partial {{U}_{r}}}{{{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(1, n-1)}}}\bigg(\frac{\overline{\theta (\varsigma )}}{{{\left| \theta (\varsigma) \right|}^{2}}}, {{\partial }_{{\bar{\varsigma }}}}\frac{\overline{\theta (\varsigma )}} {{{\left| \theta (\varsigma) \right|}^{2}}}\bigg)\wedge \omega (\theta (\varsigma )), \end{eqnarray}
(2.22)

其中当z\in {{U}_{{{j}_{0}}}}时, {{\tilde{U}}_{r}}被写成{{U}_{r}}.

由上所述和Bochner-Martinelli公式得

\begin{eqnarray}\label{eq223}&&\frac{1}{{{(2\pi {\rm i})}^{n}}}\int_{\partial {{U}_{r}}}{{{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(1, n-1)}}}\bigg(\frac{\bar{s}(z, \varsigma )}{\left\| s(z, \varsigma ) \right\|_{\sigma }^{2}}, {{\partial }_{{\bar{\varsigma }}}}\frac{\bar{s}(z, \varsigma )}{\left\| s(z, \varsigma ) \right\|_{\sigma }^{2}}\bigg)\wedge \omega (s(z, \varsigma ))\\&=&\frac{1}{{{(2\pi {\rm i})}^{n}}}\int_{\partial \theta ({{U}_{r}})}{{{\varphi }^{\nu }}(z, \theta {}^{-1}(\xi )){{\det }_{(1, n-1)}}}\bigg(\frac{{\bar{\xi }}}{{{\left| \xi \right|}^{2}}}, \frac{{\rm d}\bar{\xi }}{{{\left| \xi \right|}^{2}}}\bigg)\wedge \omega (\xi )\\&=&{{\varphi }^{\nu }}[z, {{\theta }^{-1}}(0)]={{[\varphi (z, z)]}^{\nu }}=1. \end{eqnarray}
(2.23)

且由(2.22)和(2.23)式我们有

\begin{eqnarray}\label{eq224}&&{{c}_{m}}\int_{\partial {{{\tilde{U}}}_{r}}}{{{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}\bigg({{\Psi }_{m}}, \frac{\bar{s}(z, \varsigma )}{\left\| s(z, \varsigma ) \right\|_{\sigma }^{2}}, {{\partial }_{{\bar{\varsigma }}}}\frac{\bar{s}(z, \varsigma )}{\left\| s(z, \varsigma ) \right\|_{\sigma }^{2}}\bigg)\wedge B_{m}^{\Phi }(s(z, \varsigma ))\\&=&\frac{1}{{{(2\pi {\rm i})}^{n}}}\int_{\partial {{U}_{r}}}{{{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(1, n-1)}}}\bigg(\frac{\bar{s}(z, \varsigma )}{\left\| s(z, \varsigma ) \right\|_{\sigma }^{2}}, {{\partial }_{{\bar{\varsigma }}}}\frac{\bar{s}(z, \varsigma )}{\left\| s(z, \varsigma ) \right\|_{\sigma }^{2}}\bigg)\wedge \omega (s(z, \varsigma ))\\&=&1. \end{eqnarray}
(2.24)

引理2.2得证.

下面我们要证明下述的引理2.3.

\{({{U}_{j}}, {{\pi }_{j}})\}X的全纯图册, 且\tilde{D}\subset D\subset \subset X, 则由(A)(b)我们可找到\alpha =\{(z, z):z\in \tilde{D}\}的邻域{{U}_{\alpha }}\subseteq \tilde{D}\times \tilde{D}, 使得映射s(z, \varsigma )对于每一固定的z\in \tilde{D}, 和(z, \varsigma )\in {{U}_{\alpha }}是双全纯的.我们考虑开集{{U}_{\varepsilon }}=\{(z, \varsigma )\in {{U}_{\alpha }}\times {{U}_{\alpha }}:\left\| s(z, \varsigma ) \right\|<\varepsilon \}.

\theta (z, \varsigma )\vartheta (z, \varsigma )分别是s(z, \varsigma )\bar{s}(z, \varsigma )关于({{U}_{j}}, {{\pi }_{j}})的表示.由(A)(b), 我们可找到这样的{{\varepsilon }_{0}}, 使得:(a)映射T({{U}_{j}}\times {{U}_{j}})\bigcap {{U}_{{{\varepsilon }_{0}}}}双全纯映为某开集{{V}_{{{\varepsilon }_{0}}}}\subseteq {C ^{n}}\times {C ^{n}}. (b) N:{{Y}_{{{\varepsilon }_{0}}}}\to {{U}_{j}}是由N({{\pi }_{j}}(z), \theta (z, \varsigma ))=N(\eta, \xi )=\varsigma定义的全纯映射.我们可定义T的逆映射{{T}^{-1}}:{{V}_{{{\varepsilon }_{0}}}}\to ({{U}_{j}}\times {{U}_{j}})\bigcap {{U}_{{{\varepsilon }_{0}}}}, 和对于所有(\eta, \xi )\in {{Y}_{{{\varepsilon }_{0}}}}我们有{{T}^{-1}}(\eta, \xi )=(z, \varsigma )=(\pi _{j}^{-1}(\eta ), N(\eta, \xi ))\theta ({{T}^{-1}}(\eta, \xi ))=\theta (z, \varsigma )=\xi, 以及对于所有\eta \in {{\pi }_{j}}({{U}_{j}}), 我们有{{T}^{-1}}(\eta, 0)=(\pi _{j}^{-1}(\eta ), \pi _{j}^{-1}(\eta )), 和当\eta \in {{\pi }_{j}}({{U}_{j}}), 则\vartheta ({{T}^{-1}}(\eta, 0))=0.

对于0<\varepsilon \le {{\varepsilon }_{0}}, 置{{\tilde{S}}_{\varepsilon }}=T(({{\tilde{U}}_{j}}\times {{U}_{j}})\bigcap \partial {{U}_{\varepsilon }}), 其中{{\tilde{U}}_{j}}\subset \subset {{U}_{j}}.我们可找到{{\varepsilon }_{1}}:0<{{\varepsilon }_{1}}\le {{\varepsilon }_{0}}, 使得对于0<\varepsilon \le {{\varepsilon }_{1}}, {{\tilde{S}}_{\varepsilon }}\subset \subset {{Y}_{{{\varepsilon }_{0}}}}, 且存在c<\infty, 使得\left| \theta (z, \varsigma ) \right|\le c\left\| s(z, \varsigma ) \right\|\le c\varepsilon, 其中(z, \varsigma )\in ({{\tilde{U}}_{j}}\times {{U}_{j}})\bigcap \partial {{U}_{\varepsilon }}, 即对于0<\varepsilon \le {{\varepsilon }_{1}}, \left| \xi \right|\le c\varepsilon(\eta, \xi )\in {{\tilde{S}}_{\varepsilon }}.

因为\vartheta \circ {{T}^{-1}}{{Y}_{{{\varepsilon }_{0}}}}上是{C ^{\infty }}的, 由上所述存在c<\infty, 使得对于所有0<\varepsilon \le {{\varepsilon }_{1}}(\eta, \xi )\in {{\tilde{S}}_{\varepsilon }}, 我们有[1]

\begin{equation}\label{eq225} \left\| {{\det }_{(1, n-1)}}(\vartheta, {{\partial }_{\bar{\eta }\bar{\xi }}}\vartheta )-{{\det }_{(1, n-1)}}(\vartheta, {{\partial }_{{\bar{\xi }}}}\vartheta ) \right\|\le c{{\varepsilon }^{2}}. \end{equation}
(2.25)

(\pi _{j}^{-1})^*G{{N}^{*}}G分别是由\pi _{j}^{-1}N确定的G的拉回, 则

(\pi _{j}^{-1})^*G(\eta )=\sum\limits_{\left| K \right|=q}{{{G}_{K}}}(\eta ){\rm d}{{\bar{\eta }}^{K}}, \;\;\; \eta \in {{\pi }_{j}}({{U}_{j}}),

\begin{equation}\label{eq226} {{N}^{*}}G(\xi, \eta )=\sum\limits_{\left| K \right|\le q}{G({{\pi }_{j}}}(N(\eta, \xi ))){{\rm d}_{\eta \xi }}{{\overline{[{{\pi }_{j}}(N(\eta, \xi ))]}}^{K}}. \end{equation}
(2.26)

对于(\eta, \xi )\in {{Y}_{{{\varepsilon }_{0}}}}, 我们定义

\begin{equation}\label{eq227}N_{\eta }^{*}G(\xi, \eta )=\sum\limits_{\left| K \right|\le q}{G({{\pi }_{j}}}(N(\eta, \xi ))){{\rm d}_{\eta }}{{\overline{[{{\pi }_{j}}(N(\eta, \xi ))]}}^{K}}. \end{equation}
(2.27)

对于0<\varepsilon \le {{\varepsilon }_{1}}(\eta, \xi )\in {{\tilde{S}}_{\varepsilon }}, 存在c<\infty使得

\begin{equation}\label{eq228} \left| {{\pi }_{j}}(N(\eta, \xi ))-\eta \right|=\left| {{\pi }_{j}}(\varsigma )-{{\pi }_{j}}(z) \right|\le c\varepsilon, \left\| {{\rm d}_{\eta }}{{\pi }_{j}}(N(\eta, \xi ))-{\rm d}\eta \right\|\le c\varepsilon. \end{equation}
(2.28)

因此

\begin{equation}\label{eq229}\lim\limits_{\varepsilon \to 0}\sup\limits_{(\eta, \xi )\in {{{\tilde{S}}}_{\varepsilon }}}\left\| N_{\eta }^{*}G(\xi, \eta )-(\pi _{j}^{-1})^*G(\eta ) \right\|=0, \end{equation}
(2.29)

\begin{equation}\label{eq230}\left| \varphi ({{T}^{-1}}(\eta, \xi ))-\varphi ({{T}^{-1}}(\eta, 0)) \right|=\left| \varphi ({{T}^{-1}}(\eta, \xi ))-1 \right|\le c\varepsilon. \end{equation}
(2.30)

v(z)是具有紧支集在\tilde{D}中的{C ^{\infty }}微分形式, \{{{\chi }_{j}}\}是从属于\{{{U}_{j}}\}{{ C}^{\infty }}单位分解, 且书{{v}_{j}}={{\chi }_{j}}v和选择开集{{\tilde{U}}_{j}}\subset \subset {{U}_{j}}.

({{T}^{-1}})^*{{T}^{-1}}的拉回, 则

\begin{eqnarray*}J&= :&{{c}_{m}}\int _{(z, \varsigma )\in ({{{\tilde{U}}}_{j}}\times {{U}_{j}})\bigcap \partial {{U}_{\varepsilon }}}{G(\varsigma )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}\\&&\times\bigg({{\Psi }_{m}}, \frac{\vartheta (z, \varsigma )}{\left\langle \left. \vartheta (z, \varsigma ), \theta (z, \varsigma ) \right\rangle \right.}, {{\partial }_{\bar{\varsigma }\bar{z}}}\frac{\vartheta (z, \varsigma )}{\left\langle \left. \vartheta (z, \varsigma ), \theta (z, \varsigma ) \right\rangle \right.}\bigg)\wedge B_{m}^{\Phi }(\theta (z, \varsigma )\wedge {{v}_{j}}(z)\\&=& {{c}_{m}}\int _{(\eta, \xi )\in {{{\tilde{S}}}_{\varepsilon }}}{{{N}^{*}}G(\eta, \xi )\wedge {{\varphi }^{\nu }}}({{T}^{-1}}(\eta, \xi )){{\det }_{(m, 1, n-m-1)}}\\&&\times\bigg({{\Psi }_{m}}, \frac{\vartheta ({{T}^{-1}}(\eta, \xi ))}{\left\langle \left. \vartheta ({{T}^{-1}}(\eta, \xi )), \theta ({{T}^{-1}}(\eta, \xi )) \right\rangle \right.}, {{\partial }_{\bar{\eta }\bar{\xi }}}\frac{\vartheta ({{T}^{-1}}(\eta, \xi ))}{\left\langle \left. \vartheta ({{T}^{-1}}(\eta, \xi )), \theta ({{T}^{-1}}(\eta, \xi )) \right\rangle \right.}\bigg)\\&& \wedge B_{m}^{\Phi }(\theta ({{T}^{-1}}(\eta, \xi )))\wedge (\pi _{j}^{-1})^*{{v}_{j}}(\eta )\\&=& {{c}_{m}}\int _{(\eta, \xi )\in {{{\tilde{S}}}_{\varepsilon }}}{{{N}^{*}}G(\eta, \xi )\wedge [{{\varphi }^{\nu }}}({{T}^{-1}}(\eta, \xi ))-1]{{\det }_{(m, 1, n-m-1)}} \\ &&\times \bigg({{\Psi }_{m}}, \frac{\vartheta ({{T}^{-1}}(\eta, \xi ))}{\left\langle \left. \vartheta ({{T}^{-1}}(\eta, \xi )), \theta ({{T}^{-1}}(\eta, \xi )) \right\rangle \right.}, {{\partial }_{\bar{\eta }\bar{\xi }}}\frac{\vartheta ({{T}^{-1}}(\eta, \xi ))}{\left\langle \left. \vartheta ({{T}^{-1}}(\eta, \xi )), \theta ({{T}^{-1}}(\eta, \xi )) \right\rangle \right.}\bigg) \\ && \wedge B_{m}^{\Phi }(\theta ({{T}^{-1}}(\eta, \xi )))\wedge (\pi _{j}^{-1})^*{{v}_{j}}(\eta )\\ &&+{{c}_{m}}\int _{(\eta, \xi )\in {{{\tilde{S}}}_{\varepsilon }}}{{{N}^{*}}G(\eta, \xi )\wedge\bigg [}{{\det }_{(m, 1, n-m-1)}}\bigg({{\Psi }_{m}}, \frac{\vartheta ({{T}^{-1}}(\eta, \xi ))}{\left\langle \left. \vartheta ({{T}^{-1}}(\eta, \xi )), \theta ({{T}^{-1}}(\eta, \xi )) \right\rangle \right.}, \\ &&{{\partial }_{\bar{\eta }\bar{\xi }}}\frac{\vartheta ({{T}^{-1}}(\eta, \xi ))}{\left\langle \left. \vartheta ({{T}^{-1}}(\eta, \xi )), \theta ({{T}^{-1}}(\eta, \xi )) \right\rangle \right.}\bigg) \\ && -{{\det }_{(m, 1, n-m-1)}}\bigg({{\Psi }_{m}}, \frac{\vartheta ({{T}^{-1}}(\eta, \xi ))}{\left\langle \left. \vartheta ({{T}^{-1}}(\eta, \xi )), \theta ({{T}^{-1}}(\eta, \xi )) \right\rangle \right.}, \\ &&{{\partial }_{{\bar{\xi }}}}\frac{\vartheta ({{T}^{-1}}(\eta, \xi ))}{\left\langle \left. \vartheta ({{T}^{-1}}(\eta, \xi )), \theta ({{T}^{-1}}(\eta, \xi )) \right\rangle \right.}\bigg)\bigg] \wedge B_{m}^{\Phi }(\theta ({{T}^{-1}}(\eta, \xi )))\wedge (\pi _{j}^{-1})^*{{v}_{j}}(\eta )\\ &&+{{c}_{m}}\int _{(\eta, \xi )\in {{{\tilde{S}}}_{\varepsilon }}}{{{N}^{*}}G(\eta, \xi ) \wedge }{{\det }_{(m, 1, n-m-1)}}\bigg({{\Psi }_{m}}, \frac{\vartheta ({{T}^{-1}}(\eta, \xi ))} {\left\langle \left. \vartheta ({{T}^{-1}}(\eta, \xi )), \theta ({{T}^{-1}}(\eta, \xi )) \right\rangle \right.}, \\ &&{{\partial }_{{\bar{\xi }}}}\frac{\vartheta ({{T}^{-1}}(\eta, \xi ))}{\left\langle \left. \vartheta ({{T}^{-1}}(\eta, \xi )), \theta ({{T}^{-1}}(\eta, \xi )) \right\rangle \right.}\bigg) \wedge B_{m}^{\Phi }(\theta ({{T}^{-1}}(\eta, \xi )))\wedge (\pi _{j}^{-1})^*{{v}_{j}}(\eta ).\end{eqnarray*}

由(2.25)和(2.30)式得

\begin{eqnarray*}\lim\limits_{\varepsilon \to 0}\, J&=&{{c}_{m}}\int _{(\eta, \xi )\in {{{\tilde{S}}}_{\varepsilon }}}{{{N}^{*}}G(\eta, \xi )\wedge }{{\det }_{(m, 1, n-m-1)}}\bigg({{\Psi }_{m}}, \frac{\vartheta ({{T}^{-1}}(\eta, \xi ))}{\left\langle \left. \vartheta ({{T}^{-1}}(\eta, \xi) ), \theta ({{T}^{-1}}(\eta, \xi )) \right\rangle \right.}, \\&&{{\partial }_{{\bar{\xi }}}}\frac{\vartheta ({{T}^{-1}}(\eta, \xi ))}{\left\langle \left. \vartheta ({{T}^{-1}}(\eta, \xi )), \theta ({{T}^{-1}}(\eta, \xi )) \right\rangle \right.}\bigg) \wedge B_{m}^{\Phi }(\theta ({{T}^{-1}}(\eta, \xi )))\wedge (\pi _{j}^{-1})^*{{v}_{j}}(\eta ).\end{eqnarray*}

由于阶数的缘由, 我们有

\begin{eqnarray*}\lim\limits_{\varepsilon \to 0}\, J&=&{{c}_{m}}\int _{(\eta, \xi )\in {{{\tilde{S}}}_{\varepsilon }}}{N_{\eta }^{*}G(\eta, \xi )\wedge }{{\det }_{(m, 1, n-m-1)}}\bigg({{\Psi }_{m}}, \frac{\vartheta ({{T}^{-1}}(\eta, \xi ))}{\left\langle \left. \vartheta ({{T}^{-1}}(\eta, \xi )), \theta ({{T}^{-1}}(\eta, \xi )) \right\rangle \right.}, \\&&{{\partial }_{{\bar{\xi }}}}\frac{\vartheta ({{T}^{-1}}(\eta, \xi ))}{\left\langle \left. \vartheta ({{T}^{-1}}(\eta, \xi )), \theta ({{T}^{-1}}(\eta, \xi )) \right\rangle \right.}\bigg)\wedge B_{m}^{\Phi }(\theta ({{T}^{-1}}(\eta, \xi )))\wedge (\pi _{j}^{-1})^*{{v}_{j}}(\eta ).\end{eqnarray*}

由(2.29)式和引理2.2我们有

\begin{eqnarray*}\lim\limits_{\varepsilon \to 0}\, J&=&{{c}_{m}}\int _{(\eta, \xi )\in {{{\tilde{S}}}_{\varepsilon }}}{{{({{\pi }^{-1}})}^{*}}G(\eta )\wedge }{{\det }_{(m, 1, n-m-1)}}\bigg({{\Psi }_{m}}, \frac{\vartheta ({{T}^{-1}}(\eta, \xi ))}{\left\langle \left. \vartheta ({{T}^{-1}}(\eta, \xi )), \theta ({{T}^{-1}}(\eta, \xi )) \right\rangle \right.}, \\&&{{\partial }_{{\bar{\xi }}}}\frac{\vartheta ({{T}^{-1}}(\eta, \xi ))}{\left\langle \left. \vartheta ({{T}^{-1}}(\eta, \xi )), \theta ({{T}^{-1}}(\eta, \xi )) \right\rangle \right.}\bigg)\wedge B_{m}^{\Phi }(\theta ({{T}^{-1}}(\eta, \xi )))\wedge (\pi _{j}^{-1})^*{{v}_{j}}(\eta )\\&=&{{c}_{m}}\int _{(\eta, \xi )\in {{{\tilde{S}}}_{\varepsilon }}}{{\rm det}_{(m, 1, n-m-1)}}\bigg({{\Psi }_{m}}, \frac{\vartheta ({{T}^{-1}}(\eta, \xi ))}{\left\langle \left. \vartheta ({{T}^{-1}}(\eta, \xi )), \theta ({{T}^{-1}}(\eta, \xi )) \right\rangle \right.}, \\&&{{\partial }_{{\bar{\xi }}}}\frac{\vartheta ({{T}^{-1}}(\eta, \xi ))}{\left\langle \left. \vartheta ({{T}^{-1}}(\eta, \xi )), \theta ({{T}^{-1}}(\eta, \xi )) \right\rangle \right.}\bigg)B_{m}^{\Phi }({{T}^{-1}}(\eta, \xi ))\wedge {{(-1)}^{q}}{{(\pi _{j}^{-1})}^{*}}G(\eta )\wedge (\pi _{j}^{-1})^*{{v}_{j}}(\eta )\\&=&\int _{\eta \in {{\pi }_{j}}({{{\tilde{U}}}_{j}})}{(}-1{{)}^{q}}{{(\pi _{j}^{-1})}^{*}}G(\eta )\wedge (\pi _{j}^{-1})^*{{v}_{j}}(\eta ).\end{eqnarray*}

从上面的论述, 我们已得如下引理2.3:

引理 2.3  对于在\tilde{D}中的任何固定的z, 则

\begin{eqnarray}\label{eq231}&&\lim\limits_{\varepsilon \to 0}{{c}_{m}}\int_{\partial {{{\tilde{U}}}_{\varepsilon }}}{G(\varsigma )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}\bigg({{\Psi }_{m}}, \frac{\bar{s}(z, \varsigma )}{\left\| s(z, \varsigma ) \right\|_{\sigma }^{2}}, {{\partial }_{\bar{\varsigma }\bar{z}}}\frac{\bar{s}(z, \varsigma )}{\left\| s(z, \varsigma ) \right\|_{\sigma }^{2}}\bigg)\\&&\wedge U_{m}^{\Phi }(s(z, \varsigma )) \bigwedge_{i=1}^{n-m}{\rm d}{{s}_{i}}={{(-1)}^{^{q}}}G(z), \end{eqnarray}
(2.31)

其中G(z)=\sum\limits_{\left| K \right|}{{{G}_{K}}}(z){\rm d}{{\bar{z}}_{K}}(0, q) (q >0) 微分形式.

3 主要定理

定理 3.1  若D是在Stein流形X中具有逐块光滑边界的有界域, 则对于在\bar{D}上的(0, q)(q>0)微分形式G(z)z\in \tilde{D}, 在Stein流形X的复n-m(0\le m<n)维的解析簇中我们有拓广的Koppelman-Leray型公式

\begin{equation}\label{eq31} {(-1)^{q}}{G(z)=}{{{L}}_{\partial \tilde{D}}}G-({{R}_{\partial \tilde{D}}}+{{B}_{{\tilde{D}}}})\bar{\partial }G+\bar{\partial }({{R}_{\partial \tilde{D}}}+{{B}_{{\tilde{D}}}})G, \end{equation}
(3.1)

其中

({{B}_{{\tilde{D}}}}\Gamma )(z)=\\{{c}_{m}}\int_{{\tilde{D}}}{\Gamma (\varsigma) \wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}\bigg({{\Psi }_{m}}, \frac{\bar{s}(z, \varsigma )}{\left\| s(z, \varsigma ) \right\|_{\sigma }^{2}}, {{\partial }_{\bar{\varsigma }\bar{z}}}\frac{\bar{s}(z, \varsigma )}{\left\| s(z, \varsigma ) \right\|_{\sigma }^{2}}\bigg)\wedge B_{m}^{\Phi }(s(z, \varsigma )), ({{L}_{\partial \tilde{D}}}G)(z)\\={{c}_{m}}\int_{\partial \tilde{D}}{G(\varsigma )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, {{Q}^{0}}, {{\partial }_{\bar{\varsigma }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \varsigma )), ({{R}_{\partial \tilde{D}}}\Gamma )(z)\\ ={{c}_{m}}\int_{\partial \tilde{D}\times [0, 1]}{\Gamma (\varsigma )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, \eta, {{\partial }_{\bar{\varsigma }\bar{z}e}}\eta )\wedge B_{m}^{\Phi }(s(z, \varsigma )),

这里\Gamma (\varsigma )\bar{\partial }G(\varsigma )G(\varsigma ), \eta ={{({{\eta }_{1}}, \cdots, {{\eta }_{n}})}^{\tau }}{{\eta }_{p}}=e\frac{\bar{s}(z, \varsigma )}{\left\| s(z, \varsigma ) \right\|_{\sigma }^{2}}+(1-e)Q_{p}^{0}, \ e\in [0, 1], p=1, \cdots, n.

q=0时, G(z)改写为可微函数u(z), (3.1)式被写为拓广的Leray-Stokes型公式

u(z)={{L}_{\partial \tilde{D}}}u-({{R}_{\partial \tilde{D}}}+{{B}_{{\tilde{D}}}})\bar{\partial }u.

  因为在Z({{\Phi }_{1}}, \cdots, {{\Phi }_{m}})上,

{{\partial }_{\bar{\varsigma }\bar{z}e}}[{{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}({{\Psi }_{m}}, \eta, {{\partial }_{\bar{\varsigma }\bar{z}e}}\eta )]=0.

因此我们有

\begin{eqnarray}\label{eq32} &&{{\partial }_{\bar{\varsigma }e}}{{\det }_{(m, 1, n-m-1)}}({{\Psi }_{m}}, \eta, {{\partial }_{\bar{\varsigma }\bar{z}e}}\eta )\\&=&-{{\partial }_{{\bar{z}}}}{{\det }_{(m, 1, n-m-1)}}({{\Psi }_{m}}, \eta, {{\partial }_{\bar{\varsigma }\bar{z}e}}\eta ), \\ &&{\rm d}[G(\varsigma )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}({{\Psi }_{m}}, \eta, {{\partial }_{\bar{\varsigma }\bar{z}e}}\eta )\wedge B_{m}^{\Phi }(s(z, \varsigma ))]\\ &=&\bar{\partial }G(\varsigma )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}({{\Psi }_{m}}, \eta, {{\partial }_{\bar{\varsigma }\bar{z}e}}\eta )\wedge B_{m}^{\Phi }(s(z, \varsigma ))\\& &-{{\partial }_{{\bar{z}}}}[G(\varsigma )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}({{\Psi }_{m}}, \eta, {{\partial }_{\bar{\varsigma }\bar{z}e}}\eta )\wedge B_{m}^{\Phi }(s(z, \varsigma ))], \end{eqnarray}
(3.2)

其中{\rm d}={{\partial }_{\varsigma }}+{{\partial }_{{\bar{\varsigma }}}}+{{d}_{e}}, {{\partial }_{\bar{\varsigma }\bar{z}e}}={{\partial }_{{\bar{\varsigma }}}}+{{\partial }_{{\bar{z}}}}+{{d}_{e}}, \varsigma \in \partial \tilde{D}.

我们考虑积分域\{e=1, \varsigma \in \tilde{D}-{{\tilde{S}}_{r}}\}\bigcup \{(\varsigma, e)\in \partial \tilde{D}\times [0, 1]\}, 其边界是\{e=0, \varsigma \in \partial \tilde{D}\}\bigcup \{e=1, \varsigma \in \partial {{\tilde{S}}_{r}}\}.由Stokes公式我们有

\begin{eqnarray}\label{eq33} &&{{c}_{m}}\int _{\partial \tilde{D}\times [0, 1]}{{}}\bar{\partial }G(\varsigma )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}({{\Psi }_{m}}, \eta, {{\partial }_{\bar{\varsigma }\bar{z}e}}\eta )\wedge B_{m}^{\Phi }(s(z, \varsigma ))\nonumber\\& &-{{c}_{m}}{{\partial }_{{\bar{z}}}}\int _{\partial \tilde{D}\times [0, 1]}{G(\varsigma )}\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}({{\Psi }_{m}}, \eta, {{\partial }_{\bar{\varsigma }\bar{z}e}}\eta )\wedge B_{m}^{\Phi }(s(z, \varsigma ))\nonumber\\ &&+{{c}_{m}}\int_{\tilde{D}-{{{\tilde{s}}}_{r}}}{\bar{\partial }G(\varsigma) \wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}\bigg({{\Psi }_{m}}, \frac{\bar{s}(z, \varsigma )}{\left\| s(z, \varsigma ) \right\|_{\sigma }^{2}}, {{\partial }_{\bar{\varsigma }\bar{z}}}\frac{\bar{s}(z, \varsigma )}{\left\| s(z, \varsigma ) \right\|_{\sigma }^{2}}\bigg)\wedge B_{m}^{\Phi }(s(z, \varsigma ))\nonumber\\& &-{{c}_{m}}{{\partial }_{{\bar{z}}}}\int_{\tilde{D}-{{{\tilde{s}}}_{r}}}{G(\varsigma) \wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}\bigg({{\Psi }_{m}}, \frac{\bar{s}(z, \varsigma )}{\left\| s(z, \varsigma ) \right\|_{\sigma }^{2}}, {{\partial }_{\bar{\varsigma }\bar{z}}}\frac{\bar{s}(z, \varsigma )}{\left\| s(z, \varsigma ) \right\|_{\sigma }^{2}}\bigg)\wedge B_{m}^{\Phi }(s(z, \varsigma ))\nonumber\\ &=&{{c}_{m}}\int_{\partial \tilde{D}}{G(\varsigma )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, {{Q}^{0}}, {{\partial }_{\bar{\varsigma }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \varsigma ))\\& &-{{c}_{m}}\int_{\partial {{{\tilde{s}}}_{r}}}{G(\varsigma) \wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}\bigg({{\Psi }_{m}}, \frac{\bar{s}(z, \varsigma )}{\left\| s(z, \varsigma ) \right\|_{\sigma }^{2}}, {{\partial }_{\bar{\varsigma }\bar{z}}}\frac{\bar{s}(z, \varsigma )}{\left\| s(z, \varsigma ) \right\|_{\sigma }^{2}}\bigg)\wedge B_{m}^{\Phi }(s(z, \varsigma )).\\\end{eqnarray}
(3.3)

r\to 0, 且在(3.3)式的两边取极限, 则由引理2.3我们得(3.1)式.

定理 3.2  若Stein流形X中有界域D的边界\partial D由(2.3)式定义, \partial \tilde{D}由(2.4)式定义(其中\beta =1), 则在\bar{D}上的(0, q) (q >0)微分形式G(z)z\in \tilde{D}, 我们有Ⅰ -型有界域上复n-m(0\le m<n)维的解析簇的积分表示:

(a) 当k>1时, 我们有

\begin{eqnarray}\label{eq34}{{(-1)}^{q}}G(z)&=&{{c}_{m}}{{(-1)}^{(k-1)q}}\int _{\tilde{\sigma }_{(k)}^{(0)}}{G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, , k, n-m-k)}}}({{\Psi }_{m}}, E_{k}^{{}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\\&&\wedge B_{m}^{\Phi }(s(z, \zeta ))-\sum\limits_{\theta =1}^{k-1}{{}}{{c}_{m}}{{(-1)}^{\theta q}}\int _{\tilde{\sigma }_{(\theta )}^{(0)}}{\bar{\partial }G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, \theta, 1, n-m-\theta -1)}}}\\&&(\Psi _m, E_\theta , Q^0\partial _{\bar{\zeta }\bar{z}}Q^0)\wedge B_m^\Phi (s(z, \zeta ))+\sum\limits_{\theta =1}^{k-1}c_m(-1)^{\theta q}\partial _{\bar{z}}\int _{\tilde{\sigma }_{(\theta )}^{(0)}}G(\zeta )\wedge \varphi ^\nu (z, \varsigma )\\&&{\det}_{(m, \theta, 1, n-m-\theta -1)}(\Psi _m, E_{\theta }, Q^0\partial_{\bar{\zeta }\bar{z}} Q^0)\wedge B_{m}^{\Phi }(s(z, \zeta ))+\tilde{L}_m(\varsigma, z).\end{eqnarray}
(3.4)

(b) 当k=1时, 我们有

\begin{eqnarray}\label{eq35}{{(-1)}^{q}}G(z)&=&{{c}_{m}}\int _{\tilde{\sigma }_{(1)}^{(0)}}{G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, {{Q}^{0}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \zeta ))\\&&+{{\tilde{L}}_{m}}(\varsigma, z), \end{eqnarray}
(3.5)

其中{{\tilde{L}}_{m}}(\varsigma, z)=-({{R}_{\partial \tilde{D}}}+{{B}_{{\tilde{D}}}})\bar{\partial }G +\bar{\partial }({{R}_{\partial \tilde{D}}}+{{B}_{{\tilde{D}}}})G.

  因为

\begin{eqnarray*}&&{\rm d}[G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, 1, n-m-l-1)}}({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, {{Q}^{0}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \zeta ))]\\&=&\bar{\partial }G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, 1, n-m-l-1)}}({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, {{Q}^{0}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \zeta ))\\&&+{{(-1)}^{q}}G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\partial }_{{\bar{\varsigma }}}}{{\det }_{(m, l, 1, n-m-l-1)}}({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, {{Q}^{0}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \zeta ))\\&=&\bar{\partial }G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, 1, n-m-l-1)}}({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, {{Q}^{0}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \zeta ))\\&&+{{(-1)}^{q}}G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, n-m-l)}}({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \zeta )), \\&&-{{(-1)}^{q}}G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\partial }_{{\bar{z}}}}{{\det }_{(m, l, 1, n-m-l-1)}}({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, {{Q}^{0}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \zeta ))\\&=&\bar{\partial }G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, 1, n-m-l-1)}}({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, {{Q}^{0}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \zeta ))\\&&+{{(-1)}^{q}}G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, n-m-l)}}({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \zeta )), \\&&-{{\partial }_{{\bar{z}}}}[G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, 1, n-m-l-1)}}({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, {{Q}^{0}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \zeta ))], \end{eqnarray*}

则由上述和Stokes公式, 我们有

\begin{eqnarray*}{{I}_{l}}:&=&{{c}_{m}}\int _{\tilde{\sigma }_{(l)}^{(0)}}{{}}G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, n-m-l)}}({{\Psi }_{m}}, E_{l}^{{}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \zeta ))\\&=&{{c}_{m}}\sum\limits_{{{j}_{1}}<\cdots <{{j}_{l}}}{{}}\int _{{{{\tilde{\sigma }}}^{(0)}}_{{{j}_{1}}\cdots {{j}_{l}}}}{G(\varsigma )\wedge }{{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, n-m-l)}}({{\Psi }_{m}}, E_{l}^{{}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \zeta ))\\&=&\frac{{{c}_{m}}}{l!}\sum\limits_{{{j}_{1}}, \cdots, {{j}_{l}}}{\int _{\tilde{\sigma }_{{{j}_{1}}\cdots {{j}_{l}}}^{(0)}}{G(\varsigma )\wedge }}{{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, n-m-l)}}({{\Psi }_{m}}, E_{l}^{{}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \zeta ))\\&=&\frac{{{c}_{m}}}{(l+1)!}\sum\limits_{\rho =1}^{l+1}{{}}\sum\limits_{{{j}_{1}}, \cdots, [{{j}_{\rho }}], \cdots, {{j}_{l+1}}}{\int _{\tilde{\sigma }_{{{j}_{1}}\cdots [{{j}_{\rho }}]\cdots {{j}_{l+1}}}^{(0)}}{G(\varsigma )\wedge }}{{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, n-m-l)}}\\&&({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \varsigma ))\end{eqnarray*}

\begin{eqnarray}\label{eq36}{{(-1)}^{q}}{{I}_{l}}&=&\frac{{{c}_{m}}}{(l+1)!}\sum\limits_{\rho =1}^{l+1}{{}}\sum\limits_{{{j}_{1}}, \cdots, [{{j}_{\rho }}], \cdots, {{j}_{l+1}}}{\int _{\tilde{\sigma }_{{{j}_{1}}\cdots [{{j}_{\rho }}]\cdots {{j}_{l+1}}}^{(0)}}{{\rm d}[}}G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, 1, n-m-l-1)}}\\&&({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, {{Q}^{0}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \varsigma ))]\\&&-\frac{{{c}_{m}}}{(l+1)!}\sum\limits_{\rho =1}^{l+1}{{}}\sum\limits_{{{j}_{1}}, \cdots, [{{j}_{\rho }}], \cdots, {{j}_{l+1}}}{\int _{\tilde{\sigma }_{{{j}_{1}}\cdots [{{j}_{\rho }}]\cdots {{j}_{l+1}}}^{(0)}}{{\bar{\partial }}}}G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, 1, n-m-l-1)}}\\&&({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, {{Q}^{0}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \varsigma ))\\&&+\frac{{{c}_{m}}}{(l+1)!}\sum\limits_{\rho =1}^{l+1}{{}}\sum\limits_{{{j}_{1}}, \cdots, [{{j}_{\rho }}], \cdots, {{j}_{l+1}}}{{{\partial }_{{\bar{z}}}}\int _{\tilde{\sigma }_{{{j}_{1}}\cdots [{{j}_{\rho }}]\cdots {{j}_{l+1}}}^{(0)}}{{}}}G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, 1, n-m-l-1)}}\\&&({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, {{Q}^{0}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \varsigma ))\\&=&\frac{{{c}_{m}}}{(l+1)!}\sum\limits_{\rho =1}^{l+1}{{}}\sum\limits_{{{j}_{1}}, \cdots, [{{j}_{\rho }}], \cdots, {{j}_{l+1}}}{\sum\limits_{{{j}_{\rho }}}{{{(-1)}^{l+1+\rho }}}\int _{\tilde{\sigma }_{{{j}_{1}}\cdots {{j}_{l+1}}}^{(0)}}{G}}(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma )\\&&{{\det }_{(m, l, 1, n-m-l-1)}}({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, {{Q}^{0}}, {{\partial }_{\bar{\varsigma }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \varsigma ))\\&&-{{c}_{m}}\sum\limits_{{{j}_{1}}<\cdots <{{j}_{l}}}{\int _{\tilde{\sigma }_{{{j}_{1}}\cdots \cdots {{j}_{l}}}^{(0)}}{{\bar{\partial }}}}G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, 1, n-m-l-1)}}\\&&({{\Psi }_{m}}, {{E}_{l}}, {{Q}^{0}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \varsigma ))\\&&+{{c}_{m}}\sum\limits_{{{j}_{1}}<\cdots <{{j}_{l}}}{{{\partial }_{{\bar{z}}}}\int _{\tilde{\sigma }_{{{j}_{1}}\cdots {{j}_{l}}}^{(0)}}{G}}(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, 1, n-m-l-1)}}\\&&({{\Psi }_{m}}, E_{l}^{{}}, {{Q}^{0}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \zeta )).\end{eqnarray}
(3.6)

由(2.9)和(3.6)式我们得

\begin{eqnarray}\label{eq37}{{(-1)}^{q}}{{I}_{l}}&=&{{I}_{l+1}}-{{c}_{m}}\int _{\tilde{\sigma }_{(l)}^{(0)}}{{}}G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, 1, n-m-l-1)}}({{\Psi }_{m}}, E_{l}^{{}}, {{Q}^{0}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \zeta ))\nonumber\\&&+{{c}_{m}}{{\partial }_{{\bar{z}}}}\int _{\tilde{\sigma }_{(l)}^{(0)}}{{}}G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, 1, n-m-l-1)}}({{\Psi }_{m}}, E_{l}^{{}}, {{Q}^{0}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \zeta )), \nonumber \\&&l=1, 2, \cdots, k-1.\end{eqnarray}
(3.7)

反复使用(3.7)式, 我们得

\begin{eqnarray}\label{eq38}{{I}_{1}}&=&{{(-1)}^{(k-1)q}}{{I}_{k}}-\sum\limits_{\theta =1}^{k-1}{{{(-1)}^{\theta q}}}{{c}_{m}}\int _{\tilde{\sigma }_{(\theta )}^{(0)}}{{\bar{\partial }}}G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, \theta, 1, n-m-\theta -1)}}\\&&({{\Psi }_{m}}, E_{\theta }^{{}}, {{Q}^{0}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \zeta ))+\sum\limits_{\theta =1}^{k-1}{{{(-1)}^{\theta q}}}{{c}_{m}}{{\partial }_{{\bar{z}}}}\int _{\tilde{\sigma }_{(\theta )}^{(0)}}{G}(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma )\\&&{{\det }_{(m, \theta, 1, n-m-\theta -1)}}({{\Psi }_{m}}, E_{\theta }^{{}}, {{Q}^{0}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \zeta )).\end{eqnarray}
(3.8)

由(2.11)式我们有

\begin{eqnarray}\label{eq39}{{I}_{1}}&=&{{c}_{m}}\sum\limits_{{{j}_{1}}}{\int _{\tilde{\sigma }{{_{{{j}_{1}}}^{(0)}}_{{}}}}{G(\varsigma )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, 1, n-m-l-1)}}}}({{\Psi }_{m}}, {{h}_{{{j}_{1}}}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \zeta ))\\&=&{{c}_{m}}\int _{\partial \tilde{D}}{G(\varsigma )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, {{Q}^{0}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \zeta )). \end{eqnarray}
(3.9)

因此, 由(3.8), (3.9)和(3.1)式得(3.4)和(3.5)式.

定理 3.3  若Stein流形X中有界域D的边界\partial D由(2.3)式定义, \partial \tilde{D}由(2.4)式定义(其中k=1), 令{{\tau }_{m}}={{B}_{0}}\bigcap Z({{\Phi }_{1}}, \cdots, {{\Phi }_{m}}), \partial {{\tau }_{m}}={{\varepsilon }_{0}}{{\tilde{\sigma }}^{(\beta )}}\tilde{C}=\partial ({{\Lambda }^{(\beta -1)}}\times {{\tau }_{m}}).假设\tilde{\Omega }是具有以\tilde{C}\partial \tilde{D}作为边缘的一个链, 则在\bar{D}上的(0, q) (q >0)微分形式G(z)z\in \tilde{D}, 我们有Ⅱ -型有界域上复n-m(0\le m<n)维的解析簇的积分表示:

\begin{eqnarray}\label{eq310}{{(-1)}^{q}}G(z)&=&\varepsilon {{c}_{m}}\int _{{{\Lambda }^{(\beta -1)}}\times {{{\tilde{\sigma }}}^{(\beta )}}}{G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))\nonumber\\&&+{{c}_{m}}{{\partial }_{{\bar{z}}}}\int _{{\tilde{\Omega }}}{G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))\\&&-{{c}_{m}}\int _{{\tilde{\Omega }}}{\bar{\partial }G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))\\&&+{{\tilde{L}}_{m}}(\varsigma, z), \end{eqnarray}
(3.10)

其中\varepsilon ={{(-1)}^{\beta -1}}{{\varepsilon }_{0}}, {{\partial }_{\bar{\varsigma }\bar{z}\lambda }}\mbox{=}{{\partial }_{{\bar{\varsigma }}}}\mbox{+}{{\partial }_{{\bar{z}}}}\mbox{+}{{\mbox{d}}_{\lambda }}, Q={{({{Q}_{1}}, \cdots, {{Q}_{n}})}^{\tau }}{{Q}_{p}}=t_{\beta, 1}^{p}/{{M}_{\beta, 1}}(p=1, \cdots, n), 且如下条件成立

\begin{equation}\label{eq311}{\rm Rank}\frac{\partial (t_{\beta, 1}^{1}, \cdots, t_{\beta, 1}^{n})}{\partial ({{{\bar{\zeta }}}_{1}}, \cdots, {{{\bar{\varsigma }}}_{n}}, {{{\bar{z}}}_{1}}, \cdots, {{{\bar{z}}}_{n}})}\le n-m-\beta.\end{equation}
(3.11)

  令\tilde{C}=\partial ({{\Lambda }^{(\beta -1)}}\times {{\tau }_{m}}), 则\tilde{C}=\partial {{\Lambda }^{(\beta -1)}}\times {{\tau }_{m}}+\varepsilon {{\Lambda }^{(\beta -1)}}\times {{\tilde{\sigma }}^{(\beta )}}是实2n-2m-1维循环, 使用条件(3.11), 且经计算得

\int _{\partial {{\Lambda }^{(\beta -1)}}\times {{\tau }_{m}}}{G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))\mbox{=}0,

因此我们有

\begin{eqnarray}\label{eq312}&&\varepsilon {{c}_{m}}\int _{{{\Lambda }^{(\beta -1)}}\times {{{\tilde{\sigma }}}^{(\beta )}}}{G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))\\&=&{{c}_{m}}\int _{{\tilde{C}}}{G(\varsigma )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta )). \end{eqnarray}
(3.12)

另一方面, 因为

{{\partial }_{\bar{\varsigma }\bar{z}\lambda }}[{{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}({{\Psi }_{m}}, Q, {{\partial }_{\bar{\varsigma }\bar{z}\lambda }}Q)]={{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, n-m)}}({{\Psi }_{m}}, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)=0

{{\partial }_{\bar{\varsigma }\lambda }}[{{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}({{\Psi }_{m}}, Q, {{\partial }_{\bar{\varsigma }\bar{z}\lambda }}Q)=-{{\partial }_{{\bar{z}}}}[{{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}({{\Psi }_{m}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)],

Z({{\Phi }_{1}}, \cdots, {{\Phi }_{m}})上有

\begin{eqnarray}\label{eq313}&&{\rm d}[G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}({{\Psi }_{m}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))]\\&=&\bar{\partial }G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}({{\Psi }_{m}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))\\&&-{{\partial }_{{\bar{z}}}}[G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}({{\Psi }_{m}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))]. \end{eqnarray}
(3.13)

\tilde{C}\partial \tilde{D}=\partial {{D}_{m}}都是{{\Bbb R}^{\beta }}\times {C ^{n-m}}上实2n-2m-1维循环, 因此由(3.13)式和Stokes公式得

\begin{eqnarray}\label{eq314} &&\bigg(\int _{{\tilde{C}}}{-\int _{\partial \tilde{D}}{\bigg)}G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))\\ &=&\int _{{\tilde{\Omega }}}{\bar{\partial }G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))\\& &-{{\partial }_{{\bar{z}}}}\int _{{\tilde{\Omega }}}{G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta )). \end{eqnarray}
(3.14)

从(3.13)和(3.14)式我们推得

\begin{eqnarray}\label{eq315}&&\varepsilon {{c}_{m}}\int _{{{\Lambda }^{(\beta -1)}}\times {{{\tilde{\sigma }}}^{(\beta )}}}{G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))\\&=&{{c}_{m}}\int_{\partial \tilde{D}}{G(\varsigma )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, {{Q}^{0}}, {{\partial }_{\bar{\varsigma }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \varsigma ))\\&&+{{c}_{m}}\int _{{\tilde{\Omega }}}{\bar{\partial }G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))\\&&-{{c}_{m}}{{\partial }_{{\bar{z}}}}\int _{{\tilde{\Omega }}}{G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta )).\end{eqnarray}
(3.15)

由(3.15)和(3.1)式我们可得(3.10)式.

定理 3.4  若Stein流形X中有界域D的边界\partial D由(2.3)式定义, \partial \tilde{D}由(2.4)式定义, 则在\bar{D}上的(0, q) (q >0)微分形式G(z)z\in \tilde{D}, 我们有Ⅰ -型有界域上复n-m(0\le m<n)维的解析簇的积分表示:

(a) 当k>1时, 我们有

\begin{eqnarray}\label{eq316}{{(-1)}^{q}}G(z)&=&\varepsilon {{\varepsilon }_{k}}{{c}_{m}}\int _{{{\Lambda }^{(\beta -1)}}\times \tilde{\sigma }_{(k)}^{(\beta -1)}}{G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, k, n-m-k)}}}({{\Psi }_{m}}, E_{k}^{{}}, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\\&&\wedge B_{m}^{\Phi }(s(z, \varsigma ))-\sum\limits_{\theta =1}^{k-1}(-1)^q\varepsilon \varepsilon _\theta c_m\int _{{\Lambda }^{(\beta -1)\times \tilde{\sigma }_{(\theta )}^{(\beta -1)}}} \bar{\partial }G(\zeta )\wedge \varphi ^\nu (z, \varsigma )\\&&{\det }_{(m, \theta, 1, n-m-\theta -1)}({{\Psi }_{m}}, E_{\theta }^{{}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \varsigma ))\\&&+\sum\limits_{\theta =1}^{k-1}{{{(-1)}^{q}}}\varepsilon {{\varepsilon }_{\theta }}{{c}_{m}}{{\partial }_{{\bar{z}}}}\int _{{{\Lambda }^{(\beta -1)}}\times \tilde{\sigma }_{(\theta )}^{(\beta -1)}}{G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, \theta, 1, n-m-\theta -1)}}}\\&&({{\Psi }_{m}}, E_{\theta }^{{}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \varsigma ))+{{{L}'}_{m}}(\varsigma, z), \end{eqnarray}
(3.16)

(b) 当k=1时, 我们有

\begin{eqnarray}\label{eq317}{{(-1)}^{q}}G(z)&=&\varepsilon {{c}_{m}}\int _{{{\Lambda }^{(\beta -1)}}\times \tilde{\sigma }_{(1)}^{(\beta -1)}}{G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\\&&\wedge B_{m}^{\Phi }(s(z, \zeta ))+{{{L}'}_{m}}(\varsigma, z), \end{eqnarray}
(3.17)

其中{{\varepsilon }_{l}}={{(-1)}^{(l-1)(q+\beta -1)}}\ (l=1, 2, \cdots, k;k>1), Q={{({{Q}_{1}}, \cdots, {{Q}_{n}})}^{\tau }}, 以及{{Q}_{p}}=t_{\beta, 1}^{p}/{{M}_{\beta, 1}}(p=1, \cdots, n), 且满足如下条件:

\begin{equation}\label{eq318}{\rm Rank}\frac{\partial (t_{\beta, 1}^{1}, \cdots, t_{\beta, 1}^{n})}{\partial ({{{\bar{\zeta }}}_{1}}, \cdots, {{{\bar{\varsigma }}}_{n}}, {{{\bar{z}}}_{1}}, \cdots, {{{\bar{z}}}_{n}})}\le n-m-\beta -k+1 \mbox{;}\end{equation}
(3.18)

以及

\begin{eqnarray}\label{eq319}{{{L}'}_{m}}(\varsigma, z)&=&-{{c}_{m}}\int _{{\tilde{\Omega }}}{\bar{\partial }G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))\\&&+{{c}_{m}}{{\partial }_{{\bar{z}}}}\int _{{\tilde{\Omega }}}{G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))\\&&+{{\tilde{L}}_{m}}(\varsigma, z). \end{eqnarray}
(3.19)

  因为

\begin{eqnarray}\label{eq320}&&\partial ({{\Lambda }^{(\beta -1)}}\times \tilde{\sigma }_{{{j}_{1}}\cdots [{{j}_{\rho }}]\cdots {{j}_{l+1}}}^{(\beta -1)})\\&=&\partial {{\Lambda }^{(\beta -1)}}\times \tilde{\sigma }_{{{j}_{1}}\cdots [{{j}_{\rho }}]\cdots {{j}_{l+1}}}^{(\beta -1)}+{{(-1)}^{\beta -1}}{{\Lambda }^{(\beta -1)}}\times \sum\limits_{{{j}_{\rho }}}{{{(-1)}^{l+1+\rho }}}\tilde{\sigma }_{{{j}_{1}}\cdots {{j}_{l+1}}}^{(\beta -1)}\end{eqnarray}
(3.20)

\begin{eqnarray}\label{eq321}&&{\rm d}[G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, 1, n-m-l-1)}}({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))]\\&=&{{(-1)}^{q}}G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\partial }_{\bar{\varsigma }\lambda }}{{\det }_{(m, l, 1, n-m-l-1)}}({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))\\&&+\bar{\partial }G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, 1, n-m-l-1)}}({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \varsigma ))\\&=&{{(-1)}^{q}}G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, n-m-l)}}({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \varsigma ))\\&&-{{(-1)}^{q}}G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\partial }_{{\bar{z}}}}{{\det }_{(m, l, 1.n-m-l-1)}}({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))\\&&+\bar{\partial }G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, 1, n-m-l-1)}}({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \varsigma ))\\&=&{{(-1)}^{q}}G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, n-m-l)}}({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \varsigma ))\\&&-{{\partial }_{{\bar{z}}}}[G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, 1, n-m-l-1)}}({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))]\\&&+\bar{\partial }G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, 1, n-m-l-1)}}({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \varsigma )), \end{eqnarray}
(3.21)

其中{\rm d}={{\partial }_{\zeta }}+{{\partial }_{{\bar{\zeta }}}}+{{\rm d}_{\lambda }}, {{\partial }_{\bar{\varsigma }\bar{z}\lambda }}={{\partial }_{{\bar{\varsigma }}}} +{{\partial }_{{\bar{z}}}}+{{\rm d}_{\lambda }}={{\partial }_{\bar{\varsigma }\lambda }}+{{\partial }_{{\bar{z}}}}.则由(3.20)式, (3.21)式和Stokes公式我们有

\begin{eqnarray*}{{\tilde{I}}_{l}}:&=&{{c}_{m}}\int _{{{\Lambda }^{(\beta -1)}}\times {{{\tilde{\sigma }}}^{(\beta -1)}}_{(l)}}{G}(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, n-m-l)}}({{\Psi }_{m}}, E_{l}^{{}}, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))\\&=&{{c}_{m}}\sum\limits_{{{j}_{1}}<\cdots <{{j}_{l}}}{{}}\int _{{{\Lambda }^{(\beta -1)}}\times {{{\tilde{\sigma }}}^{(\beta -1)}}_{{{j}_{1}}\cdots {{j}_{l}}}}{G}(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, n-m-l)}}({{\Psi }_{m}}, E_{l}^{{}}, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))\\&=&\frac{{{c}_{m}}}{l!}\sum\limits_{{{j}_{1}}, \cdots, {{j}_{l}}}{\int _{{{\Lambda }^{(\beta -1)}}\times \tilde{\sigma }_{{{j}_{1}}\cdots {{j}_{l}}}^{(\beta -1)}}{G}}(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, n-m-l)}}({{\Psi }_{m}}, E_{l}^{{}}, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))\\&=&\frac{{{c}_{m}}}{(l+1)!}\sum\limits_{\rho =1}^{l+1}{{}}\sum\limits_{{{j}_{1}}, \cdots, [{{j}_{\rho }}], \cdots, {{j}_{l+1}}}{\int _{{{\Lambda }^{(\beta -1)}}\times \tilde{\sigma }_{{{j}_{1}}\cdots [{{j}_{\rho }}]\cdots {{j}_{l+1}}}^{(\beta -1)}}{G}}(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, n-m-l)}}\\&&({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))\end{eqnarray*}

\begin{eqnarray}\label{eq322}{{(-1)}^{q}}{{\tilde{I}}_{l}}&=&\frac{{{c}_{m}}}{(l+1)!}\sum\limits_{\rho =1}^{l+1}{{}}\sum\limits_{{{j}_{1}}, \cdots, [{{j}_{\rho }}], \cdots, {{j}_{l+1}}}{\int _{{{\Lambda }^{(\beta -1)}}\times \tilde{\sigma }_{{{j}_{1}}\cdots [{{j}_{\rho }}]\cdots {{j}_{l+1}}}^{(\beta -1)}}}\\&&{\rm d}[G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, 1, n-m-l-1)}}({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, Q, {{\partial }_{\bar{\varsigma }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))]\\&&-\frac{{{c}_{m}}}{(l+1)!}\sum\limits_{\rho =1}^{l+1}{{}}\sum\limits_{{{j}_{1}}, \cdots, [{{j}_{\rho }}], \cdots, {{j}_{l+1}}}{\int _{{{\Lambda }^{(\beta -1)}}\times \tilde{\sigma }_{{{j}_{1}}\cdots [{{j}_{\rho }}]\cdots {{j}_{l+1}}}^{(\beta -1)}}{\bar{\partial }G}}(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma )\\&&{{\det }_{(m, l, 1, n-m-l-1)}}({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, Q, {{\partial }_{\bar{\varsigma }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))]\\&&+\frac{{{c}_{m}}}{(l+1)!}\sum\limits_{\rho =1}^{l+1}{{}}\sum\limits_{{{j}_{1}}, \cdots, [{{j}_{\rho }}], \cdots, {{j}_{l+1}}}{{{\partial }_{{\bar{z}}}}\int _{{{\Lambda }^{(\beta -1)}}\times \tilde{\sigma }_{{{j}_{1}}\cdots [{{j}_{\rho }}]\cdots {{j}_{l+1}}}^{(\beta -1)}}{G}}(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma )\\&&{{\det }_{(m, l, 1, n-m-l-1)}}({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, Q, {{\partial }_{\bar{\varsigma }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))]\\&=&\frac{{{c}_{m}}}{(l+1)!}\sum\limits_{\rho =1}^{l+1}{{}}\sum\limits_{{{j}_{1}}, \cdots, [{{j}_{\rho }}], \cdots, {{j}_{l+1}}}\bigg(\int _{\partial {{\Lambda }^{(\beta -1)}}\times \tilde{\sigma }_{{{j}_{1}}\cdots [{{j}_{\rho }}]\cdots {{j}_{l+1}}}^{(\beta -1)}}\\&&+{{(-1)}^{\beta -1}}\sum\limits_{{{j}_{\rho }}}{{{(-1)}^{l+1+\rho }}}\int _{{{\Lambda }^{(\beta -1)}}\times \tilde{\sigma }_{{{j}_{1}}\cdots {{j}_{l+1}}}^{(\beta -1)}}\bigg)\\&&G(\varsigma )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, 1, n-m-l-1)}}({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))\\&&-{{c}_{m}}\sum\limits_{{{j}_{1}}<\cdots <{{j}_{l}}}{\int _{{{\Lambda }^{(\beta -1)}}\times \tilde{\sigma }_{{{j}_{1}}\cdots {{j}_{l}}}^{(\beta -1)}}{{\bar{\partial }}}}G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, 1, n-m-l-1)}}\\&&({{\Psi }_{m}}, E_{l}^{{}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))\\&&+{{c}_{m}}\sum\limits_{{{j}_{1}}<\cdots <{{j}_{l}}}{{{\partial }_{{\bar{z}}}}\int _{{{\Lambda }^{(\beta -1)}}\times \tilde{\sigma }_{{{j}_{1}}\cdots {{j}_{l}}}^{(\beta -1)}}{G}}(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, 1, n-m-l-1)}}\\&&({{\Psi }_{m}}, E_{l}^{{}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta )), \end{eqnarray}
(3.22)

使用条件(3.18), 且经计算我们可得

\begin{equation}\label{eq323}\int _{\partial {{\Lambda }^{(\beta -1)}}\times\tilde{\sigma }_{{{j}_{1}}\cdots [{{j}_{\rho }}]\cdots {{j}_{l+1}}}^{(\beta -1)}}{G(\zeta )\wedge }{{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, 1, n-m-l-1)}}({{\Psi }_{m}}, E_{l+1}^{[\rho ]}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))=0.\end{equation}
(3.23)

于是由(3.22), (3.23)和(2.8)式得

\begin{eqnarray}\label{eq324}{{(-1)}^{q}}{{\tilde{I}}_{l}}&=&{{(-1)}^{\beta -1}}{{\tilde{I}}_{l+1}}-{{c}_{m}}\sum\limits_{{{j}_{1}}<\cdots <{{j}_{l}}}{\int _{{{\Lambda }^{(\beta -1)}}\times \tilde{\sigma }_{{{j}_{1}}\cdots {{j}_{l}}}^{(\beta -1)}}{{\bar{\partial }}}}G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, 1, n-m-l-1)}}\\&&({{\Psi }_{m}}, E_{l}^{{}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))\\&&+{{c}_{m}}\sum\limits_{{{j}_{1}}<\cdots <{{j}_{l}}}{{{\partial }_{{\bar{z}}}}\int _{{{\Lambda }^{(\beta -1)}}\times \tilde{\sigma }_{{{j}_{1}}\cdots {{j}_{l}}}^{(\beta -1)}}{G}}(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, 1, n-m-l-1)}}\\&&({{\Psi }_{m}}, E_{l}^{{}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta )), \end{eqnarray}
(3.24)

其中l=1, 2, \cdots, k-1.

反复使用(3.24)式得

\begin{eqnarray}\label{eq325}\varepsilon {{\tilde{I}}_{1}}&=&\varepsilon {{\varepsilon }_{k}}{{\tilde{I}}_{k}}-\sum\limits_{l=1}^{k-1}{{{(-1)}^{q}}}\varepsilon {{\varepsilon }_{l}}{{c}_{m}}\int _{{{\Lambda }^{(\beta -1)}}\times \tilde{\sigma }_{(l)}^{(\beta -1)}}{{\bar{\partial }}}G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, 1, n-m-l-1)}}\\&&({{\Psi }_{m}}, {{E}_{l}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))\\&&+\sum\limits_{l=1}^{k-1}{{{(-1)}^{q}}}\varepsilon {{\varepsilon }_{l}}{{c}_{m}}{{\partial }_{{\bar{z}}}}\int _{{{\Lambda }^{(\beta -1)}}\times \tilde{\sigma }_{(l)}^{(\beta -1)}}{G}(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, l, 1, n-m-l-1)}}\\&&({{\Psi }_{m}}, {{E}_{l}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta )), \end{eqnarray}
(3.25)

由(2.10)式我们有

\begin{eqnarray}\label{eq326}\varepsilon {{\tilde{I}}_{1}}&=&\varepsilon {{c}_{m}}\sum\limits_{{{j}_{1}}}{{}}\int _{{{\Lambda }^{(\beta -1)}}\times {{{\tilde{\sigma }}}^{(\beta -1)}}_{{{j}_{1}}}}{G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, {{h}_{{{j}_{1}}}}, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta ))\nonumber\\&=&\varepsilon {{c}_{m}}\int _{{{\Lambda }^{(\beta -1)}}\times {{{\tilde{\sigma }}}^{(\beta )}}_{{}}}{G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge B_{m}^{\Phi }(s(z, \zeta )). \end{eqnarray}
(3.26)

从(3.25), (3.26)和(3.10)式得(3.16)和(3.17)式.

注 3.1  当\beta =1时, 我们有Q={{Q}^{0}}, {{\partial }_{\bar{\varsigma }\bar{z}\lambda }}Q={{\partial }_{\bar{\varsigma }\bar{z}}}{{Q}^{0}}, {{\tilde{\sigma }}^{(1)}}=\tilde{\sigma }_{(1)}^{(0)}=\partial \tilde{D}, 且由(3.15)式得

\begin{eqnarray*} &&{{c}_{m}}\int _{{{{\tilde{\sigma }}}^{(1)}}}{G(\zeta ){{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, {{Q}^{0}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \zeta ))\\ &=&{{c}_{m}}\int_{\partial \tilde{D}}{G(\varsigma ){{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, {{Q}^{0}}, {{\partial }_{\bar{\varsigma }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \varsigma ))\\ &&-{{c}_{m}}{{\partial }_{{\bar{z}}}}\int _{{\tilde{\Omega }}}{G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, {{Q}^{0}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \zeta ))\\ &&+{{c}_{m}}\int _{{\tilde{\Omega }}}{\bar{\partial }G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, {{Q}^{0}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \zeta )), \end{eqnarray*}

这意味着

\begin{eqnarray*} & &-{{c}_{m}}{{\partial }_{{\bar{z}}}}\int _{{\tilde{\Omega }}}{G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, {{Q}^{0}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \zeta ))\\ &&{{c}_{m}}\int _{{\tilde{\Omega }}}{\bar{\partial }G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}({{\Psi }_{m}}, {{Q}^{0}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge B_{m}^{\Phi }(s(z, \zeta ))=0 \end{eqnarray*}

{{{L}'}_{m}}(\varsigma, z)={{\tilde{L}}_{m}}(\varsigma, z).因此(3.16)和(3.17)式分别转化为(3.4)和(3.5)式.

注 3.2  当k=1时, 我们有\tilde{\sigma }_{(1)}^{(\beta -1)}={{\tilde{\sigma }}^{(\beta )}}, 且(3.17)式转化为(3.10)式.由注3.1和注3.2断言(3.16)和(3.17)式是(3.1), (3.4), (3.5)和(3.10)式的统一的积分表示式.

注 3.3  当m=0时, 则B_{m}^{\Phi }(s(z, \zeta ))=B_{0}^{\Phi }(s(z, \zeta ))=n!\omega (s(z, \zeta )), {{c}_{0}}=1/n!{{(2\pi {\rm i})}^{n}}, \tilde{\sigma }_{\alpha }^{\beta -1}\mbox{=}\sigma _{\alpha }^{\beta -1}, \tilde{\Omega }=\Omega \partial \tilde{D}=\partial D, 它是由(2.3)式定义, 且(3.18)式可写为

\begin{equation}\label{eq327} {\rm Rank}\frac{\partial (t_{\beta, 1}^{1}, \cdots, t_{\beta, 1}^{n})}{\partial ({{{\bar{\zeta }}}_{1}}, \cdots, {{{\bar{\varsigma }}}_{n}}, {{{\bar{z}}}_{1}}, \cdots, {{{\bar{z}}}_{n}})}\le n-\beta -k+1. \end{equation}
(3.27)

因此(3.16)和(3.17)式转化为如下的Koppelman-Leray公式的推广:

对于k>1,

\begin{eqnarray}\label{eq328}{{(-1)}^{q}}G(z)&=&\frac{\varepsilon {{\varepsilon }_{k}}}{{{(2\pi {\rm i})}^{n}}}\int _{{{\Lambda }^{(\beta -1)}}\times \sigma _{(k)}^{(\beta -1)}}{G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(k, n-k)}}}(E_{k}^{{}}, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge {{\omega }_{\varsigma }}(s(z, \varsigma ))\nonumber\\&&-\sum\limits_{\theta =1}^{k-1}{{{(-1)}^{q}}}\frac{\varepsilon {{\varepsilon }_{\theta }}}{{{(2\pi {\rm i})}^{n}}}\int _{{{\Lambda }^{(\beta -1)}}\times \sigma _{(\theta )}^{(\beta -1)}}{\bar{\partial }G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(\theta, 1, n-\theta -1)}}}\nonumber\\&&(E_{\theta }^{{}}, Q, {{\partial }_{\bar{\zeta }\tilde{z}\lambda }}Q)\wedge {{\omega }_{\varsigma }}(s(z, \varsigma ))\nonumber\\&&+\sum\limits_{\theta =1}^{k-1}{{{(-1)}^{q}}}\frac{\varepsilon {{\varepsilon }_{\theta }}}{{{(2\pi {\rm i})}^{n}}}{{\partial }_{{\bar{z}}}}\int _{{{\Lambda }^{(\beta -1)}}\times \sigma _{(\theta )}^{(\beta -1)}}{G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(\theta, 1, n-\theta -1)}}}\nonumber\\&&(E_{\theta }^{{}}, Q, {{\partial }_{\bar{\zeta }\tilde{z}\lambda }}Q)\wedge {{\omega }_{\varsigma }}(s(z, \varsigma ))+{L}'(\varsigma, z), \end{eqnarray}
(3.28)

对于k=1,

\begin{eqnarray}\label{eq329}{{(-1)}^{q}}G(z)&=&\frac{\varepsilon }{{{(2\pi {\rm i})}^{n}}}\int _{{{\Lambda }^{(\beta -1)}}\times \sigma _{(1)}^{(\beta -1)}}{G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(1, n-1)}}}(Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge \omega (s(z, \varsigma ))\\&&+{L}'(\varsigma, z), \end{eqnarray}
(3.29)

其中

\begin{eqnarray}\label{eq330}{L}'(\varsigma, z)&=&-\frac{1}{{{(2\pi {\rm i})}^{n}}}\int _{\Omega }{\bar{\partial }G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(1, n-1)}}}(Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge \omega (s(z, \zeta ))\\&&+\frac{1}{{{(2\pi {\rm i})}^{n}}}{{\partial }_{{\bar{z}}}}\int _{\Omega }{G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(1, n-1)}}}(Q, {{\partial }_{\bar{\zeta }\bar{z}\lambda }}Q)\wedge \omega (s(z, \zeta ))+{{\tilde{L}}_{{}}}(\varsigma, z), \end{eqnarray}
(3.30)

\begin{equation}\label{eq331}\tilde{L}(\varsigma, z)=-({{R}_{\partial D}}+{{B}_{D}})\bar{\partial }G+\bar{\partial }({{R}_{\partial D}}+{{B}_{D}})G, \end{equation}
(3.31)

其中

({{B}_{D}}\Gamma )(z)=\frac{1}{{{(2\pi {\rm i})}^{n}}}\int_{D}{\Gamma (\varsigma \wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(1, n-1)}}}\bigg(\frac{\bar{s}(z, \varsigma )}{\left\| s(z, \varsigma ) \right\|_{\sigma }^{2}}, {{\partial }_{\bar{\varsigma }\bar{z}}}\frac{\bar{s}(z, \varsigma )}{\left\| s(z, \varsigma ) \right\|_{\sigma }^{2}}\bigg)\wedge \omega (s(z, \varsigma )),

({{R}_{\partial D}}\Gamma )(z)=\frac{1}{{{(2\pi {\rm i})}^{n}}}\int_{\partial D\times [0, 1]}{\Gamma (\varsigma \wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(1, n-1)}}}(\eta, {{\partial }_{\bar{\varsigma }\bar{z}e}}\eta )\wedge \omega (s(z, \varsigma )),

这里\Gamma (\varsigma )\bar{\partial }G(\varsigma )G(\varsigma ).

特别, 当\beta =1时, 则我们有如下Ⅰ -型有界域的微分形式的积分表示:

对于k>1,

\begin{eqnarray}\label{eq332}{{(-1)}^{q}}G(z)&=&\frac{{{(-1)}^{(k-1)q}}}{{{(2\pi {\rm i})}^{n}}}\int _{\sigma _{(k)}^{(0)}}{G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(k, n-k)}}}(E_{k}^{{}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge {{\omega }_{\varsigma }}(s(z, \varsigma ))\\&&-\sum\limits_{\theta =1}^{k-1}{{}}\frac{{{(-1)}^{\theta q}}}{{{(2\pi {\rm i})}^{n}}}\int _{\sigma _{(\theta )}^{(0)}}{\bar{\partial }G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(\theta, 1, n-\theta -1)}}}(E_{\theta }^{{}}, {{Q}^{0}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge \omega (s(z, \varsigma ))\\&&+\sum\limits_{\theta =1}^{k-1}{{}}\frac{{{(-1)}^{\theta q}}}{{{(2\pi {\rm i})}^{n}}}{{\partial }_{{\bar{z}}}}\int _{\sigma _{(\theta )}^{(0)}}{G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(\theta, 1, n-\theta -1)}}}(E_{\theta }^{{}}, {{Q}^{0}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge \omega (s(z, \varsigma ))\\&&+\tilde{L}(\varsigma, z), \end{eqnarray}
(3.32)

对于k=1,

\begin{equation}\label{eq333}{{(-1)}^{q}}G(z)=\frac{1}{{{(2\pi {\rm i})}^{n}}}\int _{\sigma _{(1)}^{(0)}}{G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(1, n-1)}}}({{Q}^{0}}, {{\partial }_{\bar{\zeta }\bar{z}}}{{Q}^{0}})\wedge {{\omega }_{\varsigma }}(s(z, \varsigma ))+\tilde{L}(\varsigma, z).\end{equation}
(3.33)

q=0 (即可微函数)的情形, 我们还有相应于(3.32)和(3.33)式的公式.例如, 我们假设解析多面体是由{{Z}_{j}}(z)(j=1, 2, \cdots, K\ge n)定义, \partial D表示为\sum\limits_{j}{{{\sigma }_{j}}}.在(3.32)式的相应公式中, 我们选择k=n和在\varsigma \in {{\sigma }_{j}}, z\in D

\varphi (z, \varsigma )[Z_j(\varsigma )-Z_j(z)]=\sum\limits_{p=1}^{n}{\alpha _{p}^{*(j)}}(z, \varsigma )s_{p}^{(j)}(z, \varsigma ).

{{h}_{{{j}_{\nu}p}}}=\frac{\alpha _{p}^{*(j_\nu)}(z, \varsigma )}{\varphi (z, \varsigma )[{{Z}_{j_\nu}}(\varsigma )-{{Z}_{j_\nu}}(z)]}, p, \nu=1, 2, \cdots, n, 则由(3.32)式的相应公式得

\begin{eqnarray*} u(z)&=&\frac{1}{{{(2\pi {\rm i})}^{n}}}\int _{\sigma _{(n)}^{(0)}}{u(\varsigma ) {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(n)}}}({{h}_{{{j}_{1}}}}, \cdots, {{h}_{{{j}_{n}}}})\wedge \omega (s(z, \zeta ))\\& &-\frac{1}{{{(2\pi {\rm i})}^{n}}}\sum\limits_{\theta =1}^{n-1}{{}}\int _{\sigma _{(\theta )}^{(0)}}{\bar{\partial }u(\varsigma )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(\theta, 1, n-\theta -1)}}}(E_{\theta }^{{}}, {{Q}^{0}}, {{\partial }_{{\bar{\zeta }}}}{{Q}^{0}})\wedge \omega (s(z, \zeta ))\\ & &-({{R}_{\partial \tilde{D}}}+{{B}_{{\tilde{D}}}})\bar{\partial }u. \end{eqnarray*}

注 3.4  当X={C ^{n}}时, 我们可得{C ^{n}}中相应于本文的积分公式(参见文献[2-3]).

从(2.7), (3.10), (3.16)和(3.17)式, 由计算可得如下定理.

定理 3.5  若Stein流形X中有界域D的边界\partial D由(2.3)式定义, \partial \tilde{D}由(2.4)式定义, 则对于\bar{D}上的(0, q) (q >0)微分形式G(z)z\in \tilde{D}, 我们有如下公式:

\begin{eqnarray}\label{eq334} {{(-1)}^{q}}G(z)&=&{{c}_{m}}\sum\limits_{\alpha =1}^{\gamma }{\varepsilon }\int _{{{\Lambda }^{(\beta -1)}}\times \tilde{\sigma }_{\alpha}^{(\beta -1)}\times {{\Delta }_{{{J}_{\alpha }}}}}{G(\zeta )\wedge {{\varphi }^{\nu }}(z, \varsigma ){{\det }_{(m, 1, n-m-1)}}}\\& &({{\Psi }_{m}}, T, {{\partial }_{\bar{\zeta }\bar{z}\lambda \mu }}T)\wedge B_{m}^{\Phi }(s(z, \zeta ))+{{{L}''}_{m}}(\varsigma, z), \end{eqnarray}
(3.34)

其中T={{({{T}_{1}}, \cdots, {{T}_{n}})}^{\tau }}, 这里T_{p}^{(\nu )}=t_{\beta, \nu }^{p}/{{M}_{\beta, \nu }}(p=1, \cdots, n), 以及如下条件被满足

\begin{equation}\label{eq335} {\rm Rank}\frac{\partial (t_{\beta, \nu }^{1}, \cdots, t_{\beta, \nu }^{n})}{\partial ({{{\bar{\zeta }}}_{1}}, \cdots, {{{\bar{\varsigma }}}_{n}}, {{{\bar{z}}}_{1}}, \cdots, {{{\bar{z}}}_{n}})}\le n-m-\beta -\alpha +1, 1\le \gamma \le k\le n-m. \end{equation}
(3.35)

注 3.5  对于q=0 (即可微函数)的情形, 使用上述同样的方法, 我们也可得类似于(3.4), (3.5), (3.10), (3.16), (3.17)式.所以对于q=0m=0, 我们也可得相应得积分公式.

参考文献

Henkin G , Leiterer J . Theory of Functions on Complex Manifolds. Boston: Basel, 1984

[本文引用: 2]

Chen S J .

General integral formulas of differential forms on the analytic varieties

Chin Quart J Math, 2017, 32 (4): 355- 370

URL     [本文引用: 3]

Chen S J .

The Leray-Stokes type integral representation formulas on the analytic varieties

Chin Quart J Math, 2018, 33 (4): 395- 416

URL     [本文引用: 4]

Hatiafratis T E .

Integral representation formulas on analytic varieties

Pacific J Math, 1986, 123: 71- 91

URL     [本文引用: 2]

Chen S J .

General integral representation of holomorphic functions on the analytic subvariety

Publ RIMS Kyoto Univ, 1993, 29: 511- 533

URL     [本文引用: 1]

陆启铿.

关于Cauchy-Fantappie公式

数学学报, 1966, 16 (3): 344- 363

URL    

Lu Q K .

On Cauchy-Fantappie formula

Acta Math Sinica, 1966, 16 (3): 344- 363

URL    

Range R M .

An integral kernal for weakly pseudoconex domains

Math Ann, 2013, 356 (2): 793- 808

[本文引用: 1]

Range R M .

A pointwise a-priori estimate for the Neumann problem on weakly pseudoconvex domains

Pacific J Math, 2015, 275 (2): 409- 432

URL     [本文引用: 1]

/