Processing math: 4%

数学物理学报, 2020, 40(6): 1461-1480 doi:

论文

Orlicz空间中A-调和方程很弱解得Lϕ估计

佟玉霞, 王薪茹, 谷建涛,

Lϕ-Type Estimates for Very Weak Solutions of A-Harmonic Equation in Orlicz Spaces

Tong Yuxia, Wang Xinru, Gu Jiantao,

通讯作者: 谷建涛, E-mail: jiantaogu@126.com

收稿日期: 2020-01-7  

Received: 2020-01-7  

Abstract

The paper deals with the gradient estimates in Orlicz spaces for very weak solutions of A-harmonic equations under the assumptions that A satisfies some proper conditions and the given function satisfies some moderate growth condition.

Keywords: Orlicz space ; Very weak solution ; A-Harmonic equation

PDF (408KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

佟玉霞, 王薪茹, 谷建涛. Orlicz空间中A-调和方程很弱解得Lϕ估计. 数学物理学报[J], 2020, 40(6): 1461-1480 doi:

Tong Yuxia, Wang Xinru, Gu Jiantao. Lϕ-Type Estimates for Very Weak Solutions of A-Harmonic Equation in Orlicz Spaces. Acta Mathematica Scientia[J], 2020, 40(6): 1461-1480 doi:

1 引言

本文考虑Orlicz空间中具有散度形式的椭圆方程的很弱解的Lϕ型估计. Orlice空间由Orlice[1]引入.对于Orlice空间的应用参见文献[2]. A -调和方程具有很强的背景, 且在物理和工程方面有很多应用.近些年来不同形式的A -调和方程的发展, 参见文献[3-11].

ΩRn中的有界正则区域, n2.在正则区域中, Hodge分解及其估计是满足的.例如, Lipschitz域是正则的.本文考虑如下的A -调和方程

divA(x,u)=div(|f|p2f),xΩ,
(1.1)

其中f=(f1,f2,,fn)是给定的向量, 算子A=A(x,ξ):Ω×RnRn.对于每一个ξ, Ax上可测, 并且对于几乎所有的x, Aξ上连续.而且当p(1,)时, 算子A=A(x,ξ)满足如下结构条件

(H1)A(x,ξ)A(x,ζ),ξζC1|ξζ|p,

(H2)|A(x,ξ)|C2|ξ|p1,

(H3)A(x,0)=0,

(H4)|A(x,ξ)A(y,ξ)|C3ω(|xy|)|ξ|p1,

其中ξ,ζRn,x,yΩ,Ci>0,i=1,2,3为正常数.这里的连续模ω(x):R+R+非减, 而且满足

ω(r)0r0.
(1.2)

方程(1.1)的原型是p -调和方程

div(|u|p2u)=0.
(1.3)

定义1.1[12]  函数uW1,ploc(Ω)称为方程(1.1)的局部弱解, 若有

ΩA(x,u),φdx=Ω|f|p2f,φdx
(1.4)

对于任意的具有紧支集的φW1,p0(Ω)都成立.

本文考虑很弱解的概念, 降低了自然可积性假设.

定义1.2  函数uW1,rloc(Ω), max, 称为方程 (1.1) 的局部很弱解, 若对所有具有紧支集的 \varphi \in W_{0}^{1, \frac{r}{r-p+1}} (\Omega ) , 方程 (1.4) 成立.

关于梯度估计, 有下述研究成果. Acerbi-Mingione[13]证明了 p(x) -Laplacian方程组

\begin{equation} {\rm div}(\left | D u \right |^{p(x)-2} D u) = \rm {div}(\left | F \right |^{p(x)-2}F) \end{equation}
(1.5)

的梯度估计; DiBenedetto-Manfredi[14]获得了

\begin{equation} {\rm div}(\left | D u \right |^{p-2} D u) = \rm {div}(\left | F \right |^{p-2}F) \end{equation}
(1.6)

的弱解的梯度的更高可积性; Byun-Wang[15]和Kinnunen-Zhou[16]获得了

\begin{equation} {\rm div}((A D u\cdot D u)^{(p-2)/2}A D u) = {\rm div}(\left | F \right |^{p-2}F) \end{equation}
(1.7)

的弱解的 L^{q}(q\geq p) 梯度估计; Byun-Wang[17]获得了一般非线性椭圆方程

\begin{equation} {\rm div} A(x, \nabla u) = {\rm div}f \end{equation}
(1.8)

L^{p} 估计; Yao[12]在2010年获得了方程(1.1)的弱解在Orlicz空间中的梯度估计.

尽管关于弱解的梯度估计有很多出色的成果, 但Orlicz空间中的很弱解的梯度估计尚未研究.本文旨在研究方程(1.1)的很弱解在Orlicz空间中的 L^{\phi} 估计.下面是本文的主要结论.

定理1.1  假设 \phi \in\triangle _{2}\bigcap \bigtriangledown_{2}, | {\bf f} |^{r}\in L_{loc}^{\phi}(\Omega) , \max\{1, p-1\}\leq r < p .如果 u 是方程 (1.1) 的局部很弱解, 且算子 A 满足条件 (H_{1})-(H_{4}) , 则有 \left | \nabla u \right |^{r} \in L_{loc}^{\phi }\left ( \Omega \right ), 且有估计式

\begin{equation} \int _{B_{R}}\phi \left ( \left | \nabla u \right | ^{r}\right ){\rm d}x\leq C\left \{ \int _{B_{2R}}\phi\left(| {\bf f}| ^{r}\right ){\rm d}x+\phi\left ( \frac{1}{R^{r}}\int_{B_{2R}}\left | u-u_{B_{2R}} \right |^{r}{\rm d}x\right) +1\right \}, \end{equation}
(1.9)

其中 B_{2R}\subset \Omega , 且 C 是独立于 u {\bf f} 的常数.

本文其余部分安排如下.在第二节和第三节, 介绍Orlicz空间中的一些知识和预备引理.在第四节中给出方程(1.1)的很弱解的 L^{r} 估计.在第五节中给出主要定理(定理1.1)的证明.

2 Orlicz空间

\Phi 表示所有函数 \phi :\left [ 0, + \infty \right )\rightarrow \left [ 0, + \infty \right ) 组成的函数类, 其中 \phi 是递增的凸函数.

定义2.1[12]  如果存在一个正常数 K , 使得对于任意的 t> 0 , 都有

\begin{equation} \phi (2t)\leq K\phi (t), \end{equation}
(2.1)

那么, 函数 \phi \in \Phi 满足全局 \triangle _{2} 条件, 表示为 \phi \in \triangle _{2} .同时, 如果存在一个常数 a>1 , 使得对于任意的 t>0 , 都有

\begin{equation} \phi (t)\leq \frac{\phi (at)}{2a}, \end{equation}
(2.2)

那么, 函数 \phi \in \Phi 满足全局 \bigtriangledown _{2} 条件, 表示为 \phi \in \bigtriangledown _{2} .

注2.1[12]   (1) 注意到全局 \triangle _{2}\bigcap \bigtriangledown _{2} 条件使函数适当增长.

(2) 事实上, 如果 \phi \in \triangle _{2}\bigcap \bigtriangledown _{2} , 则对于 0< \theta _{2}\leq 1\leq \theta _{1}< \infty , \phi 满足

\begin{equation} \phi (\theta _{1}t)\leq K\theta _{1}^{\alpha _{1}}\phi (t), \qquad \phi (\theta _{2}t)\leq 2a\theta _{2}^{\alpha _{2}}\phi (t), \end{equation}
(2.3)

其中 \alpha _{1} = \log _{2}K, \alpha _{2} = \log _{a }2+1 .

(3) 在条件(2.3)下, 很容易得到 \phi \in \Phi 满足 \phi(0) = 0 以及

\begin{equation} \lim\limits_{t\rightarrow 0^{+}}\frac{\phi (t)}{t} = \lim\limits_{t\rightarrow +\infty }\frac{t}{\phi (t)} = 0. \end{equation}
(2.4)

定义2.2[12]  令 \phi \in \Phi , 则 \rm Orlicz K^{\phi }(\Omega ) 是满足

\begin{equation} \int _{\Omega }\phi (\left | g \right |){\rm d}x< \infty \end{equation}
(2.5)

的所有可测函数 g:\Omega \rightarrow {{\Bbb R}} 组成的集合. Orlicz空间 L^{\phi }(\Omega ) K^{\phi }(\Omega ) 的线性闭包.

注2.2  注意到, \rm Orlicz 空间是 L^{q } 空间的推广形式.如果 \phi (t) = t^{q}, t\geq 0 , 那么 \phi \in \triangle _{2}\bigcap \bigtriangledown _{2} , 于是得到一个特例, L^{\phi }(\Omega ) = L^{q}(\Omega ) .

关于Orlicz空间有如下引理.

引理2.1[12]  假设 \phi \in\triangle _{2}\bigcap \bigtriangledown _{2} 以及 g \in L^{\phi }(\Omega ) , 那么

(1) K^{\phi } = L^{\phi }, C_{0}^{\infty } L^{\phi } 中稠密;

(2) L^{\alpha _{1}}(\Omega )\subset L^{\phi }(\Omega )\subset L^{\alpha _{2}}(\Omega )\subset L^{1}(\Omega ), 其中 \alpha _{1} = \log _{2}K, \alpha _{2} = \log _{\alpha }2+1;

(3) \int _{\Omega }\phi (\left | g \right |){\rm d}x = \int_{0}^{\infty }\left | \left \{ x \in \Omega :\left | g \right |> \lambda \right \} \right |{\rm d}\left [ \phi (\lambda ) \right ];

(4) \int_{0}^{\infty }\frac{1}{\mu }\int _{\left \{ x \in \Omega :\left | g \right | > a\mu \right \}}\left | g \right |{\rm d}x{\rm d}\left [ \phi (b\mu ) \right ]\leq C\int _{\Omega }\phi (\left | g \right |){\rm d}x, 其中 a, b>0, C = C(a, b, \phi ) .

3 预备引理

在本节中, 使用文献[12]中的新标准化方法, 该方法受文献[17]影响较大.

对任意的 \lambda \ge 1 , 定义

\begin{equation} u_\lambda(x) = \frac{u(x)}{\lambda}, \textbf{f}_\lambda(x) = \frac{\textbf{f}(x)}{\lambda}, A_\lambda(x, \xi) = \frac{A(x, \lambda\xi)}{\lambda^{p-1}}. \end{equation}
(3.1)

引理3.1 (新标准化)  若 u \in W_{loc}^{1, r}(\Omega) 是方程 (1.1) 的局部很弱解, A 满足条件(H _1) –(H _4) , 那么

(1) A_\lambda 满足条件(H _1) –(H _4) , 即有

\begin{equation} \left \langle A_\lambda(x, \xi )-A_\lambda(x, \zeta ) , \xi -\zeta \right \rangle\geq C_{1}\left | \xi -\zeta \right |^{p}, \end{equation}
(3.2)

\begin{equation} |A_\lambda(x, \xi ) |\leq C_{2}\left | \xi \right |^{p-1}, \end{equation}
(3.3)

\begin{equation} A_\lambda(x, 0) = 0, \end{equation}
(3.4)

\begin{equation} \left | A_\lambda(x, \xi )-A_\lambda(y, \xi ) \right |\leq C_{3}\omega (\left | x-y \right |)\left | \xi \right |^{p-1}, \end{equation}
(3.5)

其中 C_{i}(1\le i\le 3) 为常数.

(2) u_\lambda 是方程

\begin{equation} {{\rm div}} A_\lambda(x, \nabla u) = {\rm div}(\left | \textbf{f}_\lambda \right |^{p-2}\textbf{f}_\lambda), \quad x\in \Omega \end{equation}
(3.6)

的很弱解.

  使用文献[12, 引理2.1]中的类似方法来证明.

下面给出文献[12]中使用的迭代覆盖方法.令 u 是方程(1.1)的局部很弱解.先设定理 1.1 中的 R = 1 , 再通过缩放论证证明.设

\begin{equation} \lambda _{0} = \left [-\!\!\!\!\!\!\int_{B_{1}} \left | \nabla u \right |^{r}{\rm d}x+\frac{1}{\varepsilon}-\!\!\!\!\!\!\int_{B_{1}}|\textbf{f}|^{r}{\rm d}x\right ]^{1/r}, \end{equation}
(3.7)

其中 \varepsilon> 0 满足(5.12)式中的条件.对于任意的 x \in \Omega \rho > 0 , 令

\begin{equation} J_\lambda\left [ B_{\rho } (x)\right ] = -\!\!\!\!\!\!\int _{B_{\rho } (x)}\left | \nabla u_\lambda \right |^{r}{\rm d}y+\frac{1}{\varepsilon}-\!\!\!\!\!\!\int_{B_{\rho } (x)}|\textbf{f}_\lambda|^{r}{\rm d}y, \end{equation}
(3.8)

\begin{equation} E_\lambda(1) = \left \{ x \in B_{1}:\left | \nabla u_\lambda \right | ^{r}> 1\right \}. \end{equation}
(3.9)

由(1.2)式, 选择合适的常数 R_{0} = R_{0}(\varepsilon ) \in (0, 1) 使得

\begin{equation} \omega (R_{0})\leq \varepsilon . \end{equation}
(3.10)

一般情况下, 考虑 r 趋近于 p 时, 限制 0<p-r<\min\{\frac{1}{2}, \varepsilon \} .

引理3.2[12]  令 \lambda \geq \lambda _{*} = :(10/R_{0})^{n/r}\lambda _{0}+1 , 则存在一族不相交的球 \left \{ B_{\rho _{i}}(x_{i}) \right \} , x_{i} \in E_\lambda(1) , 使得 0< \rho _{i} = \rho (x_{i})\leq R_{0}/10 且有

\begin{equation} J_\lambda\left [ B_{\rho _{i}} (x_{i})\right ] = 1, \quad J_\lambda\left [ B_{\rho } (x_{i})\right ]< 1 \quad\; \mbox{对任意} \; \rho > \rho _{i} . \end{equation}
(3.11)

而且有

\begin{equation} E_\lambda(1)\subset \bigcup\limits_{i \in \mathbb{N}}B_{5\rho _{i}}(x_{i})\cup \mbox{可略集}, \end{equation}
(3.12)

\begin{equation} |B_{\rho _{i}} (x_{i})| \leq 3\Big(\int _{\{ x\in B_{\rho _{i}}(x_{i}):| \nabla u_\lambda | ^{r}>1/3 \}}| \nabla u_\lambda |^{r}{\rm d}x +\frac{1}{\varepsilon}\int _{\{ x\in B_{\rho _{i}}(x_{i}):| \textbf{f}_\lambda | ^{r}> \varepsilon/3\}} |\textbf{f}_\lambda |^{r}{\rm d}x \Big). \end{equation}
(3.13)

4 很弱解的 L^{r} 估计

以下是对方程 (1.1) 的很弱解的 L^{r} 估计.

定理4.1  假设 \left|{\bf f}\right|^{r}\in L^{\phi}(B_{2R}), B_{2R}\subset \Omega , 令 u \in W_{loc}^{1, r}(\Omega) 为方程 (1.1) 的局部很弱解, 算子 A 满足条件(H _1) –(H _3) , 则

\begin{equation} \int _{B_{R}}\left | \nabla u \right |^{r}{\rm d}x\leq C \left\{ \frac{1}{R^{r}} \int _{B_{2R}}\left | u-u_{B_{2R}} \right |^{r}{\rm d}x+\int _{B_{2R}}\left | \bf f\right |^{r}{\rm d}x \right\}, \end{equation}
(4.1)

其中 C = C(n, p, C_1, C_2) .

  令 u A -调和方程 (1.1) 的局部很弱解. B_{2R}\subset\subset \Omega .取截断函数 \eta \in C_{0}^{\infty }(R_n) 满足

\begin{equation} 0\leq \eta \leq 1;\qquad \eta \equiv 1, \ x\in B_{R};\qquad \eta \equiv 0, \ x\in {{\Bbb R}}^n \setminus B_{2R}, \qquad \left | \nabla \eta \right | \leq \frac{C}{R}. \end{equation}
(4.2)

|\nabla [\eta( u-u_{B_{2R}}\;)]|^{r-p}\nabla[\eta( u-u_{B_{2R}}\;)] \in L^{\frac{r}{r-p+1}}\;(\Omega) 进行Hodge分解, 参见文献[18]:

\begin{equation} |\nabla [\eta( u-u_{B_{2R}})]|^{r-p}\nabla[\eta( u-u_{B_{2R}})] = \nabla\varphi+H, \end{equation}
(4.3)

其中 \varphi \in W_{0}^{1, \frac{r}{r-p+1}}\;(\Omega), H \in L^{\frac{r}{r-p+1}}\;(\Omega) 是散度为零向量场且有以下估计式成立

\begin{equation} ||\nabla \varphi||_{\frac{r}{r-p+1}}\leq C ||\nabla [\eta( u-u_{B_{2R}})]||_{r}^{r-p+1}, \end{equation}
(4.4)

\begin{equation} ||H||_{\frac{r}{r-p+1}}\leq C(p-r) ||\nabla [\eta( u-u_{B_{2R}})]||_{r}^{r-p+1}, \end{equation}
(4.5)

其中 C = C(n, p) 是只依赖于 n p 的常数.令

\begin{eqnarray} E(\eta, u) = |\nabla [\eta( u-u_{B_{2R}})]|^{r-p}\nabla[\eta( u-u_{B_{2R}})] -|\eta\nabla ( u-u_{B_{2R}})|^{r-p}\eta\nabla( u-u_{B_{2R}}), \end{eqnarray}
(4.6)

通过文献[19, p271, (4.1)式]

\begin{equation} \big||X|^{-\varepsilon}X-|Y|^{-\varepsilon}Y\big|\leq 2^{\varepsilon}\frac{1+\varepsilon}{1-\varepsilon}|X-Y|^{1-\varepsilon}, \quad X, Y \in {{\Bbb R}} ^{n}, \quad 0\leq \varepsilon <1, \end{equation}
(4.7)

可以得到

\begin{equation} |E(\eta, u)|\leq 2^{p-r}\frac{p-r+1}{r-p+1}| (u-u_{B_{2R}})\nabla \eta|^{r-p+1}. \end{equation}
(4.8)

(4.3) (4.6) 式, 有

\begin{equation} \nabla\varphi = |\eta\nabla(u-u_{B_{2R}})|^{r-p}\eta\nabla(u-u_{B_{2R}})+E-H. \end{equation}
(4.9)

选取 \varphi \in W_{0}^{1, \frac{r}{r-p+1}}\;(\Omega) 为定义 1.2 中的检验函数, 则

\begin{eqnarray} && \int _{B_{2R}}\left \langle A(x, \nabla u), |\eta\nabla(u-u_{B_{2R}})|^{r-p}\eta\nabla(u-u_{B_{2R}})+E-H\right \rangle{\rm d}x \\ & = & \int _{B_{2R}}\left \langle |\textbf{f}|^{p-2}\textbf{f}, |\eta\nabla(u-u_{B_{2R}})|^{r-p}\eta\nabla(u-u_{B_{2R}})+E-H\right \rangle{\rm d}x. \end{eqnarray}
(4.10)

\begin{eqnarray} && \int _{B_{2R}}\left \langle A(x, \nabla u), |\eta\nabla(u-u_{B_{2R}})|^{r-p}\eta\nabla(u-u_{B_{2R}})\right \rangle{\rm d}x \\ & = & -\int _{B_{2R}}\left \langle A(x, \nabla u), E\right \rangle{\rm d}x+\int _{B_{2R}}\left \langle A(x, \nabla u), H\right \rangle{\rm d}x \\ && +\int _{B_{2R}}\left \langle |\textbf{f}|^{p-2}\textbf{f}, |\eta\nabla(u-u_{B_{2R}})|^{r-p}\eta\nabla(u-u_{B_{2R}})\right \rangle{\rm d}x \\ && +\int _{B_{2R}}\left \langle |\textbf{f}|^{p-2}\textbf{f}, E \right \rangle{\rm d}x - \int _{B_{2R}}\left \langle |\textbf{f}|^{p-2}\textbf{f}, H \right \rangle{\rm d}x . \end{eqnarray}
(4.11)

上述结果可表示为 I_1 = I_2+I_3+I_4+I_5+I_6. 估计 I_1 .由条件(H _1) 和(H _3) , 得

\begin{eqnarray} I_1 \geq \int _{B_{R}}\left \langle A(x, \nabla u), |\nabla u|^{r-p}\nabla u \right \rangle{\rm d}x \geq C_1\int _{B_{R}}|\nabla u|^{r}{\rm d}x. \end{eqnarray}
(4.12)

估计 I_2 .由条件(H _2) , (4.8) 式, Young不等式 (\tau >0) 以及 (4.2) 式可得

\begin{eqnarray} I_2 &\leq& \int _{B_{2R}} |A(x, \nabla u)||E|{\rm d}x \\ &\leq& C_2C(n, p, r)\int _{B_{2R}}|\nabla u|^{p-1}|(u-u_{B_{2R}})\nabla \eta|^{r-p+1}{\rm d}x \\ &\leq& C(n, p, r, C_2)\Big(\tau\int _{B_{2R}}|\nabla u|^{r}{\rm d}x + C{(\tau)}\int _{B_{2R}}|(u-u_{B_{2R}})\nabla \eta|^{r}{\rm d}x\Big) \\ &\leq& C(n, p, r, C_2)\Big(\tau\int _{B_{2R}}|\nabla u|^{r}{\rm d}x + \frac{C(\tau)}{R^{r}}\int _{B_{2R}}|(u-u_{B_{2R}}|^{r}{\rm d}x\Big). \end{eqnarray}
(4.13)

估计 I_3 .由条件(H _2) , Hölder不等式以及 (4.5) 式有

\begin{eqnarray} I_3 &\leq & \int _{B_{2R}} |A(x, \nabla u)||H|{\rm d}x \leq C_2\int _{B_{2R}}|\nabla u|^{p-1}|H|{\rm d}x {} \\ &\leq& C_2\left(\int _{B_{2R}}|\nabla u|^{r}{\rm d}x\right)^{\frac{p-1}{r}} \left(\int _{B_{2R}}|H|^{\frac{r}{r-p+1}}\right)^{\frac{r-p+1}{r}} {} \\ &\leq & C_2C(n, p)(p-r)\left(\int _{B_{2R}}|\nabla u|^{r}{\rm d}x\right)^{\frac{p-1}{r}} \left(\int _{B_{2R}}|\nabla[\eta(u-u_{B_{2R}})]|^{r}{\rm d}x\right)^{\frac{r-p+1}{r}}. \end{eqnarray}
(4.14)

因为 \nabla[\eta(u-u_{B_{2R}}\;)] = \eta\nabla(u-u_{B_{2R}}\;)+(u-u_{B_{2R}}\;)\nabla\eta , 由Young不等式 (\tau >0) 以及 (4.2) 式, 上面不等式即为

\begin{eqnarray} I_3 &\leq& C_2C(n, p)(p-r)\left(\int _{B_{2R}}|\nabla u|^{r}{\rm d}x\right)^{\frac{p-1}{r}}\left(\int _{B_{2R}}|\eta\nabla u|^{r}{\rm d}x\right)^{\frac{r-p+1}{r}} \\ && +C_2C(n, p)(p-r)\left(\int _{B_{2R}}|\nabla u|^{r}{\rm d}x\right)^{\frac{p-1}{r}} \left(\int _{B_{2R}}|(u-u_{B_{2R}})\nabla\eta|^{r}{\rm d}x\right)^{\frac{r-p+1}{r}} \\ &\leq& C(n, p, C_2)(p-r)\int _{B_{2R}}|\nabla u|^{r}{\rm d}x +C(n, p, C_2)(p-r)\tau\int _{B_{2R}}|\nabla u|^{r}{\rm d}x \\ && +C(n, p, C_2, \tau)(p-r)\int _{B_{2R}}|(u-u_{B_{2R}})\nabla\eta|^{r}{\rm d}x \\ &\leq& C(n, p, C_2)(p-r)(1+\tau)\int _{B_{2R}}|\nabla u|^{r}{\rm d}x +\frac{C(n, p, C_2, \tau)(p-r)}{R^{r}}\int _{B_{2R}}|(u-u_{B_{2R}})|^{r}{\rm d}x. {}\\ \end{eqnarray}
(4.15)

估计 I_4 .由Young不等式 (\tau >0) , 有

\begin{equation} I_4\leq \int _{B_{2R}} |\textbf{f}|^{p-1}|\nabla u|^{r-p+1}{\rm d}x \leq \tau\int _{B_{2R}}|\nabla u|^{r}{\rm d}x+C(\tau)\int _{B_{2R}}|\textbf{f}|^{r}{\rm d}x. \end{equation}
(4.16)

估计 I_5 .由Young不等式 (\tau >0) 以及 (4.8) 式, 有

\begin{eqnarray} I_5 &\leq& \int _{B_{2R}} |\textbf{f}|^{p-1}|E|{\rm d}x \leq C(n, p, r)\int _{B_{2R}}|\textbf{f}|^{p-1}|(u-u_{B_{2R}})\nabla\eta|^{r-p+1}{\rm d}x \\ &\leq& C(n, p, r)\left(\tau\int _{B_{2R}}|(u-u_{B_{2R}})\nabla\eta|^{r}{\rm d}x+C(\tau)\int _{B_{2R}}|\textbf{f}|^{r}{\rm d}x\right) \\ &\leq& C(n, p, r)\left(\frac{\tau}{R^{r}}\int _{B_{2R}}|(u-u_{B_{2R}})|^{r}{\rm d}x+C(\tau)\int _{B_{2R}}|\textbf{f}|^{r}{\rm d}x\right). \end{eqnarray}
(4.17)

估计 I_6 .由Hölder不等式, (4.5) 式, Young不等式 (\tau >0) 以及 (4.2) 式, 有

\begin{eqnarray} I_6 &\leq& \int _{B_{2R}} |\textbf{f}|^{p-1}|H|{\rm d}x \leq C(n, p)\left(\int _{B_{2R}}|\textbf{f}|^{r}{\rm d}x\right)^{\frac{p-1}{r}}\left(\int _{B_{2R}}|H|^{\frac{r}{r-p+1}}{\rm d}x\right)^{\frac{r-p+1}{r}} \\ &\leq& C(n, p)(p-r)\left(\int _{B_{2R}}|\textbf{f}|^{r}{\rm d}x\right)^{\frac{p-1}{r}}\left(\int _{B_{2R}}|\nabla\eta(u-u_{B_{2R}})|^{r}{\rm d}x\right)^{\frac{r-p+1}{r}} \\ &\leq& C(n, p, r)(p-r)\left(\int _{B_{2R}}|\textbf{f}|^{r}{\rm d}x\right)^{\frac{p-1}{r}}\left(\int _{B_{2R}}|\eta\nabla u|^{r}{\rm d}x\right)^{\frac{r-p+1}{r}} \\ && +C(n, p, r)(p-r)\left(\int _{B_{2R}}|\textbf{f}|^{r}{\rm d}x\right)^{\frac{p-1}{r}}\left(\int _{B_{2R}}|(u-u_{B_{2R}})\nabla \eta|^{r}{\rm d}x\right)^{\frac{r-p+1}{r}} \\ &\leq& C(n, p, r)(p-r)\tau \int _{B_{2R}}|\nabla u|^{r}{\rm d}x+C(n, p, r, \tau)(p-r)\int _{B_{2R}}|\textbf{f}|^{r}{\rm d}x \\ && +C(n, p, r)(p-r)\tau \int _{B_{2R}}|(u-u_{B_{2R}})\nabla \eta|^{r}{\rm d}x \\ &\leq& C(n, p, r)(p-r)\tau \int _{B_{2R}}|\nabla u|^{r}{\rm d}x+C(n, p, r, \tau)(p-r)\int _{B_{2R}}|\textbf{f}|^{r}{\rm d}x \\ && +\frac{C(n, p, r)(p-r)\tau}{R^{r}}\int _{B_{2R}}|(u-u_{B_{2R}})|^{r}{\rm d}x. \end{eqnarray}
(4.18)

结合 I_i(1\leq i\leq 6) 得到

\begin{eqnarray} C_1\int _{B_{R}}|\nabla u|^{r}{\rm d}x &\leq& [C\tau +C(p-r)(1+\tau)+\tau+C(p-r)\tau]\int _{B_{2R}}|\nabla u|^{r}{\rm d}x \\ && +\frac{C\tau +C(p-r)+C\tau+C(p-r)\tau}{R^{r}}\int _{B_{2R}}|u-u_{B_{2R}}|^{r}{\rm d}x \\ && +[C\tau +C(p-r)+C(\tau)]\int _{B_{2R}}|\textbf{f}|^{r}{\rm d}x, \end{eqnarray}
(4.19)

其中 C = C(n, p, r, C_2, \tau) .选择足够小的 \tau p-r 使得上述不等式右边第一项系数的总和 C\tau +C(p-r)(1+\tau)+\tau+C(p-r)\tau 远小于1.则上述不等式通过迭代法变为

\begin{equation} \int _{B_{R}}|\nabla u|^{r}{\rm d}x\leq\frac{C}{R^{r}}\int _{B_{2R}}|u-u_{B_{2R}}|^{r}{\rm d}x+C\int _{B_{2R}}|\textbf{f}|^{r}{\rm d}x, \end{equation}
(4.20)

其中 C = C(n, p, C_1, C_2) .定理 4.1 得证.

v 是下列边值问题的很弱解

\begin{eqnarray} \left\{\begin{array}{ll} {\rm div} A(x^{*}, \nabla v) = 0, \qquad &x\in B_{\widetilde{R}}, \\ v = u, \qquad \qquad \; \, &x\in \partial B_{\widetilde{R}}, \end{array}\right. \end{eqnarray}
(4.21)

其中 x^{*} \in B_{\widetilde{R}} 为定点, 且 B_{\widetilde{R}} = B_{10\rho_{i}}(x_{i}) .

下面给出很弱解的定义.

定义4.1  假设 v \in W^{1, r}(B_{\widetilde{R}}) , v-u \in W_{0}^{1, r}(B_{\widetilde{R}}) , 称 v \in W^{1, r}(B_{\widetilde{R}}) 是Dirichlet问题 (4.21) B_{\widetilde{R}} 中的很弱解, 如果有

\begin{equation} \int _{B_{\widetilde{R}}}\left \langle A(x^{*}, \nabla v), \nabla \varphi \right \rangle{\rm d}x = 0 \end{equation}
(4.22)

对于任意的 \varphi \in W_{0}^{1, \frac{r}{r-p+1}}\;(B_{\widetilde{R}} ) 成立.

需要下面的定理.

定理4.2  若 u \in W_{loc}^{1, r}(\Omega) 是方程 (1.1) 的局部很弱解, v \in W^{1, r}(B_{10\rho _{i}}(x_{i})) 是Dirichlet问题 (4.21) B_{10\rho _{i}}(x_{i}) 中的很弱解, 其中 x_{i} \in E_\lambda(1) , \rho _{i} 与在引理 3.2 中的定义相同, 则有

\begin{equation} -\!\!\!\!\!\!\int _{B_{10\rho _{i}}(x_{i})}\left | \nabla v \right |^{r}{\rm d}x \leq C -\!\!\!\!\!\!\int _{B_{10\rho _{i}}(x_{i})}\left | \nabla u \right |^{r}{\rm d}x, \end{equation}
(4.23)

其中 C = C(n, p, C_1, C_2) .

  令 v \in W^{1, r}(B_{10\rho _{i}}(x_{i})) 是Dirichlet问题 (4.21) 的很弱解, 令 \widetilde{\varphi} = v-u , 则

\begin{equation} \nabla\widetilde{\varphi} = \nabla v-\nabla u. \end{equation}
(4.24)

易知 |\nabla\widetilde{\varphi}|^{r-p}\nabla\widetilde{\varphi}\in L^{\frac{r}{r-p+1}}\;(B_{10\rho _{i}}(x_{i})) .然后对 |\nabla\widetilde{\varphi}|^{r-p}\nabla\widetilde{\varphi} 进行Hodge分解(参见文献[18])

\begin{equation} |\nabla\widetilde{\varphi}|^{r-p}\nabla\widetilde{\varphi} = \nabla\varphi+H, \end{equation}
(4.25)

其中 \varphi \in W_{0}^{1, \frac{r}{r-p+1}}\;(B_{10\rho _{i}}(x_{i}) ), H\in L^{\frac{r}{r-p+1}}\;(B_{10\rho _{i}}(x_{i}) ) 是散度为零向量场, 并且有下面的估计成立

\begin{equation} ||\nabla\varphi||_{\frac{r}{r-p+1}}\leq C||\nabla\widetilde{\varphi}||_{r}^{r-p+1}, \end{equation}
(4.26)

\begin{equation} ||H||_{\frac{r}{r-p+1}}\leq C(p-r)||\nabla\widetilde{\varphi}||_{r}^{r-p+1}, \end{equation}
(4.27)

其中 C = C(n, p) 是仅依赖于 n p 的常数.令

\begin{equation} E(u, v) = |\nabla(v-u)|^{r-p}\nabla(v-u)-|\nabla v|^{r-p}\nabla v, \end{equation}
(4.28)

然后由基本不等式 (4.7) 可得

\begin{equation} |E(u, v)|\leq2^{p-r}\frac{p-r+1}{r-p+1}|\nabla u|^{r-p+1}, \end{equation}
(4.29)

因为

\begin{equation} \nabla\varphi = |\nabla\widetilde{\varphi}|^{r-p}\nabla\widetilde{\varphi}-H = E-H+|\nabla v|^{r-p}\nabla v, \end{equation}
(4.30)

选择 \varphi\in W_{0}^{1, \frac{r}{r-p+1}}\;(\Omega) 作为定义 4.1 的检验函数, 则

\begin{eqnarray} \int _{B_{10\rho _{i}}(x_{i})}\left \langle A(x^{*}, \nabla v), |\nabla v|^{r-p}\nabla v\right \rangle{\rm d}x & = & -\int _{B_{10\rho _{i}}(x_{i})}\left \langle A(x^{*}, \nabla v), E-H\right \rangle{\rm d}x. \end{eqnarray}
(4.31)

估计上述等式的左右两边.首先由条件(H _1) 和(H _3)

\begin{equation} \int _{B_{10\rho _{i}}(x_{i})}\left \langle A(x^{*}, \nabla v), |\nabla v|^{r-p}\nabla v\right \rangle{\rm d}x\geq C_1\int _{B_{10\rho _{i}}(x_{i})}|\nabla v|^{r}{\rm d}x, \end{equation}
(4.32)

再由条件(H _2) (4.29) 式得

\begin{eqnarray} && -\int _{B_{10\rho _{i}}(x_{i})}\left \langle A(x^{*}, \nabla v), E-H\right \rangle{\rm d}x \\ &\leq& \int _{B_{10\rho _{i}}(x_{i})}|A(x^{*}, \nabla v)||E|{\rm d}x+ \int _{B_{10\rho _{i}}(x_{i})}|A(x^{*}, \nabla v)||H|{\rm d}x \\ &\leq& C_2\int _{B_{10\rho _{i}}(x_{i})}|\nabla v|^{p-1}|E|{\rm d}x+ C_2\int _{B_{10\rho _{i}}(x_{i})}|\nabla v|^{p-1}|H|{\rm d}x \\ &\leq& C_2C(n, p, r)\int _{B_{10\rho _{i}}(x_{i})}|\nabla v|^{p-1}|\nabla u|^{r-p+1}{\rm d}x +C_2\int _{B_{10\rho _{i}}(x_{i})}|\nabla v|^{p-1}|H|{\rm d}x, \end{eqnarray}
(4.33)

然后利用Hölder不等式 (\frac{p-1}{r}+\frac{r-p+1}{r} = 1) , (4.24)式, (4.27)式以及Young不等式 (\tau >0) , 上述不等式即为

\begin{eqnarray} && -\int _{B_{10\rho _{i}}(x_{i})}\left \langle A(x^{*}, \nabla v), E-H\right \rangle{\rm d}x \\ &\leq& C_2C(n, p, r)\left(\int _{B_{10\rho _{i}}(x_{i})}|\nabla v|^{r}{\rm d}x\right)^{\frac{p-1}{r}}\left(\int _{B_{10\rho _{i}}(x_{i})}|\nabla u|^{r}{\rm d}x\right)^{\frac{r-p+1}{r}} \\ && +C_2\left(\int _{B_{10\rho _{i}}(x_{i})}|\nabla v|^{r}{\rm d}x\right)^{\frac{p-1}{r}}\left(\int _{B_{10\rho _{i}}(x_{i})}|H|^{\frac{r}{r-p+1}}{\rm d}x\right)^{\frac{r-p+1}{r}} \\ &\leq& C(n, p, r, C_2)\left\{\tau\int _{B_{10\rho _{i}}(x_{i})}|\nabla v|^{r}{\rm d}x+ C(\tau)\int _{B_{10\rho _{i}}(x_{i})}|\nabla u|^{r}{\rm d}x\right\} \\ && +C(n, p, C_2)(p-r)\tau\int _{B_{10\rho _{i}}(x_{i})}|\nabla v|^{r}{\rm d}x \\ && +C(n, p, C_2, \tau)(p-r)\int _{B_{10\rho _{i}}(x_{i})}(|\nabla v|^{r}+|\nabla u|^{r}){\rm d}x. \end{eqnarray}
(4.34)

选择足够小的 \tau p-r 使得 C_1 \geq C\tau+C(p-r)\tau+C(p-r) , 然后结合(4.31)–(4.34)式有

\begin{equation} \int _{B_{10\rho _{i}}(x_{i})}|\nabla v|^{r}{\rm d}x \leq C\int _{B_{10\rho _{i}}(x_{i})}|\nabla u|^{r}{\rm d}x, \end{equation}
(4.35)

其中 C = C(n, p, C_1, C_2) .定理 4.2 得证.

定理4.3  若 u \in W_{loc}^{1, r}(\Omega) 是方程 (1.1) 的局部很弱解, v \in W^{1, r}(B_{10\rho _{i}}(x_{i})) 是Dirichlet问题 (4.21) B_{10\rho _{i}}(x_{i}) 中的很弱解, 其中 x_{i} \in E_\lambda(1) , \rho _{i} 与引理 3.2 中的定义相同, 如果

\begin{equation} -\!\!\!\!\!\!\int _{B_{10\rho _{i}}(x_{i})}| \nabla u|^{r}{\rm d}x \leq 1, \quad -\!\!\!\!\!\!\int _{B_{10\rho _{i}}(x_{i})}|{\bf f} |^{r}{\rm d}x \leq \varepsilon, \end{equation}
(4.36)

则有

\begin{equation} -\!\!\!\!\!\!\int _{B_{10\rho _{i}}(x_{i})}| \nabla (u-v)|^{r}{\rm d}x \leq \varepsilon. \end{equation}
(4.37)

  选取检验函数 \widetilde{\varphi} = u-v .易知 |\nabla\widetilde{\varphi}|^{r-p}\nabla\widetilde{\varphi}\in L^{\frac{r}{r-p+1}}\;(B_{10\rho _{i}}(x_{i})) .然后对 |\nabla\widetilde{\varphi}|^{r-p}\nabla\widetilde{\varphi} 进行Hodge分解

\begin{equation} |\nabla(u-v)|^{r-p}\nabla(u-v) = \nabla\varphi+H, \end{equation}
(4.38)

其中 \varphi \in W_{0}^{1, \frac{r}{r-p+1}}\;(B_{10\rho _{i}}(x_{i}) ), H\in L^{\frac{r}{r-p+1}}\;(B_{10\rho _{i}}(x_{i}) ) 是散度为零向量场, 并且有下面的估计成立

\begin{equation} ||H||_{\frac{r}{r-p+1}}\leq C(p-r)||\nabla(u-v)||_{r}^{r-p+1}, \end{equation}
(4.39)

其中 C = C(n, p) 是仅依赖于 n p 的常数.

选择 \varphi \in W_{0}^{1, \frac{r}{r-p+1}}\;(B_{10\rho _{i}}(x_{i}) ) 作为定义 1.1 和定义 4.1 中的检验函数, 有

\begin{equation} \int _{B_{10\rho _{i}}(x_{i})}\left \langle A(x, \nabla u) , \nabla \varphi\right \rangle{\rm d}x = \int _{B_{10\rho _{i}}(x_{i})}\left \langle |\textbf{f} |^{p-2}\textbf{f} , \nabla \varphi\right \rangle{\rm d}x. \end{equation}
(4.40)

\begin{equation} \int _{B_{10\rho _{i}}(x_{i})}\left \langle A(x^{*}, \nabla v) , \nabla \varphi)\right \rangle{\rm d}x = 0. \end{equation}
(4.41)

其中 x^{*} \in B_{10\rho _{i}}(x_{i}) 为定点.然后直接计算得到结果为

\begin{eqnarray} && \int _{B_{10\rho _{i}}(x_{i})}\left \langle A(x, \nabla u)-A(x, \nabla v), \nabla \varphi\right \rangle{\rm d}x \\ & = & -\int _{B_{10\rho _{i}}(x_{i})}\left \langle A(x, \nabla v)-A(x^{*}, \nabla v), \nabla \varphi\right \rangle{\rm d}x +\int _{B_{10\rho _{i}}(x_{i})}\left \langle |\textbf{f} |^{p-2}\textbf{f} , \nabla \varphi\right \rangle{\rm d}x. \end{eqnarray}
(4.42)

根据 (4.38) 式有

\begin{equation} K_1 = K_2+K_3+K_4+K_5+K_6, \end{equation}
(4.43)

其中

\begin{eqnarray} &&K_1 = \int _{B_{10\rho _{i}}(x_{i})}\left \langle A(x, \nabla u)-A(x, \nabla v), |\nabla(u-v)|^{r-p}\nabla(u-v)\right \rangle{\rm d}x, \\ && K_2 = \int _{B_{10\rho _{i}}(x_{i})}\left \langle A(x, \nabla u)-A(x, \nabla v), H\right \rangle{\rm d}x, \\ && K_3 = -\int _{B_{10\rho _{i}}(x_{i})}\left \langle A(x, \nabla v)-A(x^{*}, \nabla v), |\nabla(u-v)|^{r-p}\nabla(u-v)\right \rangle{\rm d}x, \\ && K_4 = \int _{B_{10\rho _{i}}(x_{i})}\left \langle A(x, \nabla v)-A(x^{*}, \nabla v), H\right \rangle{\rm d}x, \\ && K_5 = \int _{B_{10\rho _{i}}(x_{i})}\left \langle |\textbf{f} |^{p-2}\textbf{f}, |\nabla(u-v)|^{r-p}\nabla(u-v)\right \rangle{\rm d}x, \\ && K_6 = -\int _{B_{10\rho _{i}}(x_{i})}\left \langle |\textbf{f} |^{p-2}\textbf{f}, H\right \rangle{\rm d}x. \end{eqnarray}
(4.44)

先估计 K_1 .利用条件(H _1)

\begin{eqnarray} K_1 &\geq& C_1\int _{B_{10\rho _{i}}(x_{i})}|\nabla(u-v)|^{r}{\rm d}x. \end{eqnarray}
(4.45)

估计 K_2 .由条件(H _2) , Hölder不等式, (4.39) 式以及Young不等式 (\tau >0)

\begin{eqnarray} K_2 &\leq& \int _{B_{10\rho _{i}}(x_{i})}(|A(x, \nabla u)|+|A(x, \nabla v)|)|H|{\rm d}x \\ &\leq& C_2\int _{B_{10\rho _{i}}(x_{i})}\Big(|\nabla u|^{p-1}+|\nabla v|^{p-1}\Big)|H|{\rm d}x \\ &\leq& C_2\left(\int _{B_{10\rho _{i}}(x_{i})}(|\nabla u|^{r}+|\nabla v|^{r}){\rm d}x\right)^{\frac{p-1}{r}}\left(\int _{B_{10\rho _{i}}(x_{i})}|H|^{\frac{r}{r-p+1}}{\rm d}x\right)^{\frac{r-p+1}{r}} \\ &\leq& C(n, p, C_2)(p-r)\left(\int _{B_{10\rho _{i}}(x_{i})}(|\nabla u|^{r}+|\nabla v|^{r}){\rm d}x\right)^{\frac{p-1}{r}} \left(\int _{B_{10\rho _{i}}(x_{i})}|\nabla(u-v)|^{r}{\rm d}x\right)^{\frac{r-p+1}{r}} \\ &\leq& C(n, p, C_2)(p-r)\left(\int _{B_{10\rho _{i}}(x_{i})}(|\nabla (u-v)|^{r}+|\nabla v|^{r}){\rm d}x\right)^{\frac{p-1}{r}} \\ && \cdot\left(\int _{B_{10\rho _{i}}(x_{i})}|\nabla(u-v)|^{r}{\rm d}x\right)^{\frac{r-p+1}{r}} \\ &\leq& C(n, p, \tau , C_2)(p-r)\left(\int _{B_{10\rho _{i}}(x_{i})}|\nabla (u-v)|^{r}{\rm d}x+\int _{B_{10\rho _{i}}(x_{i})}|\nabla v|^{r}{\rm d}x\right) \\ && +C(n, p)(p-r)\tau\int _{B_{10\rho _{i}}(x_{i})}|\nabla(u-v)|^{r}{\rm d}x. \end{eqnarray}
(4.46)

估计 K_{3}. 由条件(H _4) , (3.10)式, Young不等式 (\tau >0) 以及 \rho _{i} \in (0, R_{0}/10]

\begin{eqnarray} K_3 &\leq& C_3\omega(|x-x^{*}|)\int _{B_{10\rho _{i}}(x_{i})}|\nabla v|^{p-1}|\nabla(u-v)|^{r-p+1}{\rm d}x \\ &\leq& C_3\omega(R_0)\int _{B_{10\rho _{i}}(x_{i})}|\nabla v|^{p-1}|\nabla(u-v)|^{r-p+1}{\rm d}x \\ &\leq& C_3\varepsilon\left\{C(\tau)\int _{B_{10\rho _{i}}(x_{i})}|\nabla v|^{r}{\rm d}x+\tau\int _{B_{10\rho _{i}}(x_{i})}|\nabla(u-v)|^{r}{\rm d}x\right\}. \end{eqnarray}
(4.47)

估计 K_{4}. 由条件(H _4) , Hölder不等式, (4.39)式, (3.10)式, Young不等式 (\tau >0) 以及 \rho _{i} \in (0, R_{0}/10] 可得

\begin{eqnarray} K_4 &\leq& C_3\omega(|x-x^{*}|)\int _{B_{10\rho _{i}}(x_{i})}|\nabla v|^{p-1}|H|{\rm d}x \\ &\leq& C_3\omega(R_0)\left(\int _{B_{10\rho _{i}}(x_{i})}|\nabla v|^{r}{\rm d}x\right)^{\frac{p-1}{r}}\left(\int _{B_{10\rho _{i}}(x_{i})}|H|^{\frac{r}{r-p+1}}{\rm d}x\right)^{\frac{r-p+1}{r}} \\ &\leq& C_3C(n, p)(p-r)\varepsilon\left(\int _{B_{10\rho _{i}}(x_{i})}|\nabla v|^{r}{\rm d}x\right)^{\frac{p-1}{r}} \left(\int _{B_{10\rho _{i}}(x_{i})}|\nabla(u-v)|^{r}{\rm d}x\right)^{\frac{r-p+1}{r}} \\ &\leq& C_3C(n, p)(p-r)\varepsilon \Bigg\{C(\tau)\int _{B_{10\rho _{i}}(x_{i})}|\nabla v|^{r}{\rm d}x +\tau\int _{B_{10\rho _{i}}(x_{i})}|\nabla(u-v)|^{r}{\rm d}x \Bigg\}. \end{eqnarray}
(4.48)

估计 K_{5}. 由Young不等式 (\tau >0)

\begin{eqnarray} K_5 &\leq& \int _{B_{10\rho _{i}}(x_{i})} |\textbf{f} |^{p-1}|\nabla(u-v)|^{r-p+1}{\rm d}x \\ &\leq& C(\tau)\int _{B_{10\rho _{i}}(x_{i})} |\textbf{f} |^{r}{\rm d}x+\tau\int _{B_{10\rho _{i}}(x_{i})}|\nabla(u-v)|^{r}{\rm d}x . \end{eqnarray}
(4.49)

估计 K_{6}. 由Hölder不等式, (4.39) 式以及Young不等式 (\tau >0)

\begin{eqnarray} K_6 &\leq& \int _{B_{10\rho _{i}}(x_{i})} |\textbf{f} |^{p-1}|H|{\rm d}x \\ &\leq& \left(\int _{B_{10\rho _{i}}(x_{i})} |\textbf{f} |^{r}{\rm d}x\right)^{\frac{p-1}{r}} \left(\int _{B_{10\rho _{i}}(x_{i})} |H|^{\frac{r}{r-p+1}}{\rm d}x\right)^{\frac{r-p+1}{r}} \\ &\leq& C(n, p)(p-r)\left(\int _{B_{10\rho _{i}}(x_{i})} |\textbf{f} |^{r}{\rm d}x\right)^{\frac{p-1}{r}} \left(\int _{B_{10\rho _{i}}(x_{i})} |\nabla(u-v)|^{r}{\rm d}x\right)^{\frac{r-p+1}{r}} \\ &\leq& C(n, p)(p-r)\Bigg\{C(\tau)\int _{B_{10\rho _{i}}(x_{i})} |\textbf{f} |^{r}{\rm d}x +\tau\int _{B_{10\rho _{i}}(x_{i})} |\nabla(u-v)|^{r}{\rm d}x\Bigg\}. \end{eqnarray}
(4.50)

综合估计式 K_i(1 \leq i\leq 6) , 且选取足够小的 \tau (p-r) , 使得

C_1>C(n, p)(p-r)\tau+C(n, p, \tau)(p-r)+C_3\varepsilon\tau+C_3C(n, p)(p-r)\varepsilon\tau+\tau+C(n, p)(p-r)\tau,

则有

\begin{eqnarray} \int _{B_{10\rho _{i}}(x_{i})} |\nabla(u-v)|^{r}{\rm d}x &\leq& C\Bigg\{\varepsilon\int _{B_{10\rho _{i}}(x_{i})} |\nabla v|^{r}{\rm d}x+ \int _{B_{10\rho _{i}}(x_{i})}|\textbf{f} |^{r}{\rm d}x\Bigg\}, \end{eqnarray}
(4.51)

\begin{equation} -\!\!\!\!\!\!\int _{B_{10\rho _{i}}(x_{i})} |\nabla(u-v)|^{r}{\rm d}x\leq C\Bigg\{\varepsilon-\!\!\!\!\!\!\int _{B_{10\rho _{i}}(x_{i})} |\nabla v|^{r}{\rm d}x+ -\!\!\!\!\!\!\int _{B_{10\rho _{i}}(x_{i})}|\textbf{f} |^{r}{\rm d}x\Bigg\}. \end{equation}
(4.52)

然后根据定理 4.2

\begin{equation} -\!\!\!\!\!\!\int _{B_{10\rho _{i}}(x_{i})} |\nabla(u-v)|^{r}{\rm d}x\leq C\Bigg\{\varepsilon-\!\!\!\!\!\!\int _{B_{10\rho _{i}}(x_{i})} |\nabla u|^{r}{\rm d}x+ -\!\!\!\!\!\!\int _{B_{10\rho _{i}}(x_{i})}|\textbf{f} |^{r}{\rm d}x\Bigg\}, \end{equation}
(4.53)

(4.36) 式得

\begin{equation} -\!\!\!\!\!\!\int _{B_{10\rho _{i}}(x_{i})} |\nabla(u-v)|^{r}{\rm d}x\leq C\varepsilon, \end{equation}
(4.54)

其中 C = C(n, p, C_1, C_2, C_3) .定理 4.3 证毕.

接下来, 给出如下Dirichlet问题 (4.21) 很弱解 v 的有界性引理.

引理4.1[20]  设 f (\tau ) 是定义在 0\leq R_{0}\leq t\leq R_{1} 上的非负有界函数, 若对 R_{0}\leq \tau < t\leq R_{1}

f(\tau )\leq A(t-\tau )^{-\alpha }+B+\theta f(t),

这里 A, B, \alpha, \theta 为非负常数且 \theta < 1 , 则存在只依赖于 \alpha \theta 的常数 c = c(\alpha, \theta) , 使得对于每个 \rho , R, R_{0}\leq \rho < R\leq R_{1} , 有

f(\rho )\leq c\left [ A(R-\rho )^{-\alpha } +B \right ].

定义4.2[21]  函数 u \in W_{loc}^{1, m}(\Omega) 属于 B(\Omega, \gamma, m, k_0) 类, 若对于每一个 k>k_0, k_0>0 B_{\rho} = B_{\rho}(x_0), B_{\rho-\rho\sigma} = B_{\rho-\rho\sigma}(x_0), B_R = B_R(x_0) , 有

\int_{A_{k, \rho-\rho\sigma}^{+}}|\nabla u|^{m}{\rm d}x\leq\gamma\left\{\sigma^{-m}\rho^{-m} \int_{A_{k, \rho}^{+}}(u-k)^{m}{\rm d}x+|A_{k, \rho}^{+}|\right\},

其中 R/2\leq\rho-\rho\sigma<\rho<R, m<n, |A_{k, \rho}^{+}| 是集合 A_{k, \rho}^{+} n 维勒贝格测度.

引理4.2[21]  假设 u(x) 是属于 B(\Omega, \gamma, m, k_0) 类的任意函数, 且 B_R\subset\subset\Omega .则有

\begin{eqnarray*} \max\limits_{ B_{R/2}}u(x)\leq c, \end{eqnarray*}

其中常数 c 仅由 \gamma, m, k_0, R, ||\nabla u||_{m} 确定.

定理4.4  假设 v \in W^{1, r}(B_{\widetilde{R}}) 是方程 (4.21) 的很弱解, 则 v 局部有界.

  令 v 是Dirichlet问题 (4.21) 的很弱解.由于 v-u \in W_{0}^{1, r}(B_{\widetilde{R}}) , 则在 {\Omega} \backslash B_{\widetilde{R}} v = u . B_{2\widetilde R}\subset\subset\Omega, 0<\widetilde R\leq \widetilde\tau <t\leq2\widetilde R .考虑函数 v(x) k>0

\begin{eqnarray*} A_k = \{x\in\Omega:|v(x)|>k\}, {\quad} A_k^{+} = \{x\in\Omega:v(x)>k\}, \end{eqnarray*}

\begin{eqnarray*} A_{k, t} = A_k\cap B_t, {\quad} A_{k, t}^{+} = A_k^{+}\cap B_t. \end{eqnarray*}

选取截断函数 \eta \in C_0^{\infty}(B_{2\widetilde R}) 使得

\begin{equation} {\rm supp}\eta \subset B_t, 0\leq \eta \leq 1, \eta \equiv 1 \; {\rm in} \;B_{\tilde{\tau}}, \left | \nabla \eta \right | \leq 2(t-\widetilde\tau)^{-1}. \end{equation}
(4.55)

考虑函数

\begin{equation} \phi = \eta^{r}(v-t_k(v)), \end{equation}
(4.56)

其中

\begin{equation} t_k(v) = \min\left\{v, k\right\}, \quad k \geq 0. \end{equation}
(4.57)

易知 |\nabla\phi|^{r-p}\nabla\phi \in L^{\frac{r}{r-p+1}}\;(B_{2\widetilde R}) . |\nabla\phi|^{r-p}\nabla\phi 进行Hodge分解

\begin{equation} |\nabla[\eta^{r}(v-t_k(v))]|^{r-p}\nabla[\eta^{r}(v-t_k(v))] = \nabla\varphi+H, \end{equation}
(4.58)

其中 \varphi\in W_0^{1, \frac{r}{r-p+1}}\;(B_{2\widetilde R}), H\in L^{\frac{r}{r-p+1}}\;(B_{2\widetilde R}) 是散度为零向量场, 且有以下估计成立

\begin{equation} ||H||_{\frac{r}{r-p+1}}\leq C(p-r)||\nabla[\eta^{r}(v-t_k(v))]||_r^{r-p+1}, \end{equation}
(4.59)

其中 C = C(n, p) 是只依赖于 n p 的常数.

选取 \varphi \in W_0^{1, \frac{r}{r-p+1}}\;(B_{2\widetilde R}) 作为定义 4.1 中的检验函数, 则有

\begin{equation} \int_{B_{2\widetilde R}}\langle A(x^*, \nabla v), |\nabla[\eta^{r}(v-t_k(v))]|^{r-p}\nabla[\eta^{r}(v-t_k(v))]-H\rangle{\rm d}x\geq 0, \end{equation}
(4.60)

则有

\begin{eqnarray} && \int_{A_{k, t}^{+}}\langle A(x^*, \nabla v), H\rangle{\rm d}x \\ &\leq & \int_{B_{2\widetilde R}}\langle A(x^*, \nabla v), H \rangle{\rm d}x \\ &\leq & \int_{B_{2\widetilde R}}\langle A(x^*, \nabla v), |\nabla[\eta^{r}(v-t_k(v))]|^{r-p}\nabla[\eta^{r}(v-t_k(v))] \rangle{\rm d}x \\ & = & \Big(\int_{B_{2\widetilde R} \cap \{v\leq k\}}+\int_{B_{2\widetilde R} \cap \{v> k\}} \Big)\langle A(x^*, \nabla v), |\nabla[\eta^{r}(v-t_k(v))]|^{r-p}\nabla[\eta^{r}(v-t_k(v))] \rangle{\rm d}x \\ & = & \int_{B_{2\widetilde R} \cap \{v> k\}} \langle A(x^*, \nabla v), |\nabla[\eta^{r}(v-t_k(v))]|^{r-p}\nabla[\eta^{r}(v-t_k(v))] \rangle{\rm d}x \\ & = & \int_{A_{k, t}^{+}} \langle A(x^*, \nabla v), |\nabla[\eta^{r}(v-t_k(v))]|^{r-p}\nabla[\eta^{r}(v-t_k(v))] \rangle{\rm d}x. \end{eqnarray}
(4.61)

\begin{equation} E(\eta, v) = |\nabla[\eta^{r}(v-t_k(v))]|^{r-p}\nabla[\eta^{r}(v-t_k(v))]-|\eta^{r}\nabla v|^{r-p}\eta^{r}\nabla v. \end{equation}
(4.62)

由基本不等式 (4.7)

\begin{equation} \nabla[\eta^{r}(v-t_k(v))] = \eta^{r}(\nabla v-\nabla t_k(v))+r\eta^{r-1}(v-t_k(v))\nabla \eta, \end{equation}
(4.63)

可得

\begin{equation} |E(\eta, v)|\leq2^{p-r}\frac{p-r+1}{r-p+1}|\eta^{r}\nabla t_k(v)-r\eta^{r-1}(v-t_k(v))\nabla \eta|^{r-p+1}. \end{equation}
(4.64)

E(\eta, v) 的定义和 (4.61) 式得

\begin{eqnarray} &&\int_{A_{k, t}^{+}} \langle A(x^*, \nabla v), |\eta^{r}\nabla v|^{r-p} \eta^{r}\nabla v\rangle{\rm d}x \\ & = & \int_{A_{k, t}^{+}} \langle A(x^*, \nabla v), E(\eta, v) \rangle{\rm d}x -\int_{A_{k, t}^{+}} \langle A(x^*, \nabla v), |\nabla[\eta^{r}(v-t_k(v))]|^{r-p}\nabla[\eta^{r}(v-t_k(v))]\rangle{\rm d}x \\ &\leq& \int_{A_{k, t}^{+}} \langle A(x^*, \nabla v), E(\eta, v) \rangle{\rm d}x - \int_{A_{k, t}^{+}} \langle A(x^*, \nabla v), H \rangle{\rm d}x \\ & = & I_1+I_2. \end{eqnarray}
(4.65)

下面估计 (4.65) 式的左右两边.先由条件 (H_1) (H_3) 得出

\begin{eqnarray} \int_{A_{k, t}^{+}} \langle A(x^*, \nabla v), |\eta^{r}\nabla v|^{r-p} \eta^{r}\nabla v\rangle{\rm d}x &\geq& \int_{A_{k, \widetilde \tau}^{+}} \langle A(x^*, \nabla v), |\nabla v|^{r-p} \nabla v\rangle{\rm d}x \\ &\geq& C_1\int_{A_{k, \widetilde \tau}^{+}}|\nabla v|^{r}{\rm d}x, \end{eqnarray}
(4.66)

再由条件 (H_2) (4.64) 式得出

\begin{eqnarray} |I_1|& = & \left|\int_{A_{k, t}} \langle A(x, \nabla v), E(\eta, v) \rangle{\rm d}x\right| \leq C_{2}\int_{A_{k, t}^{+}} |\nabla v|^{p-1}|E(v, u)|{\rm d}x \\ &\leq& C_{2} 2^{p-r}\frac{p-r+1}{r-p+1}\int_{A_{k, t}^{+}}|\nabla v|^{p-1}|\eta^{r}\nabla t_k(v)-r\eta^{r-1}\nabla \eta(v-t_k(v))|^{r-p+1} {\rm d}x \\ &\leq& C\int_{A_{k, t}^{+}} |\nabla v|^{p-1} |\eta^{r}\nabla t_k(v)|^{r-p+1}{\rm d}x{}\\ && + C\int_{A_{k, t}^{+}} |\nabla v|^{p-1}|r\eta^{r-1}(v-t_k(v))\nabla \eta|^{r-p+1}{\rm d}x, \end{eqnarray}
(4.67)

其中 C = C_{2} 2^{p-r}\frac{p-r+1}{r-p+1} .因为在 {A_{k, t}^{+}} t_k(v) = k , 利用Young不等式 (\tau>0) 得到

\begin{eqnarray} |I_1|&\leq& C\int_{A_{k, t}^{+}} |\nabla v|^{p-1}|r\eta^{r-1}\nabla \eta(v-t_k(v))|^{r-p+1}{\rm d}x \\ &\leq& C\left[\tau\int_{A_{k, t}^{+}} |\nabla v|^{r}{\rm d}x+C(\tau)\int_{A_{k, t}^{+}}|r\eta^{r-1}(v-t_k(v))\nabla \eta|^{r}{\rm d}x\right] , \end{eqnarray}
(4.68)

根据 |\nabla\eta|\leq2(t-\widetilde \tau)^{-1} 以及在 {A_{k, t}^{+}} |v-t_k(v)| = |v-k| , 可得

\begin{equation} |I_1|\leq C\tau \int_{A_{k, t}^{+}} |\nabla v|^{r}{\rm d}x+\frac{C(p, r, \tau)}{(t-\widetilde \tau)^{r}}\int_{A_{k, t}^{+}}|v-k|^{r}{\rm d}x. \end{equation}
(4.69)

现估计 I_2 , 由条件 (H_2) , Hölder不等式, (4.59) 式以及Young不等式可得

\begin{eqnarray} |I_2|& = &\left|\int_{A_{k, t}^{+}} \langle A(x^*, \nabla v), H \rangle{\rm d}x \right| \leq C_2\int_{A_{k, t}^{+}}|\nabla v|^{p-1}|H|{\rm d}x \\ &\leq& C_2\bigg(\int_{A_{k, t}^{+}}|\nabla v|^{r}{\rm d}x\bigg)^{\frac{p-1}{r}} \bigg(\int_{A_{k, t}^{+}}|H|^{\frac{r}{r-p+1}}{\rm d}x\bigg)^{\frac{r-p+1}{r}} \\ &\leq& C(n, p, C_2)(p-r)\bigg(\int_{A_{k, t}^{+}}|\nabla v|^{r}{\rm d}x\bigg)^{\frac{p-1}{r}} \bigg(\int_{A_{k, t}^{+}}|\nabla[\eta^ {r}(v-t_k(v))]|^{r}{\rm d}x\bigg)^{\frac{r-p+1}{r}} \\ &\leq& C(n, p, C_2)(p-r)\tau\int_{A_{k, t}^{+}}|\nabla v|^{r}{\rm d}x + C(n, p, \tau, C_2)(p-r)\int_{A_{k, t}^{+}}|\nabla[\eta^{r}(v-t_k(v))]|^{r}{\rm d}x. {}\\ \end{eqnarray}
(4.70)

(4.63) 式有

\begin{equation} \int_{A_{k, t}^{+}}|\nabla[\eta^{r}(v-t_k(v))]|^{r}{\rm d}x\leq \int_{A_{k, t}^{+}}|\nabla v|^{r}{\rm d}x+\frac{2^{r}r}{(t-\widetilde \tau)^{r}}\int_{A_{k, t}^{+}}|v-k|^{r}{\rm d}x, \end{equation}
(4.71)

即有

\begin{equation} |I_2|\leq C(p-r) \int_{A_{k, t}^{+}} |\nabla v|^{r}{\rm d}x+\frac{C(p, r, \tau)}{(t-\widetilde \tau)^{r}}\int_{A_{k, t}^{+}}|v-k|^{r}{\rm d}x. \end{equation}
(4.72)

故由不等式 (4.65), (4.66), (4.69) 以及 (4.72) , 得到

\begin{equation} \int_{A_{k, \widetilde \tau}^{+}} |\nabla v|^{r}{\rm d}x \leq \frac{C\tau+C(p-r)}{C_1}\int_{A_{k, t}^{+}} |\nabla v|^{r}{\rm d}x+\frac{C(p, r, \tau)}{C_1(t-\widetilde \tau)^{r}} \int_{A_{k, t}^{+}}|v-k|^{r}{\rm d}x. \end{equation}
(4.73)

选取足够小的 \tau p-r , 使得 (4.73) 式右边第一项的系数总和 \theta 小于 1 .因此, 对每一个 t \widetilde \tau , 满足 \widetilde R\leq \widetilde \tau<t<2\widetilde R , 有

\begin{eqnarray} \int_{A_{k, \widetilde \tau}^{+}} |\nabla v|^{r}{\rm d}x &\leq& \theta\int_{A_{k, t}^{+}} |\nabla v|^{r}{\rm d}x+\frac{C(p, r)}{C_1(t-\widetilde \tau)^{r} }\int_{A_{k, R}^{+}}|v-k|^{r}{\rm d}x. \end{eqnarray}
(4.74)

给定任意的 \rho, \sigma , 满足 \widetilde R\leq \rho <\sigma\leq 2\widetilde R. 利用引理 4.1 可得出

\begin{eqnarray} \int_{A_{k, \rho}^{+}} |\nabla v|^{r}{\rm d}x &\leq& \frac{cC(p, r)}{C_1(\sigma-\rho)^{r} }\int_{A_{k, \sigma}^{+}}|v-k|^{r}{\rm d}x, \end{eqnarray}
(4.75)

其中 c 是引理 4.1 中给定的常数.因此, v 属于 B 类, 且有 \gamma = cC(p, r)/C_1, m = r .于是由引理 4.2 可得

\max\limits_{ B_{\widetilde R}}v(x)\leq c.

定理4.4证毕.

引理4.3[22]  令 g\in C^{1} 且满足 0\leq \frac{tg'(t)}{g(t)}\leq g_0(t>0) , 假设对某正常数 \varepsilon g(t)\geq\varepsilon t . \overline{A}:{{\Bbb R}} ^{n}\rightarrow {{\Bbb R}} ^{n} , 假设存在一个正常数 \Lambda 使得

\overline{a^{ij}}(h)\xi_{i}\xi_{j}\geq \frac{g(|h|)}{|h|}|\xi|^{2};\quad |\overline{a^{ij}}(h)|\leq \Lambda \frac{g(|h|)}{|h|};\quad |\overline{A}(h)|\leq \Lambda g(|h|),

其中 h, \xi \in {{\Bbb R}}^{n}, \overline{a^{ij}} = \frac{\partial{\overline {A^{i}}}}{\partial{h^{j}}} . v 是方程 {\rm div}\overline{A}(Dv) = 0 W^{1, G}(B_R) 中的有界解, 则 v \in C^{1, \sigma}(B_R), \sigma(N, g_0, \Lambda) 是正数.又有

\sup\limits_{B_{R/2}}G(|Dv|) \leq c(N, g_0, \Lambda)R^{-n}\int_{B_{R}} G(|Dv|){\rm d}x,

-\!\!\!\!\!\!\int _{B{r}}G(|Dv-(Dv)_{r}|){\rm d}x\leq c(N, g_0, \Lambda)(\frac{r}{R})^{\sigma}-\!\!\!\!\!\!\int _{B_{R}}G(|Dv-(Dv)_{R}|){\rm d}x,

其中 0<r<R .

定理4.5  假设 v\in W^{1, r}(B_{10\rho _{i}}(x_{i})) 是Dirichlet问题 (4.21) B_{10\rho _{i}}(x_{i}) 上的很弱解, 则存在 N_0>1 使得

\begin{equation} \sup\limits_{B_{5\rho _{i}}(x_{i})}|\nabla v| \leq N_0. \end{equation}
(4.76)

  令 v 是方程 (4.21) 的很弱解.由定理 4.4 可知 v 是局部有界的.令 g(t) = rt^{r-1} .然后根据引理 4.3 , 有

\begin{equation} G(t) = \int_{0}^{ t }g(s){\rm d}s = \int_{0}^{ t }rs^{r-1}{\rm d}s = t^{r}. \end{equation}
(4.77)

根据文献[22]中 W^{1, G} 的定义, v(x)\in W^{1, G}(B_{R}) , 则Dirichlet问题 (4.21) 的很弱解 v(x) 满足引理 4.3 的条件.然后根据引理 4.3 G(t) 的定义, 有

\begin{equation} \sup\limits_{B_{\widetilde R/2}}|\nabla v|^r \leq c\widetilde R^{-n}\int_{B_{\widetilde R}} |\nabla v|^r{\rm d}x \leq c -\!\!\!\!\!\!\int _{B{r}}(1+|\nabla v|^r){\rm d}x \leq N_0. \end{equation}
(4.78)

根据引理 3.2 , 给定 \lambda \geq \lambda _{*} = :(10/R_{0}) ^{n/r}\lambda _{0}+1 , 构造一族互不相交的球 \left \{ B_{\rho _{i}}(x_{i}) \right \}_{i\in N} , 其中 x_i\in E_\lambda(1), i\in N .则对任意的 \rho>\rho_i , 有

\begin{equation} -\!\!\!\!\!\!\int _{B_{\rho}(x_i)}|\nabla u_{\lambda}|^r{\rm d}x\leq 1, \quad -\!\!\!\!\!\!\int _{B_{\rho}(x_i)}|\textbf{f}_{\lambda}|^r{\rm d}x\leq \varepsilon. \end{equation}
(4.79)

此外, 根据引理 3.1 的新标准化, 可得出以下定理 4.3 和定理 4.5 的推论.

推论4.1  假设 v_{\lambda}\in W^{1, r}(B_{10\rho _{i}}(x_{i})) 是方程 (4.21) B_{10\rho _{i}}(x_{i}) 上的很弱解, A_{\lambda} 满足(H _1) –(H _4) .则存在 N_0>1 使得

\begin{equation} \sup\limits_{B_{5\rho _{i}}(x_{i})}|\nabla v_{\lambda}| \leq N_0. \end{equation}
(4.80)

推论4.2  假设 v_{\lambda}\in W^{1, r}(B_{10\rho _{i}}(x_{i})) 是方程 (4.21) 的很弱解, 其中 x^{*}\in B_{10\rho _{i}}(x_{i}) , 且 A_{\lambda} 满足条件 (H_1) (H_4) .则有

\begin{equation} -\!\!\!\!\!\!\int _{B_{10\rho _{i}}(x_{i})}|\nabla (u_{\lambda}-v_{\lambda})|^r{\rm d}x \leq \varepsilon. \end{equation}
(4.81)

5 定理1.1的证明

本节证明定理 1.1 .首先假设 \left | \nabla u \right |^{r} \in L_{loc}^{\infty }(\Omega )\subset L_{loc}^{\phi}(\Omega). 该假设可以如文献[23-24]通过逼近的标准方法移除.

5.1 先验估计

假设 \left | \nabla u \right |^{r} \in L_{loc}^{\infty }(\Omega )\subset L_{loc}^{\phi}(\Omega) .根据引理 2.1(3) , 有

\begin{eqnarray} \int_{B_1}\phi (| \nabla u|^{r}){\rm d}x & = &\int_{0}^{\infty}\Big|\{x \in B_{1}:| \nabla u|^{r}>\mu\}\Big|{\rm d}[\phi(\mu)] \\ & = & \int_{0}^{(2N_0)^{r}\lambda_{*}^{r}}\Big|\{x \in B_{1}:| \nabla u|^{r}>\mu\}\Big|{\rm d}[\phi(\mu)] \\ && +\int_{(2N_0)^{r}\lambda_{*}^{r}}^{\infty}\Big|\{x \in B_{1}:| \nabla u|^{r}>\mu\}\Big|{\rm d}[\phi(\mu)] \\ & = & \int_{0}^{(2N_0)^{r}\lambda_{*}^{r}}\Big|\{x \in B_{1}:| \nabla u|^{r}>\mu\}\Big|{\rm d}[\phi(\mu)] \\ && +\int_{\lambda_{*}}^{\infty}\Big|\{x \in B_{1}:| \nabla u|^{r}>(2N_0)^{r}\lambda^{r}\}\Big|{\rm d}[\phi((2N_0)^{r}\lambda^{r})] \\ & = & J_1+J_2. \end{eqnarray}
(5.1)

估计 J_1 .

\begin{equation} J_1 = \int_{0}^{(2N_0)^{r}\lambda_{*}^{r}}\Big|\{x \in B_{1}:| \nabla u|^{r}>\mu\}\Big|{\rm d}[\phi(\mu)]\leq |B_1|\phi\Big[(2N_0)^{r}\lambda_{*}^{r}\Big]. \end{equation}
(5.2)

下面考虑 \lambda_{*}^{r} .利用 (3.7) 式中 \lambda_{0} 的定义和定理 4.1 得到

\begin{eqnarray} \lambda_{*}^{r}&\leq&C[\lambda_{0}^{r}+1] \\ &\leq& C\left\{-\!\!\!\!\!\!\int _{B_{1}}| \nabla u|^{r}{\rm d}x+\frac{1}{\varepsilon}-\!\!\!\!\!\!\int _{B_{1}}|\textbf{f}|^{r}{\rm d}x+1\right \} \\ &\leq& C\left\{-\!\!\!\!\!\!\int _{B_{2}}| u-u_{B_{2R}}|^{r}{\rm d}x+-\!\!\!\!\!\!\int _{B_{2}}|\textbf{f}|^{r}{\rm d}x+\frac{1}{\varepsilon}-\!\!\!\!\!\!\int _{B_{1}}|\textbf{f}|^{r}{\rm d}x+1\right \} \\ &\leq& C\left\{-\!\!\!\!\!\!\int _{B_{2}}| u-u_{B_{2R}}|^{r}{\rm d}x+-\!\!\!\!\!\!\int _{B_{2}}|\textbf{f}|^{r}{\rm d}x+1\right \}, \end{eqnarray}
(5.3)

其中 C = C(n, r, \varepsilon). 最后利用(5.2)和(2.3)式, 上述不等式及Jensen不等式可得

\begin{eqnarray} J_1&\leq& C\phi\Big(\lambda_{*}^{r} \Big)|B_1| \\ &\leq& C\left\{\phi\Big(-\!\!\!\!\!\!\int _{B_{2}}| u-u_{B_{2R}}|^{r}{\rm d}x\Big)+\phi\Big(-\!\!\!\!\!\!\int _{B_{2}}|\textbf{f}|^{r}{\rm d}x\Big)+1\right \} \\ &\leq& C\left\{\phi\Big(\int _{B_{2}}| u-u_{B_{2R}}|^{r}{\rm d}x\Big)+\Big(\int _{B_{2}}\phi(|\textbf{f}|^{r}){\rm d}x\Big)+1\right \}, \end{eqnarray}
(5.4)

其中 C = C(n, r, \phi, \varepsilon, C_1, C_2, N_0).

估计 J_2 . (5.1) 式可得

\begin{eqnarray} J_2& = &\int_{\lambda_{*}}^{\infty}\Big|\{x \in B_{1}:| \nabla u|^{r}>(2N_0)^{r}\lambda^{r}\}\Big|{\rm d}[\phi((2N_0)^{r}\lambda^{r})] \\ &\leq& \int_{0}^{\infty}\Big|\{x \in B_{1}:| \nabla u|>(2N_0)\lambda\}\Big|{\rm d}[\phi((2N_0)^{r}\lambda^{r})]. \end{eqnarray}
(5.5)

现在考虑上面不等式右边最后一个积分的被积函数.

对任意的 \lambda \geq \lambda _{*} = (10/R_0)^{n/r}\lambda _{0}+1 , 利用推论4.1, 4.2以及引理 3.2 中的 (3.13) 式, 可得

\begin{eqnarray} &&\Big|\{x \in B_{5\rho_{i}}(x_{i}):| \nabla u|>2N_0\lambda\}\Big| \\ & = & \Big|\{x \in B_{5\rho_{i}}(x_{i}):| \nabla u_{\lambda}|>2N_0\}\Big| \\ &\leq& \Big|\{x \in B_{5\rho_{i}}(x_{i}):| \nabla (u_{\lambda}-v_{\lambda})|>N_0\}\Big|+\Big|\{x \in B_{5\rho_{i}}(x_{i}):| \nabla v_{\lambda}|>N_0\}\Big| \\ & = & \Big|\{x \in B_{5\rho_{i}}(x_{i}):| \nabla (u_{\lambda}-v_{\lambda})|>N_0\}\Big| \\ &\leq& \frac{1}{N_0^{r}}\int_{B_{5\rho_{i}}(x_{i})}| \nabla (u_{\lambda}-v_{\lambda})|^{r}{\rm d}x \\ &\leq& C\varepsilon \Big|B_{\rho_{i}}(x_{i})\Big| \\ &\leq& C\varepsilon\Big(\int_{\{x \in B_{\rho_{i}}(x_{i}):| \nabla u_{\lambda}|^{r}>1/3\}}|\nabla u_{\lambda}|^{r}{\rm d}x +\frac{1}{\varepsilon}\int_{\{x \in B_{\rho _{i}}(x_{i}):|\textbf{f}_{\lambda}|^{r}>\varepsilon /3\}}| \textbf{f}_{\lambda}|^{r}{\rm d}x\Big), \end{eqnarray}
(5.6)

其中 C = C(n, r, N_0). 即可知球 B_{\rho_i}{(x_i)} 不相交及对于任意的 \lambda \geq \lambda _{*} = (10/R_0)^{n/r}\lambda _{0}+1 , 有

\begin{eqnarray} \mathop{\bigcup}_{i\in N}B_{5\rho _{i}}(x_{i})\supset E_{\lambda}(1) = \{x\in B_1:|\nabla u_{\lambda}|>1\}. \end{eqnarray}
(5.7)

然后对上述不等式在 i\in N 上求和, 可得到

\begin{eqnarray} &&\Big|\{x \in B_{1}:| \nabla u|>2N_0\lambda\}\Big| \\ &\leq& \sum\limits_{i}\Big|\{x \in B_{5\rho_{i}}(x_{i}):| \nabla u|>2N_0\lambda\}\Big| \\ &\leq& C\varepsilon\Big(\int_{\{x \in B_2:| \nabla u_{\lambda}|^{r}>1/3\}}|\nabla u_{\lambda}|^{r}{\rm d}x +\frac{1}{\varepsilon}\int_{\{x \in B_2:| \textbf{f}_{\lambda}|^{r}>\varepsilon /3\}}| \textbf{f}_{\lambda}|^{r}{\rm d}x\Big). \end{eqnarray}
(5.8)

然后将 (5.8) 式代入 (5.5) 式, 并令 \mu = \lambda ^{r} 可得

\begin{eqnarray} J_2&\leq& C\varepsilon\int_{0}^{\infty}\int_{\{x \in B_2:| \nabla u_{\lambda}|^{r}>1/3\}}|\nabla u_{\lambda}|^{r}{\rm d}x{\rm d}[\phi((2N_0)^{r}\lambda^{r})] \\ && +C\int_{0}^{\infty}\int_{\{x \in B_2:|\textbf{f}_{\lambda}|^{r}>\varepsilon /3\}}| \textbf{f}_{\lambda}|^{r}{\rm d}x{\rm d}[\phi((2N_0)^{r}\lambda^{r})] \\ &\leq& C\varepsilon\int_{0}^{\infty}\frac{1}{\mu}\int_{\{x \in B_2:| \nabla u|^{r}>\mu/3\}}|\nabla u|^{r}{\rm d}x{\rm d}[\phi((2N_0)^{r}\mu)] \\ && +C\int_{0}^{\infty}\frac{1}{\mu}\int_{\{x \in B_2:|\textbf{f}|^{r}>\varepsilon\mu /3\}}| \textbf{f}|^{r}{\rm d}x{\rm d}[\phi((2N_0)^{r}\mu)]. \end{eqnarray}
(5.9)

回顾引理 2.1(4)

\begin{eqnarray} J_2\leq C_4\varepsilon\int_{B_2}\phi (| \nabla u|^{r}){\rm d}x+C_5\int_{B_2}\phi (| \textbf{f}|^{r}){\rm d}x, \end{eqnarray}
(5.10)

其中 C_4 = C(n, r, \phi, N_0), C_5 = C(n, r, \phi, \varepsilon , N_0, C_1, C_2, C_3).

综合估计 J_1 J_2 可得出

\begin{equation} \int_{B_1}\phi (| \nabla u|^{r}){\rm d}x\leq C_4\varepsilon\int_{B_2}\phi (| \nabla u|^{r}){\rm d}x+C_6\int_{B_2}\phi (| \textbf{f}|^{r}){\rm d}x +C_7\phi \Big( \int_{B_{2}}\left | u-u_{B_{2R}} \right |^{r}{\rm d}x \Big)+1, \end{equation}
(5.11)

其中 C_6 = C(n, r, \phi, \varepsilon , C_1, C_2, C_3, N_0), C_7 = C(n, r, \phi, \varepsilon , C_1, C_2, N_0). 选取合适的 \varepsilon 使得

\begin{eqnarray} C_4\varepsilon = \frac{1}{2}. \end{eqnarray}
(5.12)

通过迭代覆盖(参见文献[20, 第三章, 引理2.1])将上面不等式右边第一个积分吸收, 可得到

\begin{eqnarray} \int_{B_1}\phi (| \nabla u|^{r}){\rm d}x&\leq& C\left\{\int_{B_2}\phi (| \textbf{f}|^{r}){\rm d}x+ \phi \Big( \int_{B_{2}}\left | u-u_{B_{2R}} \right |^{r}{\rm d}x \Big)+1\right\}. \end{eqnarray}
(5.13)

故通过基本缩放论证, 定理 1.1 得证.

5.2 逼近

条件 \left | \nabla u \right |^{r} \in L_{loc}^{\infty }(\Omega )\subset L_{loc}^{\phi}(\Omega) 可以采用逼近的标准方法移除.

根据文献[23], 因为 \textbf{f}^{r}\in L_{loc}^{\phi}(\Omega), 即有

\begin{eqnarray} \lim\limits_{k\rightarrow \infty} \int _{B_{R}(x_0)} \phi ( |\textbf{f}_k|^{r} ){\rm d}x = \int _{B_{R}(x_0)} \phi ( |\textbf{f}|^{r} ){\rm d}x. \end{eqnarray}
(5.14)

考虑Dirichlet问题

\begin{eqnarray} \left\{\begin{array}{ll} {\rm div}A(x, \nabla u_{k}) = {\rm div}(|\textbf{f}|^{p-2}\textbf{f}), \quad x\in B_{2R}, \\ u_{k}-u \in W_{0}^{1, r}(B_{2R}). \end{array}\right. \end{eqnarray}
(5.15)

对所有 k = 1, 2, 3, \cdot\cdot\cdot , 存在唯一解 u_{k} \in W^{1, r}(B_{2R}) . u_{k} 的梯度的正则性理论知, \nabla u_{k} \in L^{\infty}(B_{2R}). 经过初步推断, 可得到当 k\rightarrow \infty

\begin{equation} \| u_{k}-u \| _{W^{1, r} (B_{2R})}\rightarrow 0 . \end{equation}
(5.16)

因此, 存在 \{u_{k}\}_{k = 1}^{\infty} 的子序列(由 \{u_{k}\} 表示), 使得

\begin{equation} \nabla u_{k}\rightarrow \nabla u \quad a.e. \quad\ {\rm in} \quad B_{2R} . \end{equation}
(5.17)

因此, 根据Fatou引理, (1.9), (5.14), (5.16)和 (5.17) 式可得

\begin{eqnarray} \int _{B_{R}} \phi ( |\nabla u|^{r} ){\rm d}x &\leq& \liminf\limits_{k\rightarrow \infty} \int _{B_{R}} \phi ( |\nabla u_{k}|^{r} ){\rm d}x \\ &\leq& C\liminf\limits_{k\rightarrow \infty} \left \{ \phi\left ( \frac{1}{R^{r}}\int _{B_{2R}}|u_{k}-(u_{k})_{2R}|^{r}{\rm d}x \right )+\int _{B_{2R}}\phi(|\textbf{f}_k|^{r}){\rm d}x +1 \right \} \\ &\leq& C\left \{ \phi\left ( \frac{1}{R^{r}} \int _{B_{2R}}|u-u_{2R}|^{r}{\rm d}x \right )+\int _{B_{2R}}\phi(|\textbf{f}|^{r}){\rm d}x +1 \right \}. \end{eqnarray}
(5.18)

所以, 在附加假设 \nabla u 是局部有界时可证明定理 1.1. 只要在一般情况下证明 (1.9) 式, 即可通过标准覆盖论证得到 |\nabla u|^{r}\in L_{loc}^{\phi}(\Omega) .

参考文献

Orlicz W .

Üeber eine gewisse Klasse von Räumen vom Typus B

Bulletin International de l'Académie Polonaise Série A, 1932, 8: 207- 220

[本文引用: 1]

Rao M M , Ren Z D . Applications of Orlicz Spaces. New York: Marcel Dekker, 2002

[本文引用: 1]

Bulíček M , Diening L , Schwarzacher S .

Existence, uniqueness and optimal regularity results for very weak solutions to nonlinear elliptic systems

Analysis and PDE, 2016, 9 (5): 1115- 1151

[本文引用: 1]

Merker J , Rakotoson J M .

Very weak solutions of Poisson's equation with singular data under Neumann boundary conditions

Calculus of Variations and Partial Differential Equations, 2015, 52 (3/4): 705- 726

Bulíček M , Schwarzacher S .

Existence of very weak solutions to elliptic systems of p-Laplacian type

Calculus of Variations and Partial Differential Equations, 2016, 55 (3): 1- 14

Bao G , Wang T , Li G .

On very weak solutions to a class of double obstacle problems

Journal of Mathematical Analysis and Applications, 2013, 402 (2): 702- 709

Gao H , Liang S , Cui Y .

Integrability for very weak solutions to boundary value problems of p-harmonic equation

Czechoslovak Mathematical Journal, 2016, 66 (1): 101- 110

Tong Y , Liang S , Zheng S .

Integrability of very weak solution to the Dirichlet problem of nonlinear elliptic system

Electronic Journal of Differential Equations, 2019, (1): 1- 11

周树清, 胡振华, 彭冬云.

一类A -调和方程的障碍问题的很弱解的全局正则性

数学物理学报, 2014, 34A (1): 27- 38

Zhou S Q , Hu Z H , Peng D Y .

Global regularity for very weak solutions to obstacle promlems corresponding to a class of A-harmonic equations

Acta Mathematica Scientia, 2014, 34A (1): 27- 38

高红亚, 贾苗苗.

障碍问题解的局部正则性和局部有界性

数学物理学报, 2017, 37A (4): 706- 713

Gao H Y , Jia M M .

Local regularity and local boundedness for solutions to obstacle problems

Acta Mathematica Scientia, 2017, 37A (4): 706- 713

佟玉霞, 郑神州, 程林娜.

A -调和张量的奇点可去性

数学物理学报, 2017, 37A (6): 1001- 1011

[本文引用: 1]

Tong Y X , Zheng S Z , Cheng L N .

Removable singularities of weakly A-harmonic tensors

Acta Mathematica Scientia, 2017, 37A (6): 1001- 1011

[本文引用: 1]

Yao F. Gradient estimates for weak solutions of A-Harmonic equations. Journal of Inequalities and Applications, 2010, Article ID: 685046

[本文引用: 10]

Acerbi E , Mingione G .

Gradient estimates for the p(x)-Laplacean system

J Reine Angew Math, 2005, 584: 117- 148

[本文引用: 1]

Dibenedetto E , Manfredi J .

On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems

American Journal of Mathematics, 1993, 115 (5): 1107- 1134

[本文引用: 1]

Byun S S , Wang L .

Quasilinear elliptic equations with BMO coefficients in Lipschitz domains

Transactions of the American Mathematical Society, 2007, 359 (12): 5899- 5913

[本文引用: 1]

Kinnunen J , Zhou S .

A Local estimate for nonlinear equations with discontinuous coefficients

Communications in Partial Differential Equations, 1999, 24 (11/12): 2043- 2068

[本文引用: 1]

Byun S S , Wang L .

L.{p}-estimates for general nonlinear elliptic equations

Indiana University Mathematics Journal, 2007, 56 (6): 3193- 3221

[本文引用: 2]

Iwaniec T , Sbordone C .

Weak minima of variational integrals

J Reine Angew Math, 1994, 454: 143- 161

[本文引用: 2]

Iwaniec T , Migliaccio L , Nania L , Sbordone C .

Integrability and removability results for quasiregular mappings in high dimensions

Mathematica Scandinavica, 1994, 75 (2): 263- 279

[本文引用: 1]

Giaquinta M . Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton: Princeton University Press, 1983

[本文引用: 2]

Hong M C .

Some remarks on the minimizers of variational integrals with nonstandard growth conditions

Bollettino dell'Unione Matematica Italiana, 1992, 6 (1): 91- 101

[本文引用: 2]

Lieberman G M .

The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations

Communications in Partial Differential Equations, 1991, 16: 311- 361

[本文引用: 2]

Yao F , Sun Y , Zhou S .

Gradient estimates in Orlicz spaces for quasilinear elliptic equation

Nonlinear Analysis, 2008, 69: 2553- 2565

[本文引用: 2]

张雅楠, 闫硕, 佟玉霞.

自然增长条件下的非齐次A -调和方程弱解的梯度估计

数学物理学报, 2020, 40A (2): 379- 394

[本文引用: 1]

Zhang Y N , Yan S , Tong Y X .

Gradient estimates for weak solutions to non-homogeneous A-Harmonic equations under natural growth

Acta Mathematica Scientia, 2020, 40A (2): 379- 394

[本文引用: 1]

/