图 1
参数$ p = \frac{3}{2}, 2, \frac{5}{2}, 4 $ 时的区域$ D $ 及其对应的边界曲线$ \alpha = L(\beta) $
由引理2.6和(2.9)式知:当且仅当$ \beta\leq \inf\limits_{r\in(0, 1)}[1+h(r)] = (p^2+1)/2 $ , $ {G_{\beta}}'(r)>0 $ 对所有的$ r\in(0, 1) $ 恒成立,即函数$ G_{\beta}(r) $ 在$ (0, 1) $ 上严格单调增加,进而由(2.7)和(2.8)式可得引理第(1)部分.若$ \beta>(p^2+1)/2 $ ,则引理2.6及(2.9)式表明存在$ \lambda = \lambda(\beta)\in(0, 1) $ 使得当$ r\in(0, \lambda) $ 时, $ G_{\beta}'(r)<0 $ ,当$ r\in(\lambda, 1) $ , $ G_{\beta}'(r)>0 $ ,故$ G_{\beta}(r) $ 在$ (0, 1) $ 分段单调的.结合(2.7)和(2.8)式即得$ L(\beta)<p $ , $ G_{\beta}(r) $ 在$ (0, 1) $ 上的值域为$ (L(\beta), \infty) $ .
子情形1.2 $ \beta\leq (p^2+1)/2 $ 且$ \alpha>p $ . 则由(3.1)和(3.2)式,引理2.8(1)及其类似子情形1.1的讨论可知:当$ \alpha>p $ 且$ \beta\leq (p^2+1)/2 $ 时,存在$ x_{0}, y_{0}\in(0, r_{1}) $ 和$ x_{1}, y_{1}\in(r_{1}, 1) $ 使得$ E_{p}\left(H_{\alpha}(x_{0}, y_{0})\right)\leq H_{\beta}\left({E_{p}}(x_{0}), {E_{p}}(y_{0})\right) $ , $ E_{p}\left(H_{\alpha}(x_{1}, y_{1})\right)\geq H_{\beta}\left({E_{p}}(x_{1}), {E_{p}}(y_{1})\right) $ . 因此, $ E_{p} $ 在整个$ (0, 1) $ 区间上既不是$ H_{\alpha, \beta} $ -凹的也不是$ H_{\alpha, \beta} $ -凸的.
[1]
Abramowitz M , Stegun I A . Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables . Washington : US Government Printing Office , 1964
[本文引用: 1]
[2]
Lehto O , Virtanen K I . Quasiconformal Mappings in the Plane . New York : Springer-Verlag , 1973
[本文引用: 1]
[3]
Anderson G D , Vamanamurthy M K , Vuorinen M . Conformal Invariants, Inequalities, and Quasiconformal Maps . New York : John Wiley & Sons , 1997
[本文引用: 2]
[5]
Wang M K , Chu Y M , Qiu Y F , Qiu S L . An optimal power mean inequality for the complete elliptic integrals
Appl Math Lett , 2011 , 24 (6 ): 887 - 890
DOI:10.1016/j.aml.2010.12.044
[6]
Wang G D , Zhang X H , Chu Y M . A power mean inequality for the Grötzsch ring function
Math Inequal Appl , 2011 , 14 (4 ): 833 - 837
URL
[7]
Chu Y M , Wang M K , Qiu S L . Optimal combinations bounds of root-square and arithmetic means for Toader mean
Proc Indian Acad Sci Math Sci , 2012 , 122 (1 ): 41 - 51
DOI:10.1007/s12044-012-0062-y
[8]
Wang M K , Chu Y M , Qiu S L , Jiang Y P . Bounds for the perimeter of an ellipse
J Approx Theory , 2012 , 164 (7 ): 928 - 937
DOI:10.1016/j.jat.2012.03.011
[9]
Chu Y M , Qiu Y F , Wang M K . Hölder mean inequalities for the complete elliptic integrals
Integral Transforms Spec Funct , 2012 , 23 (7 ): 521 - 527
DOI:10.1080/10652469.2011.609482
[10]
Wang G D , Zhang X H , Chu Y M . A power mean inequality involving the complete elliptic integrals
Rocky Mountain J Math , 2014 , 44 (5 ): 1661 - 1667
DOI:10.1216/RMJ-2014-44-5-1661
[11]
Yang Z H, Qian W M, Chu Y M, Zhang W. Monotonicity rule for the quotient of two functions and its application. J Inequal Appl, 2017, Article: 106
[12]
Qian W M, Chu Y M. Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters. J Inequal Appl, 2017, Article: 274
[13]
Yang Z H , Qian W M , Chu Y M , Zhang W . On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind
J Math Anal Appl , 2018 , 462 (2 ): 1714 - 1726
URL
[14]
Huang T R, Tan S Y, Ma X Y, Chu Y M. Monotonicity properties and bounds for the complete p -elliptic integrals. J Inequal Appl, 2018, Article: 239
[15]
Zhao T H, Wang M K, Zhang W, Chu Y M. Quadratic transformation inequalities for Gaussian hypergeometric function. J Inequal Appl, 2018, Article: 251
[16]
Yang Z H , Qian W M , Chu Y M . Monotonicity properties and bounds involving the complete elliptic integrals of the first kind
Math Inequal Appl , 2018 , 21 (4 ): 1185 - 1199
URL
[17]
Yang Z H , Chu Y M , Zhang W . High accuracy asymptotic bounds for the complete elliptic integral of the second kind
Appl Math Comput , 2019 , 348 , 552 - 564
URL
[18]
Zhao T H, Zhou B C, Wang M K, Chu Y M. On approximating the quasi-arithmetic mean. J Inequal Appl, 2019, Article: 42
[19]
Wang J L, Qian W M, He Z Y, Chu Y M. On approximating the Toader mean by other bivariate means. J Funct Spaces, 2019, Article ID: 6082413
[20]
Wang M K , Chu Y M , Zhang W . Monotonicity and inequalities involving zero-balanced hypergeometric function
Math Inequal Appl , 2019 , 22 (2 ): 601 - 617
URL
[21]
Qiu S L , Ma X Y , Chu Y M . Sharp Landen transformation inequalities for hypergeometric functions, with applications
J Math Anal Appl , 2019 , 474 (2 ): 1306 - 1337
URL
[本文引用: 1]
[23]
Drábek P , Manásevich R . On the closed solution to some nonhomogeneous eigenvalue problems with p -Laplacian
Differential Integral Equations , 1999 , 12 (6 ): 773 - 788
URL
[本文引用: 1]
[24]
Kobayashi H , Takeuchi S . Applications of generalized trigonometric functions with two parameters
Commun Pure Appl Anal , 2019 , 18 (3 ): 1509 - 1521
DOI:10.3934/cpaa.2019072
[25]
Takeuchi S. Applications of generalized trigonometric functions with two parameters Ⅱ. 2019, arXiv: 1904.01827
[本文引用: 1]
[26]
Takeuchi S . Legendre-type relations for generalized complete elliptic integrals
J Class Anal , 2016 , 9 (1 ): 35 - 42
URL
[本文引用: 1]
[28]
Wang M K , Zhang W , Chu Y M . Monotonicity, convexity and inequalities involving the generalized elliptic integrals
Acta Math Sci , 2019 , 39B (5 ): 1440 - 1450
URL
[本文引用: 1]
[29]
Wang M K, Chu H H, Chu Y M. Precise bounds for the weighted Hölder mean of the complete p -elliptic integrals. J Math Anal Appl, 2019, 480 (2), Article ID: 123388
[本文引用: 1]
[30]
Huang T R, Han B W, Ma X Y, Chu Y M. Optimal bounds for the generalized Euler-Mascheroni constant. J Inequal Appl 2018, Article: 118
[本文引用: 1]
[31]
Zaheer Ullah S, Adil Khan M, Chu Y M. A note on generalized convex functions. J Inequal Appl, 2019, Article: 291
[本文引用: 1]
[32]
Zhang X H . Monotonicity and functional inequalities for the complete p -elliptic integrals
J Math Anal Appl , 2017 , 453 (2 ): 942 - 953
URL
[本文引用: 2]
[33]
Anderson G D , Qiu S L , Vamanamurthy M K , Vuorinen M . Generalized elliptic integrals and modular equations
Pacific J Math , 2000 , 192 (1 ): 1 - 37
DOI:10.2140/pjm.2000.192.1
[本文引用: 1]
[35]
Anderson G D , Sugawa T , Vamanamurthy M K , Vourinen M . Twice-punctured hyperbolic sphere with a conical singularity and generalized elliptic integral
Math Z , 2010 , 266 (1 ): 181 - 191
DOI:10.1007/s00209-009-0560-5
[36]
Neuman E . Inequalities and bounds for generalized complete elliptic integrals
J Math Anal Appl , 2011 , 373 (1 ): 203 - 213
URL
[37]
Bhayo B A , Vuorinen M . On generalized complete elliptic integrals and modular functions
Proc Edinb Math Soc (2) , 2012 , 55 (3 ): 591 - 611
DOI:10.1017/S0013091511000356
[38]
Yang Z H , Chu Y M . A monotonicity property involving the generalized elliptic integral of the first kind
Math Inequal Appl , 2017 , 20 (3 ): 729 - 735
URL
[39]
Wang M K , Li Y M , Chu Y M . Inequalities and infinite product formula for Ramanujan generalized modular equation function
Ramanujan J , 2018 , 46 (1 ): 189 - 200
DOI:10.1007/s11139-017-9888-3
[40]
Wang M K , Chu Y M , Zhang W . The precise estimates for the solution of Ramanujan's generalized modular equation
Ramanujan J , 2019 , 49 (3 ): 653 - 668
DOI:10.1007/s11139-018-0130-8
[本文引用: 1]
[41]
He X H , Qian W M , Xu H Z , Chu Y M . Sharp power mean bounds for two Sándor-Yang means
Rev R Acad Cienc Exactas Fís Nat Ser A Mat , 2019 , 113 (3 ): 2627 - 2638
DOI:10.1007/s13398-019-00643-2
[42]
Qian W M, Yang Y Y, Zhang H W, Chu Y M. Optimal two-parameter geometric and arithmetic mean bounds for the Sándor-Yang mean. J Inequal Appl, 2019, Article: 287
[43]
Bullen P S . Handbook of Means and Their Inequalities . Dordrecht : Kluwer Academic Publishers Group , 2003
[本文引用: 1]
[45]
Baricz Á. Convexity of the zero-balanced Gaussian hypergeometric functions with respect to Hölder means. JIPAM J Inequal Pure Appl Math, 2007, 8 (2), Article: 40
[本文引用: 1]
[46]
Wang M K , Chu Y M , Qiu S L , Jiang Y P . Convexity of the complete elliptic integrals of the first kind with respect to Hölder means
J Math Anal Appl , 2012 , 388 (2 ): 1141 - 1146
DOI:10.1016/j.jmaa.2011.10.063
[本文引用: 1]
[47]
Chu Y M , Wang M K , Jiang Y P , Qiu S L . Concavity of the complete elliptic integrals of the second kind with respect to Hölder means
J Math Anal Appl , 2012 , 395 (2 ): 637 - 642
DOI:10.1016/j.jmaa.2012.05.083
[本文引用: 2]
[48]
Zhou L M , Qiu S L , Wang F . Inequalities for the generalized elliptic integrals with respect to Hölder mean
J Math Anal Appl , 2012 , 386 (2 ): 641 - 646
DOI:10.1016/j.jmaa.2011.08.026
[本文引用: 1]
[49]
Baricz Á , Bhayo B A , Klén R . Convexity properties of generalized trigonometric and hyperbolic functions
Aequationes Math , 2015 , 89 (3 ): 473 - 484
DOI:10.1007/s00010-013-0222-x
[本文引用: 1]
[50]
Baricz Á , Bhayo B A , Vuorinen M . Turán inequalities for generalized inverse trigonometric functions
Filomat , 2015 , 29 (2 ): 303 - 313
DOI:10.2298/FIL1502303B
[本文引用: 1]
1
1964
... 令$ 0<r<1 $ ,勒让德第一类和第二类完全椭圆积分$ {\cal K}(r) $ 和$ {\cal E}(r) $ [1 ] 分别定义为 ...
1
1973
... 在过去的三十多年,完全椭圆积分的研究主要集中于它们在几何函数论中的应用.许多共形不变量、拟共形映射中的偏差函数都可以用完全椭圆积分来表示[2 -3 ] .特别地,关于$ {\cal K}(r) $ 和$ {\cal E}(r) $ 的许多优美的性质和上下界被证明[4 -21 ] . ...
2
1997
... 在过去的三十多年,完全椭圆积分的研究主要集中于它们在几何函数论中的应用.许多共形不变量、拟共形映射中的偏差函数都可以用完全椭圆积分来表示[2 -3 ] .特别地,关于$ {\cal K}(r) $ 和$ {\cal E}(r) $ 的许多优美的性质和上下界被证明[4 -21 ] . ...
... 引理2.1 [3 ] 对$ -\infty<a<b<+\infty $ ,设$ f $ 和$ g $ 是两个实值函数,都在$ [a, b] $ 上连续,在$ (a, b) $ 上可微,且在$ (a, b) $ 上$ g'\neq 0 $ . 如果$ f'/g' $ 在$ (a, b) $ 上(严格)单调增加(减小),那么函数 ...
Bounds for complete elliptic integrals of the first kind
1
2010
... 在过去的三十多年,完全椭圆积分的研究主要集中于它们在几何函数论中的应用.许多共形不变量、拟共形映射中的偏差函数都可以用完全椭圆积分来表示[2 -3 ] .特别地,关于$ {\cal K}(r) $ 和$ {\cal E}(r) $ 的许多优美的性质和上下界被证明[4 -21 ] . ...
An optimal power mean inequality for the complete elliptic integrals
0
2011
A power mean inequality for the Gr?tzsch ring function
0
2011
Optimal combinations bounds of root-square and arithmetic means for Toader mean
0
2012
Bounds for the perimeter of an ellipse
0
2012
H?lder mean inequalities for the complete elliptic integrals
0
2012
A power mean inequality involving the complete elliptic integrals
0
2014
On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind
0
2018
Monotonicity properties and bounds involving the complete elliptic integrals of the first kind
0
2018
High accuracy asymptotic bounds for the complete elliptic integral of the second kind
0
2019
Monotonicity and inequalities involving zero-balanced hypergeometric function
0
2019
Sharp Landen transformation inequalities for hypergeometric functions, with applications
1
2019
... 在过去的三十多年,完全椭圆积分的研究主要集中于它们在几何函数论中的应用.许多共形不变量、拟共形映射中的偏差函数都可以用完全椭圆积分来表示[2 -3 ] .特别地,关于$ {\cal K}(r) $ 和$ {\cal E}(r) $ 的许多优美的性质和上下界被证明[4 -21 ] . ...
A new form of the generalized complete elliptic integrals
4
2016
... 令$ p\in(1, \infty) $ , $ r\in(0, 1) $ , Takeuchi[22 ] 引入了二类完全$ p $ -椭圆积分$ {K}_{p}(r) $ 和$ {E}_{p}(r) $ ,其定义如下 ...
... 近几年,完全$ p $ -椭圆积分已经被Takeuchi等从不同的角度进行深入研究. 2016年, Takeuchi[22 , 26 ] 证明完全$ p $ -椭圆积分$ K_{p} $ 和$ E_{p} $ 满足如下导数公式及其广义Legendre恒等式 ...
... 其中对$ r\in(0, 1) $ , $ r' = \sqrt[p]{1-r^p} $ . 利用式(1.5), Takeuchi[22 , 27 ] 发现了当$ p = 3 $ 和$ p = 4 $ 时$ \pi_{p} $ 的算法公式.此外,完全$ p $ -椭圆积分与经典的Gauss超几何函数具有如下关系(参见文献[22 ,命题2.8]) ...
... -椭圆积分与经典的Gauss超几何函数具有如下关系(参见文献[22 ,命题2.8]) ...
On the closed solution to some nonhomogeneous eigenvalue problems with p -Laplacian
1
1999
... 易见$ \sin_{2}\theta = \sin\theta $ , $ \pi_{2} = \pi $ ,且由(1.1)–(1.4)式可得$ {K}_{2}(r) = {\cal K}(r) $ , $ {E}_{2}(r) = {\cal E}(r) $ . $ \sin_{p}\theta $ 及$ \pi_{p} $ 首先被给出在$ 1 $ 维的$ p $ - Laplacian方程的特征值问题[23 -25 ] . ...
Applications of generalized trigonometric functions with two parameters
0
2019
1
... 易见$ \sin_{2}\theta = \sin\theta $ , $ \pi_{2} = \pi $ ,且由(1.1)–(1.4)式可得$ {K}_{2}(r) = {\cal K}(r) $ , $ {E}_{2}(r) = {\cal E}(r) $ . $ \sin_{p}\theta $ 及$ \pi_{p} $ 首先被给出在$ 1 $ 维的$ p $ - Laplacian方程的特征值问题[23 -25 ] . ...
Legendre-type relations for generalized complete elliptic integrals
1
2016
... 近几年,完全$ p $ -椭圆积分已经被Takeuchi等从不同的角度进行深入研究. 2016年, Takeuchi[22 , 26 ] 证明完全$ p $ -椭圆积分$ K_{p} $ 和$ E_{p} $ 满足如下导数公式及其广义Legendre恒等式 ...
Complete p -elliptic integrals and a computation formula of $\pi_{p}$ for p =4
1
2018
... 其中对$ r\in(0, 1) $ , $ r' = \sqrt[p]{1-r^p} $ . 利用式(1.5), Takeuchi[22 , 27 ] 发现了当$ p = 3 $ 和$ p = 4 $ 时$ \pi_{p} $ 的算法公式.此外,完全$ p $ -椭圆积分与经典的Gauss超几何函数具有如下关系(参见文献[22 ,命题2.8]) ...
Monotonicity, convexity and inequalities involving the generalized elliptic integrals
1
2019
... 是Gauss超几何函数[28 -29 ] , $ a, b, c $ 为实参数且$ c\neq 0, -1, -2, \cdots $ , $ (a)_{0} = 1 $ $ (a\neq 0) $ , $ (a)_{n} = a(a+1)(a+2)(a+3)\cdots(a+n-1) = \Gamma(n+a)/\Gamma(a) $ $ (n = 1, 2, 3\cdots) $ , $ \Gamma(x) = \int_{0}^{\infty}t^{x-1}e^{-t}{\rm d}t $ 是Gamma函数[30 -31 ] . ...
1
... 是Gauss超几何函数[28 -29 ] , $ a, b, c $ 为实参数且$ c\neq 0, -1, -2, \cdots $ , $ (a)_{0} = 1 $ $ (a\neq 0) $ , $ (a)_{n} = a(a+1)(a+2)(a+3)\cdots(a+n-1) = \Gamma(n+a)/\Gamma(a) $ $ (n = 1, 2, 3\cdots) $ , $ \Gamma(x) = \int_{0}^{\infty}t^{x-1}e^{-t}{\rm d}t $ 是Gamma函数[30 -31 ] . ...
1
... 是Gauss超几何函数[28 -29 ] , $ a, b, c $ 为实参数且$ c\neq 0, -1, -2, \cdots $ , $ (a)_{0} = 1 $ $ (a\neq 0) $ , $ (a)_{n} = a(a+1)(a+2)(a+3)\cdots(a+n-1) = \Gamma(n+a)/\Gamma(a) $ $ (n = 1, 2, 3\cdots) $ , $ \Gamma(x) = \int_{0}^{\infty}t^{x-1}e^{-t}{\rm d}t $ 是Gamma函数[30 -31 ] . ...
1
... 是Gauss超几何函数[28 -29 ] , $ a, b, c $ 为实参数且$ c\neq 0, -1, -2, \cdots $ , $ (a)_{0} = 1 $ $ (a\neq 0) $ , $ (a)_{n} = a(a+1)(a+2)(a+3)\cdots(a+n-1) = \Gamma(n+a)/\Gamma(a) $ $ (n = 1, 2, 3\cdots) $ , $ \Gamma(x) = \int_{0}^{\infty}t^{x-1}e^{-t}{\rm d}t $ 是Gamma函数[30 -31 ] . ...
Monotonicity and functional inequalities for the complete p -elliptic integrals
2
2017
... 最近,张孝惠[32 ] 将完全椭圆积分$ {\cal K}(r) $ 和$ {\cal E}(r) $ 满足的一些单调性质和不等式推广到了完全$ p $ -椭圆积分$ K_{p}(r) $ 和$ E_{p}(r) $ . ...
... 证 (1)–(5)可参见文献[32 ,引理3.4(1), (4)–(7)].下证明(6),利用Gauss超几何函数的级数展开可得 ...
Generalized elliptic integrals and modular equations
1
2000
... 完全椭圆积分的另一种重要的广义形式,称为广义椭圆积分$ {{\cal K}}_{a}(r) $ , $ {{\cal E}}_{a}(r) $ ,已经被Vuorinen教授及其合作者引入并在Ramanujan模方程理论中广泛研究(参见文献[33 ]).事实上,对$ a\in(0, 1) $ , $ r\in(0, 1) $ ,第一类和第二类广义椭圆积分$ {{\cal K}}_{a}(r) $ , $ {{\cal E}}_{a}(r) $ 分别定义为 ...
Turán inequalities for generalized complete elliptic integrals
1
2007
... 更多$ {{\cal K}}_{a}(r) $ , $ {{\cal E}}_{a}(r) $ 的性质及其应用可参见文献[34 -40 ]. ...
Twice-punctured hyperbolic sphere with a conical singularity and generalized elliptic integral
0
2010
Inequalities and bounds for generalized complete elliptic integrals
0
2011
On generalized complete elliptic integrals and modular functions
0
2012
A monotonicity property involving the generalized elliptic integral of the first kind
0
2017
Inequalities and infinite product formula for Ramanujan generalized modular equation function
0
2018
The precise estimates for the solution of Ramanujan's generalized modular equation
1
2019
... 更多$ {{\cal K}}_{a}(r) $ , $ {{\cal E}}_{a}(r) $ 的性质及其应用可参见文献[34 -40 ]. ...
Sharp power mean bounds for two Sándor-Yang means
0
2019
1
2003
... 特别令$ \alpha = -1 $ , $ 0 $ 和$ 1 $ ,便得到经典的调和平均值$ H(x, y) = H_{-1}(x, y) $ ,几何平均值$ G(x, y) = H_{0}(x, y) $ 及其算术平均值$ A(x, y) = H_{1}(x, y) $ . 众所周知,对固定的$ x, y>0 $ 且$ x\neq y $ , Hölder平均值$ H_{\alpha}(x, y) $ 关于$ \alpha $ 在实数域$ {{\Bbb R}} $ 上是连续且严格单调增加的. $ \!\! $ Hölder平均值的一些基本性质及其不等式可参见文献[43 ]. ...
Generalized convexity and inequalities
1
2007
... 2007年,对$ \alpha = 0, -1, 1 $ 和$ \beta = 0, -1, 1 $ , Anderson, Vamanamurthy和Vuorinen[44 ] 探究了由Maclaurin级数定义的函数的$ H_{\alpha, \beta} $ -凸性和$ H_{\alpha, \beta} $ -凹性.运用该结果, $ \!\! $ Gauss超几何函数的$ H_{\alpha, \beta} $ -凸性(凹性)及其一类新的不等式被证得. ...
1
... Baricz[45 ] 考察了零平衡超几何函数$ F(a, b;a+b;x)(a, b>0) $ 的Hölder凸性,发现对$ (\alpha, \beta)\in\{(\alpha, \beta)|\alpha\leq 2, \beta\geq 0\} $ ,第一类完全椭圆积分$ {\cal K}(r) $ 是在$ (0, 1) $ 上严格$ H_{\alpha, \beta} $ -凸的.随后,使得$ {\cal K}(r) $ 在$ (0, 1) $ 上严格$ H_{\alpha, \beta} $ -凸的完整区域被王淼坤等[46 ] 证明.类似地,相同作者在文献[47 ]中得到了关于第二类完全椭圆积分在$ (0, 1) $ 满足Hölder凹的充要条件: ...
Convexity of the complete elliptic integrals of the first kind with respect to H?lder means
1
2012
... Baricz[45 ] 考察了零平衡超几何函数$ F(a, b;a+b;x)(a, b>0) $ 的Hölder凸性,发现对$ (\alpha, \beta)\in\{(\alpha, \beta)|\alpha\leq 2, \beta\geq 0\} $ ,第一类完全椭圆积分$ {\cal K}(r) $ 是在$ (0, 1) $ 上严格$ H_{\alpha, \beta} $ -凸的.随后,使得$ {\cal K}(r) $ 在$ (0, 1) $ 上严格$ H_{\alpha, \beta} $ -凸的完整区域被王淼坤等[46 ] 证明.类似地,相同作者在文献[47 ]中得到了关于第二类完全椭圆积分在$ (0, 1) $ 满足Hölder凹的充要条件: ...
Concavity of the complete elliptic integrals of the second kind with respect to H?lder means
2
2012
... Baricz[45 ] 考察了零平衡超几何函数$ F(a, b;a+b;x)(a, b>0) $ 的Hölder凸性,发现对$ (\alpha, \beta)\in\{(\alpha, \beta)|\alpha\leq 2, \beta\geq 0\} $ ,第一类完全椭圆积分$ {\cal K}(r) $ 是在$ (0, 1) $ 上严格$ H_{\alpha, \beta} $ -凸的.随后,使得$ {\cal K}(r) $ 在$ (0, 1) $ 上严格$ H_{\alpha, \beta} $ -凸的完整区域被王淼坤等[46 ] 证明.类似地,相同作者在文献[47 ]中得到了关于第二类完全椭圆积分在$ (0, 1) $ 满足Hölder凹的充要条件: ...
... 定理1.1 [47 ] 第二类完全椭圆积分$ {\cal E}(r) $ 在$ (0, 1) $ 是$ H_{\alpha, \beta} $ -凹的当且仅当 ...
Inequalities for the generalized elliptic integrals with respect to H?lder mean
1
2012
... 2012年,周丽明等[48 ] 考虑了两类广义椭圆积分,给出了$ {\cal K}_{a}(r) $ 在$ (0, 1) $ 是$ H_{\alpha, \alpha} $ -凸的及其$ {\cal E}_{a}(r) $ ($ a\in(0, 1/2] $ ) 在$ (0, 1) $ 是$ H_{\alpha, \alpha} $ -凹的充分必要条件.最近, Baricz和Vuorinen在文献[49 -50 ]中也研究广义三角函数的$ H_{\alpha, \alpha} $ -凸性(凹性). ...
Convexity properties of generalized trigonometric and hyperbolic functions
1
2015
... 2012年,周丽明等[48 ] 考虑了两类广义椭圆积分,给出了$ {\cal K}_{a}(r) $ 在$ (0, 1) $ 是$ H_{\alpha, \alpha} $ -凸的及其$ {\cal E}_{a}(r) $ ($ a\in(0, 1/2] $ ) 在$ (0, 1) $ 是$ H_{\alpha, \alpha} $ -凹的充分必要条件.最近, Baricz和Vuorinen在文献[49 -50 ]中也研究广义三角函数的$ H_{\alpha, \alpha} $ -凸性(凹性). ...
Turán inequalities for generalized inverse trigonometric functions
1
2015
... 2012年,周丽明等[48 ] 考虑了两类广义椭圆积分,给出了$ {\cal K}_{a}(r) $ 在$ (0, 1) $ 是$ H_{\alpha, \alpha} $ -凸的及其$ {\cal E}_{a}(r) $ ($ a\in(0, 1/2] $ ) 在$ (0, 1) $ 是$ H_{\alpha, \alpha} $ -凹的充分必要条件.最近, Baricz和Vuorinen在文献[49 -50 ]中也研究广义三角函数的$ H_{\alpha, \alpha} $ -凸性(凹性). ...