数学物理学报, 2020, 40(5): 1269-1281 doi:

论文

第二类完全p-椭圆积分关于Hölder平均的凹性

王淼坤,1, 何再银,2, 褚玉明,1

Concavity of the Complete p-Elliptic Integral of the Second Kind According to Hölder Mean

Wang Miaokun,1, He Zaiyin,2, Chu Yuming,1

通讯作者: 褚玉明, E-mail: chuyuming@zjhu.edu.cn

收稿日期: 2019-03-19  

基金资助: 国家自然科学基金.  11701176
国家自然科学基金.  61373169

Received: 2019-03-19  

Fund supported: NSFC.  11701176
NSFC.  61373169

作者简介 About authors

王淼坤,E-mail:wmk000@126.com , E-mail:wmk000@126.com

何再银,E-mail:hzy@zjhu.edu.cn , E-mail:hzy@zjhu.edu.cn

摘要

该文给出了第二类完全p-椭圆积分满足Hölder凹性的充分必要条件,从而推广了先前关于第二类完全椭圆积分的相应结果.

关键词: 完全p-椭圆积分 ; 广义椭圆积分 ; Hölder平均值 ; 凹性 ; 凸性

Abstract

In the article, we provide a necessary and sufficient condition such that the complete p-elliptic integral of the second kind is concave with respect to Hölder mean, which is a generalization of the previously known result on the complete elliptic integral of the second kind.

Keywords: Complete p-elliptic integral ; Generalized elliptic integral ; Hölder mean ; Concavity ; Convexity

PDF (381KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王淼坤, 何再银, 褚玉明. 第二类完全p-椭圆积分关于Hölder平均的凹性. 数学物理学报[J], 2020, 40(5): 1269-1281 doi:

Wang Miaokun, He Zaiyin, Chu Yuming. Concavity of the Complete p-Elliptic Integral of the Second Kind According to Hölder Mean. Acta Mathematica Scientia[J], 2020, 40(5): 1269-1281 doi:

1 引言

$ 0<r<1 $,勒让德第一类和第二类完全椭圆积分$ {\cal K}(r) $$ {\cal E}(r) $[1]分别定义为

$ \begin{equation} {\cal K} = {\cal K}(r) = \int_{0}^{\pi/2}\frac{{\rm d}\theta}{\sqrt{1-r^2\sin^{2}\theta}}, \quad {\cal K}(0^{+}) = \frac{\pi}{2}, \quad {\cal K}(1^{-}) = \infty, \end{equation} $

$ \begin{equation} {\cal E} = {\cal E}(r) = \int_{0}^{\pi/2}\sqrt{1-r^2\sin^{2}\theta}{\rm d}\theta, \quad {\cal E}(0^{+}) = \frac{\pi}{2}, \quad {\cal E}(1^{-}) = 1. \end{equation} $

椭圆积分如此命名是因为它们出现在椭圆周长的计算公式.众所周知,完全椭圆积分在数学、物理及其其它的一些学科中具有广泛的应用.例如,圆周率$ \pi $的计算,一些微分方程的解的表达式,电磁场和单摆周期的计算公式等都与两类完全椭圆积分$ {\cal K}(r) $$ {\cal E}(r) $密切相关.

在过去的三十多年,完全椭圆积分的研究主要集中于它们在几何函数论中的应用.许多共形不变量、拟共形映射中的偏差函数都可以用完全椭圆积分来表示[2-3].特别地,关于$ {\cal K}(r) $$ {\cal E}(r) $的许多优美的性质和上下界被证明[4-21].

$ p\in(1, \infty) $, $ r\in(0, 1) $, Takeuchi[22]引入了二类完全$ p $ -椭圆积分$ {K}_{p}(r) $$ {E}_{p}(r) $,其定义如下

$ \begin{equation} {K}_{p} = {K}_{p}(r) = \int_{0}^{\pi_{p}/2}\frac{{\rm d}\theta}{(1-r^p\sin_{p}^{p}\theta)^{1-1/p}}, \quad {K}_{p}(0^{+}) = \frac{\pi_{p}}{2}, \quad {K}_{p}(1^-) = \infty, \end{equation} $

$ \begin{equation} {E}_{p} = {E}_{p}(r) = \int_{0}^{\pi_{p}/2}(1-r^p\sin_{p}^{p}\theta)^{1/p}{\rm d}\theta, \quad {E}_{p}(0^{+}) = \frac{\pi_{p}}{2}, \quad {E}_{p}(1^{-}) = 1, \end{equation} $

其中$ \sin_{p}\theta $是广义三角正弦函数,具有反函数

是广义圆周率.

易见$ \sin_{2}\theta = \sin\theta $, $ \pi_{2} = \pi $,且由(1.1)–(1.4)式可得$ {K}_{2}(r) = {\cal K}(r) $, $ {E}_{2}(r) = {\cal E}(r) $. $ \sin_{p}\theta $$ \pi_{p} $首先被给出在$ 1 $维的$ p $-Laplacian方程的特征值问题[23-25].

近几年,完全$ p $ -椭圆积分已经被Takeuchi等从不同的角度进行深入研究. 2016年, Takeuchi[22, 26]证明完全$ p $ -椭圆积分$ K_{p} $$ E_{p} $满足如下导数公式及其广义Legendre恒等式

$ \begin{equation} K_{p}(r')E_{p}(r)+K_{p}(r)E_{p}(r')-K_{p}(r)K_{p}(r') = \frac{\pi_{p}}{2}, \end{equation} $

其中对$ r\in(0, 1) $, $ r' = \sqrt[p]{1-r^p} $.利用式(1.5), Takeuchi[22, 27]发现了当$ p = 3 $$ p = 4 $$ \pi_{p} $的算法公式.此外,完全$ p $ -椭圆积分与经典的Gauss超几何函数具有如下关系(参见文献[22,命题2.8])

$ \begin{equation} K_{p}(r) = \frac{\pi_{p}}{2}F\left(1-\frac{1}{p}, \frac{1}{p};1;r^p\right), \quad E_{p}(r) = \frac{\pi_{p}}{2}F\left(-\frac{1}{p}, \frac{1}{p};1;r^p\right), \end{equation} $

其中

是Gauss超几何函数[28-29], $ a, b, c $为实参数且$ c\neq 0, -1, -2, \cdots $, $ (a)_{0} = 1 $$ (a\neq 0) $, $ (a)_{n} = a(a+1)(a+2)(a+3)\cdots(a+n-1) = \Gamma(n+a)/\Gamma(a) $$ (n = 1, 2, 3\cdots) $, $ \Gamma(x) = \int_{0}^{\infty}t^{x-1}e^{-t}{\rm d}t $是Gamma函数[30-31].

最近,张孝惠[32]将完全椭圆积分$ {\cal K}(r) $$ {\cal E}(r) $满足的一些单调性质和不等式推广到了完全$ p $ -椭圆积分$ K_{p}(r) $$ E_{p}(r) $.

完全椭圆积分的另一种重要的广义形式,称为广义椭圆积分$ {{\cal K}}_{a}(r) $, $ {{\cal E}}_{a}(r) $,已经被Vuorinen教授及其合作者引入并在Ramanujan模方程理论中广泛研究(参见文献[33]).事实上,对$ a\in(0, 1) $, $ r\in(0, 1) $,第一类和第二类广义椭圆积分$ {{\cal K}}_{a}(r) $, $ {{\cal E}}_{a}(r) $分别定义为

$ \begin{equation} {{\cal K}}_{a} = {{\cal K}}_{a}(r) = \frac{\pi}{2}F(a, 1-a;1;r^2), \quad {{\cal E}}_{a} = {{\cal E}}_{a}(r) = \frac{\pi}{2}F(a-1, 1-a;1;r^2). \end{equation} $

易见$ {{\cal K}}_{1/2}(r) = {{\cal K}}(r) $, $ {{\cal E}}_{1/2}(r) = {{\cal E}}(r) $.比较(1.6)和(1.7)式,我们便知:令$ p = 1/(1-a) $,

$ \begin{equation} {{\cal K}}_{a}(r) = \frac{\pi}{\pi_{p}}{K}_{p}(r^{2/p}), \ {{\cal E}}_{a}(r) = \frac{\pi}{\pi_{p}}{E}_{p}(r^{2/p}). \end{equation} $

更多$ {{\cal K}}_{a}(r) $, $ {{\cal E}}_{a}(r) $的性质及其应用可参见文献[34-40].

$ \alpha\in{{\Bbb R}} $,两个正数$ x $$ y $$ \alpha $阶Hölder平均值定义为

特别令$ \alpha = -1 $, $ 0 $$ 1 $,便得到经典的调和平均值$ H(x, y) = H_{-1}(x, y) $,几何平均值$ G(x, y) = H_{0}(x, y) $及其算术平均值$ A(x, y) = H_{1}(x, y) $.众所周知,对固定的$ x, y>0 $$ x\neq y $, Hölder平均值$ H_{\alpha}(x, y) $关于$ \alpha $在实数域$ {{\Bbb R}} $上是连续且严格单调增加的. $ \!\! $Hölder平均值的一些基本性质及其不等式可参见文献[43].

$ \alpha, \beta\in{{\Bbb R}} $,区间$ I\subseteq (0, \infty) $,函数$ f:I\mapsto(0, \infty) $连续.若对于所有的$ x, y\in I $都成立如下不等式

$ \begin{equation} f(H_{\alpha}(x, y))\leq(\geq)H_{\beta}(f(x), f(y)), \end{equation} $

则称$ f $$ I $$ H_{\alpha, \beta} $ -凸的(凹的).而且,若不等式(1.9)成立等号当且仅当$ x = y $,便称$ f $$ I $是严格$ H_{\alpha, \beta} $ -凸的(凹的).特别当$ \alpha = \beta = 1 $时, $ H_{\alpha, \beta} $ -凸性(凹性)就退化为经典的凸性(凹性).

2007年,对$ \alpha = 0, -1, 1 $$ \beta = 0, -1, 1 $, Anderson, Vamanamurthy和Vuorinen[44]探究了由Maclaurin级数定义的函数的$ H_{\alpha, \beta} $ -凸性和$ H_{\alpha, \beta} $ -凹性.运用该结果, $ \!\! $Gauss超几何函数的$ H_{\alpha, \beta} $ -凸性(凹性)及其一类新的不等式被证得.

Baricz[45]考察了零平衡超几何函数$ F(a, b;a+b;x)(a, b>0) $的Hölder凸性,发现对$ (\alpha, \beta)\in\{(\alpha, \beta)|\alpha\leq 2, \beta\geq 0\} $,第一类完全椭圆积分$ {\cal K}(r) $是在$ (0, 1) $上严格$ H_{\alpha, \beta} $ -凸的.随后,使得$ {\cal K}(r) $$ (0, 1) $上严格$ H_{\alpha, \beta} $ -凸的完整区域被王淼坤等[46]证明.类似地,相同作者在文献[47]中得到了关于第二类完全椭圆积分在$ (0, 1) $满足Hölder凹的充要条件:

定理1.1[47]  第二类完全椭圆积分$ {\cal E}(r) $$ (0, 1) $$ H_{\alpha, \beta} $ -凹的当且仅当

其中$ C(\beta) = \inf\limits_{r\in(0, 1)}\{r^2{\cal E}/[(1-r^2)({\cal K}-{\cal E})+(1-\beta)({\cal K}-{\cal E})/{\cal E}]\} $关于$ \beta $连续,且当$ \beta\leq 5/2 $时, $ C(\beta) = 2 $,而当$ \beta>5/2 $时, $ C(\beta)<2 $.此外,不存在$ \alpha, \beta\in {{\Bbb R}} $使得$ {\cal E}(r) $$ (0, 1) $$ H_{\alpha, \beta} $ -凸的.

2012年,周丽明等[48]考虑了两类广义椭圆积分,给出了$ {\cal K}_{a}(r) $$ (0, 1) $$ H_{\alpha, \alpha} $ -凸的及其$ {\cal E}_{a}(r) $ ($ a\in(0, 1/2] $)$ (0, 1) $$ H_{\alpha, \alpha} $ -凹的充分必要条件.最近, Baricz和Vuorinen在文献[49-50]中也研究广义三角函数的$ H_{\alpha, \alpha} $ -凸性(凹性).

本文的主要目的是将定理1.1推广到第二类$ p $ -完全椭圆积分和第二类广义椭圆积分的情形.主要结果是如下的定理1.2和推论1.1.

定理1.2  对$ p\in(1, \infty) $,第二类$ p $ -完全椭圆积分$ E_{p}(r) $$ (0, 1) $$ H_{\alpha, \beta} $ -凹的,即不等式

对所有的$ x, y\in (0, 1) $恒成立,当且仅当

其中$ L(\beta) = \inf\limits_{r\in(0, 1)}\left\{r^{p}E_{p}/[{r'}^{p}(K_{p}-E_{p})]+(1-\beta)(K_{p}-E_{p})/E_{p}\right\} $关于$ \beta $连续,且当$ \beta\leq (p^2+1)/2 $时, $ L(\beta) = p $,而当$ \beta>(p^2+1)/2 $时, $ L(\beta)<p $ (见图 1).此外,不存在$ \alpha, \beta\in {{\Bbb R}} $使得$ E_{p}(r) $$ (0, 1) $上是$ H_{\alpha, \beta} $ -凸的.

图 1

图 1   参数$ p = \frac{3}{2}, 2, \frac{5}{2}, 4 $时的区域$ D $及其对应的边界曲线$ \alpha = L(\beta) $


推论1.1  对$ a\in(0, 1) $,第二类广义椭圆积分$ {\cal E}_{a}(r) $$ (0, 1) $上严格$ H_{\alpha, \beta} $ -凸的,即不等式

对所有$ x, y\in (0, 1) $恒成立,当且仅当

其中$ L^*(\beta) = \inf\limits_{r\in(0, 1)}2(1-a)\left\{r^{2}{\cal E}_{a}/[(1-r^2)({\cal K}_{a}-{\cal E}_{a})]+(1-\beta)({\cal K}_{a}-{\cal E}_{a})/{\cal E}_{a}\right\} $关于$ \beta $连续,且当$ \beta\leq (a^2-2a+2)/[2(1-a)^2] $时, $ L^*(\beta) = 2 $,而当$ \beta>(a^2-2a+2)/[2(1-a)^2] $时, $ L^*(\beta)<2 $.此外,不存在$ \alpha, \beta\in {{\Bbb R}} $使得$ {\cal E}_{a}(r) $$ (0, 1) $上是$ H_{\alpha, \beta} $ -凸的.

2 引理

为证明本文的主要结果,需要在本节中建立几则引理.

引理2.1[3]  对$ -\infty<a<b<+\infty $,设$ f $$ g $是两个实值函数,都在$ [a, b] $上连续,在$ (a, b) $上可微,且在$ (a, b) $$ g'\neq 0 $.如果$ f'/g' $$ (a, b) $上(严格)单调增加(减小),那么函数

也在$ (a, b) $上(严格)单调增加(减小).

引理2.2  令$ p\in(1, \infty) $.

$ (1) $函数$ r\mapsto(E_{p}-{r'}^pK_{p})/r^p $$ (0, 1) $$ ({(p-1)\pi_{p}}/{2p}, 1) $严格单调增加;

$ (2) $函数$ r\mapsto(K_{p}-E_{p})/(r^p K_{p}) $$ (0, 1) $$ ({1}/{p}, 1) $严格单调增加;

$ (3) $函数$ r\mapsto{r'}^p(K_{p}-E_{p})/(r^pE_{p}) $$ (0, 1) $$ (0, 1/p) $严格单调减小;

$ (4) $当且仅当$ c\geq (p-1)/p $,函数$ r\mapsto{r'}^cK_{p} $$ (0, 1) $上严格单调减小,且此时函数的值域为$ (0, \pi_{p}/2) $;

$ (5) $当且仅当$ c\leq -1/p $,函数$ r\mapsto{r'}^cE_{p} $$ (0, 1) $上严格单调增加,且此时函数的值域为$ (\pi_{p}/2, \infty) $;

$ (6) $函数$ r\mapsto[(p-1)(K_{p}-E_{p})-(E_{p}-{r'}^pK_{p})]/r^{2p} $具有正的$ \rm Maclaurin $级数,在$ (0, 1) $的值域为$ (\pi_{p}(1-p)^2/(4p^2), \infty) $;

$ (7) $函数$ r\mapsto[E_{p}-{r'}^pK_{p}-(p-1){r'}^p(K_{p}-E_{p})]/[r^{p}(K_{p}-E_{p})] $$ (0, 1) $$ (0, (p^2-1)/(2p)) $严格单调减小.

  (1)–(5)可参见文献[32,引理3.4(1), (4)–(7)].下证明(6),利用Gauss超几何函数的级数展开可得

及其

$ \begin{eqnarray} &&\frac{(p-1)(K_{p}-E_{p})-(E_{p}-{r'}^pK_{p})}{r^{2p}} = \frac{(p-1)(K_{p}-E_{p})/r^p-(E_{p}-{r'}^pK_{p})/r^p}{r^{p}}{}\\ & = &\frac{\pi_{p}}{2}\bigg[(p-1)\sum\limits_{n = 0}^{\infty}\frac{(1/p)_{n+1}(1-1/p)_{n}}{n!}\frac{r^{np}}{(n+1)!} -\big(1-\frac{1}{p}\big)\sum\limits_{n = 0}^{\infty}\frac{(1/p)_{n}(1-1/p)_{n}}{n!}\frac{r^{np}}{(n+1)!}\bigg]\bigg/r^p{}\\ & = &\frac{\pi_{p}}{2}\bigg[(p-1)\sum\limits_{n = 1}^{\infty}\frac{(1/p)_{n+1}(1-1/p)_{n}}{n!}\frac{r^{np}}{(n+1)!} -\big(1-\frac{1}{p}\big)\sum\limits_{n = 1}^{\infty}\frac{(1/p)_{n}(1-1/p)_{n}}{n!}\frac{r^{np}}{(n+1)!}\bigg]\bigg/r^p{}\\ & = &\frac{\pi_{p}}{2}\bigg[(p-1)\sum\limits_{n = 0}^{\infty}\frac{(1/p)_{n+2}(1-1/p)_{n+1}}{(n+1)!}\frac{r^{np}}{(n+2)!} {}\\ && -\big(1-\frac{1}{p}\big)\sum\limits_{n = 0}^{\infty}\frac{(1/p)_{n+1}(1-1/p)_{n+1}}{(n+1)!}\frac{r^{np}}{(n+2)!}\bigg]{}\\ & = &\frac{\pi_{p}}{2}\cdot\sum\limits_{n = 0}^{\infty}\frac{(1/p)_{n+1}(1-1/p)_{n+1}}{(n+1)!}\frac{r^{np}}{(n+2)!} \big[(p-1)(n+1+1/p)-(1-1/p)\big]{}\\ & = &\frac{\pi_{p}}{2}(p-1)\sum\limits_{n = 0}^{\infty}\frac{(1/p)_{n+1}(1-1/p)_{n+1}}{(n+2)!}\frac{r^{np}}{n!}{}\\ & = &\frac{\pi_{p}(1-1/p)^2}{4}F(1+1/p, 2-1/p;3;r^p). \end{eqnarray} $

因此,由等式(2.1)知(6)中定义的函数具有正的Maclaurin级数且值域为

(7)令$ \varphi(r) = E_{p}-{r'}^pK_{p}-(p-1){r'}^p(K_{p}-E_{p}) $, $ \phi(r) = r^p(K_{p}-E_{p}) $.

及其

$ \begin{equation} \frac{\varphi'(r)}{\phi'(r)} = \frac{p^2-1}{p+{r}^pE_{p}/[{r'}^p(K_{p}-E_{p})]}. \end{equation} $

式(2.2)和本引理(3)表明$ \varphi'(r)/\phi'(r) $$ (0, 1) $上严格单调减小

应用引理2.1,可推断$ \varphi(r)/\phi(r) $$ (0, 1) $上也严格单调减小.此外,显然有$ \lim\limits_{r\rightarrow 1^-}[\varphi(r)/\phi(r)] = 0 $.引理2.2证毕.

引理2.3  令$ p\in(1, \infty) $, $ c\in {{\Bbb R}} $

则以下论断成立

$ (1) $当且仅当$ c\geq (p^2-1)/(2p) $,函数$ f_{c}(r) $$ (0, 1) $$ (0, \pi_{p}/(2p)) $严格单调减小;

$ (2) $当且仅当$ c\leq 0 $,函数$ f_{c}(r) $$ (0, 1) $$ (\pi_{p}/(2p), \infty) $严格单调增加;

$ (3) $$ 0<c<(p^2-1)/(2p) $,则存在$ r_{0} = r_{0}(c)\in(0, 1) $使得$ f_{c}(r) $$ (0, r_{0}) $上严格单调增加,在$ (r_{0}, 1) $严格单调减小.

  显然当$ c\leq0 $时, $ f_{c}(1^-) = \infty $,而当$ c>0 $时, $ f_{c}(1^-) = 0 $.利用引理2.2(2), $ f_{c}(0^+) = \pi_{p}/(2p) $.$ f_{c} $求导得

$ \begin{eqnarray} f_{c}'(r)& = &-c{r'}^{c-p}r^{p-1}\left(\frac{K_{p}-E_{p}}{r^p}\right)+{r'}^c\left[\frac{r^pE_{p}-p{r'}^p(K_{p}-E_{p})}{r^{p+1}{r'}^p}\right]\\ & = &\frac{{r'}^{c-p}(K_{p}-E_{p})}{r}\left[-c+\frac{E_{p}-{r'}^pK_{p}-(p-1){r'}^p(K_{p}-E_{p})}{r^p(K_{p}-E_{p})}\right]. \end{eqnarray} $

由引理2.2(7)和(2.3)式立即可得第(1)、(2)部分关于$ f_{c} $的单调性论断.此外,若$ 0<c<(p^2-1)/(2p) $,又可由引理2.2(7)和(2.3)式知存在依赖于参数$ c $$ r_{0} = r_{0}(c)\in(0, 1) $使得当$ r\in(0, r_{0}) $时, $ f_{c}'(r)>0 $,当$ r\in(r_{0}, 1) $时, $ f_{c}'(r)<0 $,故$ f_{c}(r) $$ (0, r_{0}) $上严格单调增加,在$ (r_{0}, 1) $上严格单调减小.

引理2.4  令$ p\in(1, \infty) $,有

$ f(r) $$ (0, 1) $$ (1, {\pi_{p}}/{2}) $严格单调减小.

  对$ f $求导得

$ \begin{eqnarray} f'(r)& = &\Big\{[-pr^{p-1}(K_{p}-E_{p})^2+2r^{p-1}E_{p}(K_{p}-E_{p})]r^pE_{p}{}\\ &&-{r'}^p(K_{p}-E_{p})^2 \left[pr^{p-1}E_{p}+r^{p-1}(E_{p}-K_{p})\right]\Big\}\Big/ \big\{r^{2p}{E_{p}}^2\big\} +\frac{E_{p}-K_{p}}{r}{}\\ & = &\frac{E_{p}-K_{p}}{r}+\frac{K_{p}-E_{p}}{r^{p+1}{E_{p}}^2}\left[\left(-p(K_{p}-E_{p})+2E_{p}\right)r^{p}E_{p}-{r'}^p(K_{p}-E_{p})(pE_{p}+E_{p}-K_{p})\right]{}\\ & = &\frac{E_{p}-K_{p}}{r}+\frac{K_{p}-E_{p}}{r^{p+1}{E_{p}}^2}\left[-pE_{p}(K_{p}-E_{p})+2r^{p}{E_{p}}^2+{r'}^p(K_{p}-E_{p})^2\right]{}\\ & = &-\frac{K_{p}-E_{p}}{r}\left[1-\frac{-pE_{p}(K_{p}-E_{p})+2r^{p}{E_{p}}^2+{r'}^p(K_{p}-E_{p})^2}{r^p{E_{p}}^2}\right]{}\\ & = &-\frac{K_{p}-E_{p}}{r}\left[-1-\frac{-pE_{p}(K_{p}-E_{p})+{r'}^p(K_{p}-E_{p})K_{p}-{r'}^p(K_{p}-E_{p})E_{p}}{r^p{E_{p}}^2}\right]{}\\ & = &-\frac{K_{p}-E_{p}}{r}\left[-\frac{{r'}^p(K_{p}-E_{p})K_{p}}{r^p{E_{p}}^2}+\frac{{r'}^p(K_{p}-E_{p})}{r^p{E_{p}}}-1-\frac{K_{p}-E_{p}}{r^p{E_{p}}}+\frac{(p+1)(K_{p}-E_{p})}{r^p{E_{p}}}\right]{}\\ & = &-\frac{K_{p}-E_{p}}{r}\left[-\frac{{r'}^p(K_{p}-E_{p})K_{p}}{r^p{E_{p}}^2}-\frac{K_{p}}{E_{p}}+\frac{(p+1)(K_{p}-E_{p})}{r^p{E_{p}}}\right]{}\\ & = &-\frac{(K_{p}-E_{p})K_{p}}{rE_{p}}\left[-\frac{{r'}^p(K_{p}-E_{p})}{r^pE_{p}}-1+(p+1)\frac{K_{p}-E_{p}}{r^pK_{p}}\right]. \end{eqnarray} $

引理2.2(2)和(3)表明函数$ r\mapsto -{r'}^p(K_{p}-E_{p})/(r^pE_{p})-1+(p+1)(K_{p}-E_{p})/(r^pK_{p}) $$ (0, 1) $$ (0, p) $严格单调增加.结合式(2.4)可推断对所有$ r\in(0, 1) $,有$ f'(r)<0 $,故$ f(r) $$ (0, 1) $上严格单调减小.此外,不难计算得$ f(0^+) = E_{p}(0) = \pi_{p}/2 $, $ f(1^-) = E_{p}(1) = 1 $.

引理2.5  令$ p\in(1, +\infty) $,有

$ g(r) $$ (0, 1) $$ ((p^2-1){\pi_{p}}^2/(8p^2), \infty) $严格单调增加.

  根据引理2.2(1), (2)及(6)得$ \lim\limits_{r\rightarrow 1^-}g(r) = \infty $

注意到

$ g $求导并结合引理2.2(2), (6)可推断

引理2.5成立.

引理2.6  令$ p\in(1, +\infty) $,有

$ \begin{equation} h(r) = \frac{r^p{{E}_{p}}^2\left\{({K}_{p}-{E}_{p}) ({E}_{p}-{r'}^p{K}_{p})+{{E}_{p}}\left[(p-1)({K}_{p}-{E}_{p}) -({E}_{p}-{r'}^p{K}_{p})\right]\right\}}{{r'}^p({K}_{p}-{E}_{p})^2\left[{r'}^p ({K}_{p}-{E}_{p})^2+r^p{{E}_{p}}^2\right]}, \end{equation} $

$ h(r) $$ (0, 1) $$ ((p^2-1)/2, \infty) $严格单调增加.

  将$ h(r) $改写成

根据引理2.2(5),引理2.3(1),引理2.4和引理2.5便得引理2.6.

引理2.7  令$ p\in(1, \infty) $, $ \beta\in{{\Bbb R}} $,有

$ \begin{equation} G_{\beta}(r) = (1-\beta)\frac{K_{p}-E_{p}}{E_{p}}+\frac{r^pE_{p}}{{r'}^p(K_{p}-E_{p})} \end{equation} $

$ L(\beta) = \inf\limits_{r\in(0, 1)}G_{\beta}(r) $.

$ (1) $当且仅当$ \beta\leq (p^2+1)/2 $, $ G_{\beta}(r) $$ (0, 1) $$ (p, \infty) $严格单调增加, $ L(\beta) = p $;

$ (2) $$ \beta>(p^2+1)/2 $,则存在$ \lambda = \lambda(\beta)\in(0, 1) $使得$ G_{\beta}(r) $$ (0, \lambda) $上严格单调减小,在$ (\lambda, 1) $上严格单调增加. $ G_{\beta}(r) $$ (0, 1) $上的值域为$ [L(\beta), \infty) $$ L(\beta)<p $.

  经计算得

$ \begin{equation} \lim\limits_{r\rightarrow 0^+}G_{\beta}(r) = p, \end{equation} $

$ \begin{equation} \lim\limits_{r\rightarrow 1^-}G_{\beta}(r) = \lim\limits_{r\rightarrow 1^-}\left(\frac{K_{p}-E_{p}}{E_{p}}\right)\left[1-\beta+\frac{r^p{E_{p}}^2}{{r'}^p(K_{p}-E_{p})^2}\right] = \infty \end{equation} $

及其

$ \begin{eqnarray} G_{\beta}'(r)& = &r^{p-1}\frac{{r'}^p(K_{p}-E_{p})(pE_{p}+E_{p}-K_{p}) -r^pE_{p}(E_{p}+pE_{p}-pK_{p})}{{r'}^{2p}(K_{p}-E_{p})^2}\\ &&+(1-\beta)\frac{r^p{E_{p}}^2+{r'}^p(K_{p}-E_{p})^2}{r{r'}^p{E_{p}}^2}\\ & = &r^{p-1}\frac{pE_{p}(K_{p}-E_{p})-{r'}^p(K_{p}-E_{p})K_{p}+[{r'}^p(K_{p}-E_{p})E_{p}-r^p{E_{p}}^2]}{{r'}^{2p}(K_{p}-E_{p})^2}\\ &&+(1-\beta)\frac{r^p{E_{p}}^2+{r'}^p(K_{p}-E_{p})^2}{r{r'}^p{E_{p}}^2}\\ & = &r^{p-1}\frac{E_{p}[(p-1)(K_{p}-E_{p})-(E_{p}-{r'}^pK_{p})]+(K_{p}-E_{p})(E_{p}-{r'}^pK_{p})}{{r'}^{2p}(K_{p}-E_{p})^2}\\ &&+(1-\beta)\frac{r^p{E_{p}}^2+{r'}^p(K_{p}-E_{p})^2}{r{r'}^p{E_{p}}^2}\\ & = &\frac{r^p{E_{p}}^2+{r'}^p(K_{p}-E_{p})^2}{r{r'}^p{E_{p}}^2}\left[1-\beta+h(r)\right], \end{eqnarray} $

其中$ h(r) $$ (0, 1) $上的严格单调增加函数,其定义见(2.5)式.

由引理2.6和(2.9)式知:当且仅当$ \beta\leq \inf\limits_{r\in(0, 1)}[1+h(r)] = (p^2+1)/2 $, $ {G_{\beta}}'(r)>0 $对所有的$ r\in(0, 1) $恒成立,即函数$ G_{\beta}(r) $$ (0, 1) $上严格单调增加,进而由(2.7)和(2.8)式可得引理第(1)部分.若$ \beta>(p^2+1)/2 $,则引理2.6及(2.9)式表明存在$ \lambda = \lambda(\beta)\in(0, 1) $使得当$ r\in(0, \lambda) $时, $ G_{\beta}'(r)<0 $,当$ r\in(\lambda, 1) $, $ G_{\beta}'(r)>0 $,故$ G_{\beta}(r) $$ (0, 1) $分段单调的.结合(2.7)和(2.8)式即得$ L(\beta)<p $, $ G_{\beta}(r) $$ (0, 1) $上的值域为$ (L(\beta), \infty) $.

引理2.8  令$ p\in(1, +\infty) $, $ \alpha, \beta\in{{\Bbb R}} $,有

则以下论断成立

$ (1) $$ \beta\leq (p^2+1)/2 $,则$ J(r) $$ (0, 1) $上严格单调增加当且仅当$ \alpha\leq p $,若$ \alpha>p $,则存在$ r_{1} = r_{1}(\alpha, \beta)\in(0, 1) $使得$ J(r) $$ (0, r_{1}) $上严格单调减小,在$ (r_{1}, 1) $上严格单调增加;

$ (2) $$ \beta>(p^2+1)/2 $,则$ J(r) $$ (0, 1) $上严格单调增加当且仅当$ \alpha\leq L(\beta) $,若$ \alpha>L(\beta) $,则$ J(r) $是分段单调的,其中$ L(\beta) $见引理2.7.

  对数求导得

$ \begin{equation} \frac{J'(r)}{J(r)} = (1-\beta)\frac{K_{p}-E_{p}}{rE_{p}}+\frac{r^{p-1}E_{p}}{{r'}^p(K_{p}-E_{p})}-\frac{\alpha}{r} = \frac{1}{r}\left[G_{\beta}(r)-\alpha\right], \end{equation} $

其中$ G_{\beta}(r) $定义见(2.6)式.

下面分四种情形完成引理的证明.

情形Ⅰ  $ \beta\leq (p^2+1)/2 $$ \alpha\leq p $.则由引理2.7(1)和(2.10)式知:对所有$ r\in(0, 1) $, $ J'(r)\geq 0 $,因此$ J(r) $$ (0, 1) $上严格单调增加.

情形Ⅱ  $ \beta\leq (p^2+1)/2 $$ \alpha> p $.则引理2.7(1)及式(2.10)表明存在$ r_{1} = r_{1}(\alpha, \beta)\in(0, 1) $,使得当$ r\in(0, r_{1}) $时, $ J'(r)<0 $,当$ r\in(r_{1}, 1) $时, $ J'(r)>0 $.因此, $ J(r) $$ (0, r_{1}) $上严格单调减小,在$ (r_{1}, 1) $上严格单调增加.

情形Ⅲ  $ \beta>(p^2+1)/2 $$ \alpha\leq L(\beta) $.则由引理2.7(1)和(2.10)式知:对所有$ r\in(0, 1) $, $ J'(r)\geq 0 $,因此$ J(r) $$ (0, 1) $上严格单调增加.

情形Ⅳ  $ \beta>(p^2+1)/2 $$ \alpha> L(\beta) $.则由引理2.7(2), (2.10)式及其相似于情形II的讨论可得$ J(r) $$ (0, 1) $上分段单调.

3 定理1.2及其推论1.1的证明

定理1.2的证明  不妨设$ 0<x\leq y<1 $.$ t = H_{\alpha}(x, y) $,则$ \partial t/\partial x = (x/t)^{\alpha-1}/2 $,且当$ y>x $时, $ t>x $.下面分$ \beta\neq0 $$ \beta = 0 $两种情形来完成定理1.2的证明.

情形1  $ \beta\neq 0 $.

$ \begin{equation} F(x, y) = E_{p}(H_{\alpha}(x, y))^{\beta}-\frac{{E_{p}(x)}^{\beta}+{E_{q}(y)}^{\beta}}{2}. \end{equation} $

则对$ x $求偏导数得

$ \begin{eqnarray} \frac{\partial F}{\partial x}& = &\frac{\beta}{2} {E_{p}(t)}^{\beta-1} \frac{E_{p}(t)-K_{p}(t)}{t}\left(\frac{x}{t}\right)^{\alpha-1}-\frac{\beta}{2}{E_{p}(x)}^{\beta-1}\frac{E_{p}(x)-K_{p}(x)}{x}\\ & = &\frac{\beta}{2}x^{\alpha-1}\left[{E_{p}(x)}^{\beta-1}\frac{K_{p}(x)-E_{p}(x)}{x^{\alpha}}-{E_{p}(t)}^{\beta-1}\frac{K_{p}(t)-E_{p}(t)}{t^{\alpha}}\right]. \end{eqnarray} $

下面再将情形1分成下面四种子情形.

子情形1.1  $ \beta\leq (p^2+1)/2 $$ \alpha\leq p $.则由引理2.8(1)和(3.2)式知:若$ \beta>0 $, $ \partial F/\partial x<0 $, $ F(x, y)>F(y, y) = 0 $;若$ \beta<0 $, $ \partial F/\partial x>0 $, $ F(x, y)>F(y, y) = 0 $.结合(3.1)式可推得:当$ \alpha\leq p $$ \beta\leq (p^2+1)/2 $时,始终成立不等式

$ \begin{equation} E_{p}\left(H_{\alpha}(x, y)\right)\geq H_{\beta}\left({E_{p}}(x), {E_{p}}(y)\right), \end{equation} $

而且不难验证当且仅当$ x = y $时不等式(3.3)成立等号.

综上可知,当$ (\alpha, \beta)\in\{(\alpha, \beta)|\alpha\leq p, \beta\leq (p^2+1)/2, \beta\neq0\} $时, $ E_{p} $$ (0, 1) $上严格$ H_{\alpha, \beta} $ -凹的.

子情形1.2  $ \beta\leq (p^2+1)/2 $$ \alpha>p $.则由(3.1)和(3.2)式,引理2.8(1)及其类似子情形1.1的讨论可知:当$ \alpha>p $$ \beta\leq (p^2+1)/2 $时,存在$ x_{0}, y_{0}\in(0, r_{1}) $$ x_{1}, y_{1}\in(r_{1}, 1) $使得$ E_{p}\left(H_{\alpha}(x_{0}, y_{0})\right)\leq H_{\beta}\left({E_{p}}(x_{0}), {E_{p}}(y_{0})\right) $, $ E_{p}\left(H_{\alpha}(x_{1}, y_{1})\right)\geq H_{\beta}\left({E_{p}}(x_{1}), {E_{p}}(y_{1})\right) $.因此, $ E_{p} $在整个$ (0, 1) $区间上既不是$ H_{\alpha, \beta} $ -凹的也不是$ H_{\alpha, \beta} $ -凸的.

子情形1.3  $ \beta>(p^2+1)/2 $$ \alpha\leq L(\beta) $.则(3.1)和(3.2)式,引理2.8(2)及其类似子情形1.1的讨论表明:当$ (\alpha, \beta)\in\{(\alpha, \beta)|\alpha\leq L(\beta), \beta>(p^2+1)/2, \beta\neq0\} $时, $ E_{p} $$ (0, 1) $上严格$ H_{\alpha, \beta} $ -凹的.

子情形1.4  $ \beta>(p^2+1)/2 $$ \alpha>L(\beta) $.则从(3.1)和(3.2)式,引理2.8(2)及其上述子情形1.2的类似讨论可知:$ E_{p} $在整个$ (0, 1) $区间上既不是$ H_{\alpha, \beta} $ -凹的也不是$ H_{\alpha, \beta} $ -凸的.

情形2  $ \beta = 0 $.

$ \begin{equation} G(x, y) = \frac{\left[E_{p}(H_{\alpha}(x, y))\right]^2}{E_{p}(x)E_{p}(y)}, \end{equation} $

则对$ x $求偏导数得

$ \begin{equation} \frac{1}{G(x, y)}\frac{\partial G}{\partial x} = x^{\alpha-1}\left[\frac{K_{p}(x)-E_{p}(x)}{x^\alpha E_{p}(x)}-\frac{K_{p}(t)-E_{p}(t)}{t^\alpha E_{p}(t)}\right]. \end{equation} $

下面将情形2的证明分如下两种情形.

子情形2.1  $ \alpha\leq p $.则(3.5)式和引理2.8(1)表明$ \partial G/\partial x<0 $,故$ G(x, y)>G(y, y) = 1 $.于是从(3.4)式便知

且上述不等式成立等式当且仅当$ x = y $.

因此,当$ (\alpha, \beta)\in\{(\alpha, \beta)|\alpha\leq p, \beta = 0\} $时, $ E_{p} $$ (0, 1) $上严格$ H_{\alpha, \beta} $ -凹的.

子情形2.2  $ \alpha>p $.则利用(3.4)和(3.5)式及其引理2.8(1)推断得:$ E_{p} $$ (0, 1) $上既不是$ H_{\alpha, \beta} $ -凹的也不是$ H_{\alpha, \beta} $ -凸的.

推论1.1的证明  假设$ \alpha, \beta\in{{\Bbb R}} $, $ x, y\in(0, 1) $.$ a\in(0, 1) $,令$ p = 1/(1-a) $,则从(1.8)式可推断不等式

等价于

再对不等式两边同时乘以$ \pi_{p}/\pi $,便得

因此,由定理1.2便得推论1.1.

注3.1  当$ p\in(1, \infty) $时, $ p<(p^2+1)/2 $,故由定理1.2可知:第二类完全$ p $ -椭圆积分$ E_{p}(r) $$ (0, 1) $$ H_{\alpha, \alpha} $ -凹的,即不等式

对所有$ x, y\in (0, 1) $恒成立当且仅当$ \alpha\leq p $,且不存在$ \alpha\in {{\Bbb R}} $使得$ {\cal E}_{a}(r) $$ (0, 1) $上是$ H_{\alpha, \alpha} $ -凸的.

参考文献

Abramowitz M , Stegun I A . Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Washington: US Government Printing Office, 1964

[本文引用: 1]

Lehto O , Virtanen K I . Quasiconformal Mappings in the Plane. New York: Springer-Verlag, 1973

[本文引用: 1]

Anderson G D , Vamanamurthy M K , Vuorinen M . Conformal Invariants, Inequalities, and Quasiconformal Maps. New York: John Wiley & Sons, 1997

[本文引用: 2]

András S , Baricz Á .

Bounds for complete elliptic integrals of the first kind

Expo Math, 2010, 28 (4): 357- 364

DOI:10.1016/j.exmath.2009.12.005      [本文引用: 1]

Wang M K , Chu Y M , Qiu Y F , Qiu S L .

An optimal power mean inequality for the complete elliptic integrals

Appl Math Lett, 2011, 24 (6): 887- 890

DOI:10.1016/j.aml.2010.12.044     

Wang G D , Zhang X H , Chu Y M .

A power mean inequality for the Grötzsch ring function

Math Inequal Appl, 2011, 14 (4): 833- 837

URL    

Chu Y M , Wang M K , Qiu S L .

Optimal combinations bounds of root-square and arithmetic means for Toader mean

Proc Indian Acad Sci Math Sci, 2012, 122 (1): 41- 51

DOI:10.1007/s12044-012-0062-y     

Wang M K , Chu Y M , Qiu S L , Jiang Y P .

Bounds for the perimeter of an ellipse

J Approx Theory, 2012, 164 (7): 928- 937

DOI:10.1016/j.jat.2012.03.011     

Chu Y M , Qiu Y F , Wang M K .

Hölder mean inequalities for the complete elliptic integrals

Integral Transforms Spec Funct, 2012, 23 (7): 521- 527

DOI:10.1080/10652469.2011.609482     

Wang G D , Zhang X H , Chu Y M .

A power mean inequality involving the complete elliptic integrals

Rocky Mountain J Math, 2014, 44 (5): 1661- 1667

DOI:10.1216/RMJ-2014-44-5-1661     

Yang Z H, Qian W M, Chu Y M, Zhang W. Monotonicity rule for the quotient of two functions and its application. J Inequal Appl, 2017, Article: 106

Qian W M, Chu Y M. Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters. J Inequal Appl, 2017, Article: 274

Yang Z H , Qian W M , Chu Y M , Zhang W .

On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind

J Math Anal Appl, 2018, 462 (2): 1714- 1726

URL    

Huang T R, Tan S Y, Ma X Y, Chu Y M. Monotonicity properties and bounds for the complete p-elliptic integrals. J Inequal Appl, 2018, Article: 239

Zhao T H, Wang M K, Zhang W, Chu Y M. Quadratic transformation inequalities for Gaussian hypergeometric function. J Inequal Appl, 2018, Article: 251

Yang Z H , Qian W M , Chu Y M .

Monotonicity properties and bounds involving the complete elliptic integrals of the first kind

Math Inequal Appl, 2018, 21 (4): 1185- 1199

URL    

Yang Z H , Chu Y M , Zhang W .

High accuracy asymptotic bounds for the complete elliptic integral of the second kind

Appl Math Comput, 2019, 348, 552- 564

URL    

Zhao T H, Zhou B C, Wang M K, Chu Y M. On approximating the quasi-arithmetic mean. J Inequal Appl, 2019, Article: 42

Wang J L, Qian W M, He Z Y, Chu Y M. On approximating the Toader mean by other bivariate means. J Funct Spaces, 2019, Article ID: 6082413

Wang M K , Chu Y M , Zhang W .

Monotonicity and inequalities involving zero-balanced hypergeometric function

Math Inequal Appl, 2019, 22 (2): 601- 617

URL    

Qiu S L , Ma X Y , Chu Y M .

Sharp Landen transformation inequalities for hypergeometric functions, with applications

J Math Anal Appl, 2019, 474 (2): 1306- 1337

URL     [本文引用: 1]

Takeuchi S .

A new form of the generalized complete elliptic integrals

Kodai Math J, 2016, 39 (1): 202- 226

DOI:10.2996/kmj/1458651700      [本文引用: 4]

Drábek P , Manásevich R .

On the closed solution to some nonhomogeneous eigenvalue problems with p-Laplacian

Differential Integral Equations, 1999, 12 (6): 773- 788

URL     [本文引用: 1]

Kobayashi H , Takeuchi S .

Applications of generalized trigonometric functions with two parameters

Commun Pure Appl Anal, 2019, 18 (3): 1509- 1521

DOI:10.3934/cpaa.2019072     

Takeuchi S. Applications of generalized trigonometric functions with two parameters Ⅱ. 2019, arXiv: 1904.01827

[本文引用: 1]

Takeuchi S .

Legendre-type relations for generalized complete elliptic integrals

J Class Anal, 2016, 9 (1): 35- 42

URL     [本文引用: 1]

Takeuchi S .

Complete p-elliptic integrals and a computation formula of $\pi_{p}$ for p=4

Ramanujan J, 2018, 46 (2): 309- 321

DOI:10.1007/s11139-018-9993-y      [本文引用: 1]

Wang M K , Zhang W , Chu Y M .

Monotonicity, convexity and inequalities involving the generalized elliptic integrals

Acta Math Sci, 2019, 39B (5): 1440- 1450

URL     [本文引用: 1]

Wang M K, Chu H H, Chu Y M. Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals. J Math Anal Appl, 2019, 480(2), Article ID: 123388

[本文引用: 1]

Huang T R, Han B W, Ma X Y, Chu Y M. Optimal bounds for the generalized Euler-Mascheroni constant. J Inequal Appl 2018, Article: 118

[本文引用: 1]

Zaheer Ullah S, Adil Khan M, Chu Y M. A note on generalized convex functions. J Inequal Appl, 2019, Article: 291

[本文引用: 1]

Zhang X H .

Monotonicity and functional inequalities for the complete p-elliptic integrals

J Math Anal Appl, 2017, 453 (2): 942- 953

URL     [本文引用: 2]

Anderson G D , Qiu S L , Vamanamurthy M K , Vuorinen M .

Generalized elliptic integrals and modular equations

Pacific J Math, 2000, 192 (1): 1- 37

DOI:10.2140/pjm.2000.192.1      [本文引用: 1]

Baricz Á .

Turán inequalities for generalized complete elliptic integrals

Math Z, 2007, 256 (4): 895- 911

DOI:10.1007/s00209-007-0111-x      [本文引用: 1]

Anderson G D , Sugawa T , Vamanamurthy M K , Vourinen M .

Twice-punctured hyperbolic sphere with a conical singularity and generalized elliptic integral

Math Z, 2010, 266 (1): 181- 191

DOI:10.1007/s00209-009-0560-5     

Neuman E .

Inequalities and bounds for generalized complete elliptic integrals

J Math Anal Appl, 2011, 373 (1): 203- 213

URL    

Bhayo B A , Vuorinen M .

On generalized complete elliptic integrals and modular functions

Proc Edinb Math Soc (2), 2012, 55 (3): 591- 611

DOI:10.1017/S0013091511000356     

Yang Z H , Chu Y M .

A monotonicity property involving the generalized elliptic integral of the first kind

Math Inequal Appl, 2017, 20 (3): 729- 735

URL    

Wang M K , Li Y M , Chu Y M .

Inequalities and infinite product formula for Ramanujan generalized modular equation function

Ramanujan J, 2018, 46 (1): 189- 200

DOI:10.1007/s11139-017-9888-3     

Wang M K , Chu Y M , Zhang W .

The precise estimates for the solution of Ramanujan's generalized modular equation

Ramanujan J, 2019, 49 (3): 653- 668

DOI:10.1007/s11139-018-0130-8      [本文引用: 1]

He X H , Qian W M , Xu H Z , Chu Y M .

Sharp power mean bounds for two Sándor-Yang means

Rev R Acad Cienc Exactas Fís Nat Ser A Mat, 2019, 113 (3): 2627- 2638

DOI:10.1007/s13398-019-00643-2     

Qian W M, Yang Y Y, Zhang H W, Chu Y M. Optimal two-parameter geometric and arithmetic mean bounds for the Sándor-Yang mean. J Inequal Appl, 2019, Article: 287

Bullen P S . Handbook of Means and Their Inequalities. Dordrecht: Kluwer Academic Publishers Group, 2003

[本文引用: 1]

Anderson G D , Vamanamurthy M K , Vuorinen M .

Generalized convexity and inequalities

J Math Anal Appl, 2007, 335 (2): 1294- 1308

DOI:10.1016/j.jmaa.2007.02.016      [本文引用: 1]

Baricz Á. Convexity of the zero-balanced Gaussian hypergeometric functions with respect to Hölder means. JIPAM J Inequal Pure Appl Math, 2007, 8(2), Article: 40

[本文引用: 1]

Wang M K , Chu Y M , Qiu S L , Jiang Y P .

Convexity of the complete elliptic integrals of the first kind with respect to Hölder means

J Math Anal Appl, 2012, 388 (2): 1141- 1146

DOI:10.1016/j.jmaa.2011.10.063      [本文引用: 1]

Chu Y M , Wang M K , Jiang Y P , Qiu S L .

Concavity of the complete elliptic integrals of the second kind with respect to Hölder means

J Math Anal Appl, 2012, 395 (2): 637- 642

DOI:10.1016/j.jmaa.2012.05.083      [本文引用: 2]

Zhou L M , Qiu S L , Wang F .

Inequalities for the generalized elliptic integrals with respect to Hölder mean

J Math Anal Appl, 2012, 386 (2): 641- 646

DOI:10.1016/j.jmaa.2011.08.026      [本文引用: 1]

Baricz Á , Bhayo B A , Klén R .

Convexity properties of generalized trigonometric and hyperbolic functions

Aequationes Math, 2015, 89 (3): 473- 484

DOI:10.1007/s00010-013-0222-x      [本文引用: 1]

Baricz Á , Bhayo B A , Vuorinen M .

Turán inequalities for generalized inverse trigonometric functions

Filomat, 2015, 29 (2): 303- 313

DOI:10.2298/FIL1502303B      [本文引用: 1]

/