Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

数学物理学报, 2020, 40(5): 1204-1223 doi:

论文

一个弱耗散修正的二分量Dullin-Gottwald-Holm系统解的行为研究

田守富,

On the Behavior of the Solution of a Weakly Dissipative Modified Two-Component Dullin-Gottwald-Holm System

Tian Shoufu,

收稿日期: 2018-03-5  

基金资助: 国家自然科学基金.  11975306
江苏省自然科学基金.  BK20181351
江苏省"六大人才高峰"基金.  JY-059

Received: 2018-03-5  

Fund supported: the NSFC.  11975306
the NSF of Jiangsu Province.  BK20181351
the Six Talent Peaks Project in Jiangsu Province.  JY-059

作者简介 About authors

田守富,E-mail:sftian@cumt.edu.cn,shoufu2006@126.com , E-mail:sftian@cumt.edu.cn; shoufu2006@126.com

摘要

该文研究了弱耗散修正二分量Dullin-Gottwald-Holm(mDGH2)系统的柯西问题.分析了局部的适定性和全局的存在性,证明了在条件(y02L2+ρ02L2)12<4λ3下不会发生爆破现象.此外还推导出了精确的爆破方案,并给出了几个保证弱耗散mDGH2系统解的爆破准则.所得的结果表明弱耗散项不影响弱耗散mDGH2系统的解.

关键词: 二分量peakon系统 ; 弱耗散 ; 爆破

Abstract

In this paper, we consider the Cauchy problem of a weakly dissipative modified two-component Dullin-Gottwald-Holm (mDGH2) system. The local well-posedness and the global existence are analyzed, which is to prove that blow-up phenomena cannot happen under the condition (y02L2+ρ02L2)12<4λ3. We derive the precise blow-up scenario, and then provide several criteria guaranteeing the blow-up of the solutions to the weakly dissipative mDGH2 system. It is worth noting that the solution to the weakly dissipative system is not affected by the weakly dissipative term.

Keywords: Two-component peakon system ; Weakly dissipative ; Blow-up

PDF (413KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

田守富. 一个弱耗散修正的二分量Dullin-Gottwald-Holm系统解的行为研究. 数学物理学报[J], 2020, 40(5): 1204-1223 doi:

Tian Shoufu. On the Behavior of the Solution of a Weakly Dissipative Modified Two-Component Dullin-Gottwald-Holm System. Acta Mathematica Scientia[J], 2020, 40(5): 1204-1223 doi:

1 引言

修正二分量Dullin-Gottwald-Holm (mDGH2)系统为

{utα2uxxt+c0ux+3uux+βuxxx=α2(2uxuxx+uuxxx)+γρˉρx,t>0,xR,ρt+(ρu)x=0,t>0,xR,ρ=(12x)(ˉρˉρ0),
(1.1)

其中常数α2(α>0)β/c0是长尺度的平方, c0=hγ0是静水在空间无限远处的线性波速,这里h>0为平均流体深度, γ>0表示浅水波应用中重力的向下恒定加速度, u(t,x)表示流体速度. mDGH2系统(1.1)用平均或滤波后的密度ρ表示ρ=(12x)(ˉρˉρ0),类似于动量和速度之间的关系,这里ˉρ0被取为常数[14, 17-19].

值得注意的是, mDGH2系统(1.1)是以下DGH2系统的修正版本

{utuxxt+c0ux+3uux+βuxxx2uxuxxuuxxx+ρρx=0,t>0,xR,ρt+(ρu)x=0,t>0,xR,
(1.2)

它是在文献[8]中通过运用Ivanov方法[11]被推导出来.关于DGH2系统(1.2)的一些定性分析还有很多工作已被研究[18-19].

一般情况下,在实验中很难避免能量耗散机制.为此, Ott和Sudan[16]研究了KdV方程如何进行修正以用于包括耗散的影响和耗散对孤波解的影响. Ghidaglia[7]研究了作为有限维动力系统的弱耗散KdV方程解的长时间行为.

同样,本文我们考虑以下的弱耗散mDGH2系统

{utα2uxxt+c0ux+3uux+βuxxx+λ(uα2uxx)=α2(2uxuxx+uuxxx)+γρˉρx,ρt+(ρu)x+λρ=0,ρ=(12x)(ˉρˉρ0),
(1.3)

其中t>0,xR,弱耗散项为λ(uα2uxx)λρ,这里λ是一个耗散参数.

若取α=1, β=0, γ=1, c0=0λ=0, mDGH2系统(1.3)可以约化为下面的mCH2系统

{utuxxt+3uux2uxuxxuuxxx+ρˉρx=0,t>0,xR,ρt+(ρu)x=0,t>0,xR,ρ=(12x)(ˉρˉρ0).
(1.4)

mCH2系统(1.4)允许在速度和平均密度上有峰值的解[10].在文献[10]中,作者通过分析确定了陡峭化的机制,该机制使得奇异解可以从光滑的,空间受限的初始数据中出现.他们发现流体速度中的爆破波并不意味着奇点的点态密度ρ在垂直点的斜率.

若取α=β=γ=0, c0=k, λ=0ρ=0, mDGH2系统(1.3)约化为CH方程[1, 2]

utuxxt+kux+3uux=2uxuxx+uuxxx,t>0,xR,
(1.5)

该方程最早是由Fokas和Fuchssteiner在文献[6]中用它的双哈密顿结构正式推导出来的.在文献[4]中, Constantin和Lannes严格地用数学方法描述了CH方程(1.5)的流体动力学相关性. Constantin、Kolev[5]和Ionescu-Kruse[12]提供了CH方程在圆的微分同态群上作为测地线流方程的另一种推导.

ρ=0时, mDGH2系统(1.3)成为弱耗散DGH方程

utα2uxxt+c0ux+3uux+βuxxx+λ(uα2uxx)=α2(2uxuxx+uuxxx),t>0,xR.
(1.6)

在文献[15]中, Novruzov证明了初始数据在有限时间内导致弱耗散DGH方程(1.6)的解爆破的简单条件.

y=uα2uxxv=ˉρˉρ0, mDGH2系统(1.3)有如下形式

{yt+2d0ux+2uxy+uyxγρvx+kyx+λy=0,t>0,xR,ρt+(ρu)x+λρ=0,t>0,xR,ρ=(12x)v,
(1.7)

其中2d0=c0+βα2k=βα2.

本文中,当ρ=0时,我们的结果可以归结为弱耗散DGH方程(1.6)的相应结果,它的爆破在文献[15]中已经被研究.但是系统(1.3)和(1.2)之间有相当大的差异.系统(1.3)的爆破的发生受耗散参数的影响.值得注意的是,弱耗散项对mDCH2系统(1.3)的解没有影响.

论文的结构:第2节介绍了一些预备知识,包括局部的适定性和mDGH2系统(1.3)的精确爆破现象.第3节分析了全局存在性,证明了在条件(y02L2+ρ02L2)12<4λ3下爆破现象是不可能发生的.爆破和爆破率分别在第4节和第5节中被研究.

2 预备知识

引入G(x):=12αe|xα|, xR和算子Λ=(1α22x)1.那么对所有fL2,有

Gf(x)=Λf(x)=RG(xξ)f(ξ)dξ,
(2.1)

2xGf=1α2(Gff),Gy=u,

这里的符号‘’表示卷积.利用上述恒等式,将系统(1.3)写成双曲型准线性演化方程的等价形式

{ut+λu+uux+kux=xG(2d0u+u2+α22u2x+γ2v2γ2v2x),vt+uvx+λv=G((uxvx)x+uxv),t>0,xR,u(0,x)=u0(x),xR,v(0,x)=v0(x),xR.
(2.2)

利用Kato定理[13],我们得到了具有初始数据(u0,v0)Hs×Hs1, s52的柯西问题(2.2)的局部适定性.更精确地说,我们得到了以下的局部适定性结果.

定理2.1  设(u0,v0)Hs×Hs1, s52,存在最大时间T=T(u0Hs(R),v0Hs1(R))>0,和系统(2.2)的唯一解(u,v),

(u,v)C([0,T);Hs(R)×Hs1(R))C1([0,T);Hs1(R)×Hs2(R)).

而且,该解连续依赖初始数据,即映射(u0,v0)(u,v)

Hs(R)×Hs1(R)C([0,T);Hs(R)×Hs1(R))C1([0,T);Hs1(R)×Hs2(R))

是连续的.

接下来,介绍标准粒子轨迹方法.我们考虑以下两个初值问题

{q1t=u(t,q1)+k,0t<T,xR,q1(0,x)=x,xR
(2.3)

{q2t=u(t,q2),0t<T,xR,q2(0,x)=x,xR,
(2.4)

其中uC1([0,T),Hs1)表示具有初始数据(u0,v0)Hs×Hs1, s52的系统(2.2)的解(u,v)的第一个分量, T>0是最大存在时间.将经典结果应用于常微分方程,我们能得到以下关于qi的结果.

引理2.1  设uC([0,T);Hs(R))C1([0,T);Hs1(R)), s52,则方程(2.3)和(2.4)分别有唯一解qC1([0,T)×R;R).此外, qi(t,):RR一个微分同胚映射对每个t[0,T)

qitx(t,x)=ux(t,qi(t,x))qi,x(t,x),
(2.5)

qix(t,x)=exp(t0ux(τ,qi(τ,x))dτ)>0,i=1,2,(t,x)[0,T)×R.
(2.6)

因此,任何函数v(t,)L -范数都保留在微分同态qi(t,)族下.

引理2.2  设(u0,v0)Hs×Hs1, s52, T>0是初始数据为(u0,v0)时系统(2.2)的解(u,v)的最大存在时间.那么

ρ(t,q2(t,x))q2x=eλtρ0(x),(t,x)[0,T)×R.
(2.7)

此外,如果存在一个x0Rρ0(x0)=0,那么对任意t[0,T)ρ(t,q2(t,x0))=0.

为了得到系统(2.2)解的精确爆破情况,我们给出下面的引理.

引理2.3  设(u0,v0)Hs(R)×Hs1(R),其中s52,且T>0是初始数据为(u0,v0)时系统(2.2)的解(u,v)的最大时间.那么

E(t)=R(u2+α2u2x+v2+v2x)dx=e2λtR(u20+α2u20x+v20+v20x)dx.
(2.8)

而且

u(t,)2L(R)+v(t,)2L(R)12αu(t,)2H1α(R)+12v(t,)2H1(R)C1E(0),
(2.9)

其中C1=max.

  系统(1.3)的第一个方程乘以 u ,然后分部积分,我们有

\begin{eqnarray} \frac{\rm d}{{\rm d}t}\int_{{{\Bbb R}} }(u^{2}+\alpha^{2}u_{x}^{2}){\rm d}x & = &2\int_{{{\Bbb R}} }uu_{t}{\rm d}x+2\alpha^{2}\int_{{{\Bbb R}} }u_{x}u_{xt}{\rm d}x{} \\ & = &-2\gamma \int_{{{\Bbb R}} }uuv_{x}{\rm d}x+2\gamma \int_{{{\Bbb R}} }uv_{x}v_{xx}{\rm d}x -2\lambda \int_{{{\Bbb R}} }(u^{2}+\alpha^{2}u_{x}^{2}){\rm d}x. \end{eqnarray}
(2.10)

同理,系统(1.3)的第二个等式能获得

\begin{eqnarray} \frac{\rm d}{{\rm d}t}\int_{{{\Bbb R}} }(v^{2}+v_{x}^{2}){\rm d}x & = &2\int_{{{\Bbb R}} }vv_{t}{\rm d}x+2\int_{{{\Bbb R}} }v_{x}v_{xt}{\rm d}x{} \\ & = &2\int_{{{\Bbb R}} }uv_{x}v{\rm d}x-2\int_{{{\Bbb R}} }uv_{x}v_{xx}{\rm d}x -2\lambda \int_{{{\Bbb R}} }(v^{2}+v_{x}^{2}){\rm d}x. \end{eqnarray}
(2.11)

通过运用(2.10)和(2.11)式,有

\begin{eqnarray} \frac{\rm d}{{\rm d}t}\int_{{{\Bbb R}} }(u^{2}+\alpha^{2}u_{x}^{2}+v^{2}+v_{x}^{2}){\rm d}x = -2\lambda\int_{{{\Bbb R}} }(u^{2}+\alpha^{2}u_{x}^{2}+v^{2}+v_{x}^{2}){\rm d}x, \end{eqnarray}
(2.12)

\begin{equation} \int_{{{\Bbb R}} }(u^{2}+\alpha^{2}u_{x}^{2}+v^{2}+v_{x}^{2}){\rm d}x = e^{-2\lambda t}\int_{{{\Bbb R}} }(u_{0}^{2}+\alpha_{0}^{2}u_{0x}^{2}+v_{0}^{2}+v_{0x}^{2}){\rm d}x. \end{equation}
(2.13)

因为

\begin{eqnarray} u^{2}(t, x) = \int_{-\infty}^{x}uu_{x}{\rm d}x-\int_{x}^{\infty}uu_{x}{\rm d}x\leq \int_{{{\Bbb R}} }|uu_{x}|{\rm d}x\leq \frac{1}{2}\int_{{{\Bbb R}} }(u^{2}+u_{x}^{2}) {\rm d}x \end{eqnarray}
(2.14)

\begin{eqnarray} v^{2}(t, x) = \int_{-\infty}^{x}vv_{x}{\rm d}x-\int_{x}^{\infty}vv_{x}{\rm d}x\leq \int_{{{\Bbb R}} }|vv_{x}|{\rm d}x\leq \frac{1}{2}\int_{{{\Bbb R}} }(v^{2}+v_{x}^{2}) {\rm d}x, \end{eqnarray}
(2.15)

那么,利用(2.13)式我们能得到(2.9)式.证毕.

引理2.4  设 (u_{0}, v_{0})\in H^{s}({{\Bbb R}} )\times H^{s-1}({{\Bbb R}} ) ,其中 s\geq\frac{5}{2} , T>0 是初始数据为 (u_{0}, v_{0}) 时系统(2.2)的解 (u, v) 的最大时间.那么

\begin{equation} \|v_{x}(t, \cdot)\|_{L^{\infty}}\leq e^{\lambda t}\|v_{0x}\|_{L^{\infty}} +\frac{C_{1}}{\lambda}(e^{\lambda t}-1)E(0), \; \; \mbox{对所有的}\; \; t\in [0, T). \end{equation}
(2.16)

  通过对系统(2.2)的第二个方程的 x 求导,并利用引理2.3,可以看出这个引理是由直接计算得到的.

下面推导系统(2.2)强解的精确爆破情况.

定理2.2  设 (u_{0}, v_{0})\in H^{s}\times H^{s-1} , s\geq\frac{5}{2} ,且 T>0 是初始数据为 (u_{0}, v_{0}) 时系统(2.2)的解 (u, v) 的最大存在时间.那么,相应的解在有限时间内爆破,当且仅当

\begin{equation} \lim\limits_{t\rightarrow T}\inf\limits_{x\in{{\Bbb R}} }\{u_{x}(t, x)\} = -\infty. \end{equation}
(2.17)

  将系统(1.3)的第一个方程乘以 y = u-\alpha^{2}u_{xx} ,我们有

\begin{eqnarray} \frac{\rm d}{{\rm d}t}\int_{{{\Bbb R}} }y^{2}{\rm d}x& = & 2\int_{{{\Bbb R}} }yy_{t}{\rm d}x = 2\int_{{{\Bbb R}} }y\left(-2d_{0}u_{x}-ky_{x}-2u_{x}y-uy_{x}+\gamma \rho v_{x}\right){\rm d}x-2\lambda \int_{{{\Bbb R}} }y^{2}{\rm d}x{} \\ & = &-3\int_{{{\Bbb R}} }u_{x}y^{2}{\rm d}x+2\gamma \int_{{{\Bbb R}} }y\rho v_{x}{\rm d}x -2\lambda\int_{{{\Bbb R}} }y^{2}{\rm d}x. \end{eqnarray}
(2.18)

同理,由系统(1.3)的第二个方程可知

\begin{equation} \frac{\rm d}{{\rm d}t}\int_{{{\Bbb R}} }\rho^{2}{\rm d}x = - \int_{{{\Bbb R}} }u_{x}\rho^{2}{\rm d}x-2\lambda\int_{{{\Bbb R}} }\rho^{2}{\rm d}x. \end{equation}
(2.19)

通过使用(2.18)和(2.19)式,我们得到

\begin{equation} \frac{\rm d}{{\rm d}t}\int_{{{\Bbb R}} }(y^{2}+\rho^{2}){\rm d}x = -3\int_{{{\Bbb R}} }u_{x}y^{2}{\rm d}x+2\gamma \int_{{{\Bbb R}} }y\rho v_{x}{\rm d}x - \int_{{{\Bbb R}} }u_{x}\rho^{2}{\rm d}x-2\lambda\int_{{{\Bbb R}} }(y^{2}+\rho^{2}){\rm d}x. \end{equation}
(2.20)

假设存在 M>0 使得

\begin{equation} u_{x}(t, x)\geq -M, \; \; \forall (t, x)\in [0, T)\times {{\Bbb R}} . \end{equation}
(2.21)

从(2.20)式和引理2.4可以得到

\begin{eqnarray} \frac{\rm d}{{\rm d}t}\int_{{{\Bbb R}} }(y^{2}+\rho^{2}){\rm d}x&\leq& (3M-2\lambda)\int_{{{\Bbb R}} }(y^{2}+\rho^{2}){\rm d}x{} \\ &&+\gamma\Big(e^{\lambda T}\|v_{0x}\|_{L^{2}}^{2} +\frac{C_{1}}{\lambda}E(0)(e^{\lambda T}-1)\Big) \int_{{{\Bbb R}} }(y^{2}+\rho^{2}){\rm d}x. \end{eqnarray}
(2.22)

通过求解不等式(2.22),有

\begin{eqnarray} &&\left(\|u(t, \cdot)\|_{H^{2}}^{2}+\|v(t, \cdot)\|_{H^{2}}^{2}\right){}\\ & = &\left(\|y(t, \cdot)\|_{L^{2}}^{2}+\|\rho(t, \cdot)\|_{L^{2}}^{2}\right){} \\ &\leq& \left(\|y_{0}\|_{L^{2}}^{2}+\|\rho_{0}\|_{L^{2}}^{2}\right) \exp\left(\Big(3M-2\lambda+\gamma e^{\lambda T} \|v_{0x}\|_{L^{\infty}}+\frac{C_{1}\gamma}{\lambda}(e^{\lambda T}-1)E(0)\Big)t\right) \end{eqnarray}
(2.23)

对所有 t\in[0, T) 成立.不等式(2.23)保证解 (u, v) 在有限时间内不爆破.

因此,利用Sobolev的嵌入定理,我们可以证明如果

\begin{equation} \lim\limits_{t\rightarrow T}\inf\limits_{x\in {{\Bbb R}} }\{u_{x}(t, x)\} = -\infty, \end{equation}
(2.24)

则解在有限时间内单爆破.证毕.

3 全局存在性

在本节,我们将证明在条件 \left(\|y_{0}\|_{L^{2}}^{2}+\|\rho_{0}\|^{2}_{L^{2}}\right)^{\frac{1}{2}}<\frac{4\lambda} {3} 下不可能发生“爆破”现象.

定理3.1  设 (u_{0}, v_{0})\in H^{s}({{\Bbb R}} )\times H^{s-1}({{\Bbb R}} ) ,其中 s\geq\frac{5}{2} .如果

\begin{equation} \left(\|y_{0}\|_{L^{2}}^{2}+\|\rho_{0}\|^{2}_{L^{2}}\right)^{\frac{1}{2}}<\frac{4\lambda} {3}. \end{equation}
(3.1)

则系统(1.3)的对应解 u(t, x) 在时间上是全局存在的.

  从(2.18)式,我们有

\begin{eqnarray} \frac{\rm d}{{\rm d}t}\int_{{{\Bbb R}} }y^{2}{\rm d}x = -3\int_{{{\Bbb R}} }u_{x}y^{2}{\rm d}x+2\gamma \int_{{{\Bbb R}} }y\rho v_{x}{\rm d}x -2\lambda\int_{{{\Bbb R}} }y^{2}{\rm d}x. \end{eqnarray}
(3.2)

将等式(3.2)乘以 e^{2\lambda t} ,可得

\begin{equation} \frac{\rm d}{{\rm d}t}\left(e^{2\lambda t}\int_{{{\Bbb R}} }(y^{2}+\rho^{2}){\rm d}x\right) = -3e^{2\lambda t}\int_{{{\Bbb R}} }y^{2}u_{x}{\rm d}x+ 2\gamma e^{2\lambda t}\int_{{{\Bbb R}} }y\rho v_{x}{\rm d}x -e^{2\lambda t}\int_{{{\Bbb R}} }\rho^{2}u_{x}{\rm d}x. \end{equation}
(3.3)

通过回顾函数 G 的定义,再利用Young不等式,我们得到

\begin{eqnarray} &&\|u_{x}\|_{L^{\infty}}\leq \|G_{x}\ast y\|_{L^{\infty}}\leq\|G_{x}\|_{L^{2}} \|y\|_{L^{2}}\leq \frac{1}{2}\|y\|_{L^{2}}, {} \\ &&\int_{{{\Bbb R}} }\rho^{2}u_{x}{\rm d}x\leq \|u_{x}\|_{L^{\infty}} \int_{{{\Bbb R}} }\rho^{2}{\rm d}x\leq \frac{1}{2}\|y\|_{L^{2}} \int_{{{\Bbb R}} }\rho^{2}{\rm d}x \end{eqnarray}
(3.4)

\begin{eqnarray} \int_{{{\Bbb R}} }y\rho v_{x}{\rm d}x\leq\|y\|_{L^{\infty}} \int_{{{\Bbb R}} }\rho v_{x}{\rm d}x = 0. \end{eqnarray}
(3.5)

因此,有

\begin{eqnarray} \frac{\rm d}{{\rm d}t}\left(e^{2\lambda t}\int_{{{\Bbb R}} }(y^{2}+\rho^{2}){\rm d}x\right) &\leq&\frac{3}{2}e^{2\lambda t}\left(\int_{{{\Bbb R}} } y^{2} {\rm d}x\right)^{\frac{1}{2}}\left(\int_{{{\Bbb R}} } y^{2} {\rm d}x\right)+ \frac{1}{2}e^{2\lambda t}\left(\int_{{{\Bbb R}} } y^{2} {\rm d}x\right)^{\frac{1}{2}}\left(\int_{{{\Bbb R}} } \rho^{2} {\rm d}x\right){} \\ &\leq&\frac{3}{2}e^{2\lambda t}\left(\int_{{{\Bbb R}} }( y^{2}+\rho^{2} ) {\rm d}x\right)^{\frac{3}{2}}{}\\ & = &\frac{3}{2}e^{-\lambda t}\left(e^{2\lambda t}\int_{{{\Bbb R}} }( y^{2}+\rho^{2} ) {\rm d}x\right)^{\frac{3}{2}}. \end{eqnarray}
(3.6)

由上式可知

\begin{equation} \frac{\rm d}{{\rm d}t}\left(e^{2\lambda t}\int_{{{\Bbb R}} }(y^{2}+\rho^{2}){\rm d}x\right)^{-\frac{1}{2}} \geq-\frac{3}{4}e^{-\lambda t}. \end{equation}
(3.7)

对不等式的 t 0 t 积分得到

\begin{eqnarray} \left(e^{2\lambda t}\int_{{{\Bbb R}} }(y^{2}+\rho^{2}){\rm d}x\right)^{-\frac{1}{2}} -\left(\int_{{{\Bbb R}} }(y_{0}^{2}+\rho_{0}^{2}){\rm d}x\right)^{-\frac{1}{2}} \geq\frac{3}{4\lambda}(e^{-\lambda t}-1)\geq-\frac{3}{4}. \end{eqnarray}
(3.8)

然后,有

\begin{equation} e^{\lambda t}\left(\|y\|_{L^{2}}^{2}+\|\rho\|_{L^{2}}^{2}\right)^{\frac{1}{2}} <\left(\left(\|y_{0}\|_{L^{2}}^{2}+\|\rho_{0}\|_{L^{2}}^{2}\right)^{-\frac{1}{2}} -\frac{3}{4\lambda}\right)^{-1}. \end{equation}
(3.9)

基于

\begin{equation} \left(\|y_{0}\|_{L^{2}}^{2}+\|\rho_{0}\|_{L^{2}}^{2}\right)^{\frac{1}{2}} -\frac{4\lambda}{3}<0, \end{equation}
(3.10)

可得

\begin{eqnarray} \|u_{x}\|_{L^{\infty}}\leq \frac{1}{2}\|y\|_{L^{2}} <\left(\|y\|_{L^{2}}^{2}+\|\rho\|_{L^{2}}^{2}\right)^{\frac{1}{2}} <e^{-\lambda t}\left(\left(\|y_{0}\|_{L^{2}}^{2}+\|\rho_{0}\|_{L^{2}}^{2}\right)^{-\frac{1}{2}} -\frac{3}{4\lambda}\right)^{-1}. \end{eqnarray}
(3.11)

根据定理2.2,可以证明系统(1.3)的解在时间上是全局存在的.证毕

4 爆破

接下来,我们为系统(2.2)的强解建立奇异点的形式,并在初始数据上给出几个充分条件,以保证 \alpha\leq 1 发生爆破.

定理4.1  令 (u_{0}, v_{0})\in H^{s}({{\Bbb R}} )\times H^{s-1}({{\Bbb R}} ) 并且 s\geq\frac{5}{2} .如果 u_{0} 满足下列不等式

\begin{equation} \int_{{{\Bbb R}} }u_{0x}^{3}{\rm d}x<-3\lambda E(0)-\frac{E(0)}{2} \sqrt{36\lambda^{2}-\frac{6\gamma_{0}}{\alpha^{2}}E(0)-\frac{48d_{0}}{\alpha^{4}} \sqrt{C_{1}E(0)}}\ , \end{equation}
(4.1)

其中 \gamma_{0} = \max\{1, \gamma\} ,则系统(2.2)的相应解在有限时间内爆破.

  通过对系统(2.2)的第一个方程关于 x 进行微分,可以得到

\begin{equation} u_{xt}+\lambda u_{x}+u_{x}^{2}+uu_{xx}+ku_{xx}+\partial_{x}^{2} G\ast \left(2d_{0}u+u^{2}+\frac{\alpha^{2}}{2}u_{x}^{2}+\frac{\gamma}{2} v^{2}-\frac{\gamma}{2}v_{x}^{2}\right) = 0. \end{equation}
(4.2)

应用 G 的定义可以得到

\begin{eqnarray} &&u_{xt}+\lambda u_{x}+\frac{1}{2}u_{x}^{2}+uu_{xx}+ku_{xx}+\frac{1}{\alpha^{2}} G\ast \left(2d_{0}u+u^{2}+\frac{\alpha^{2}}{2}u_{x}^{2}+\frac{\gamma}{2} v^{2}-\frac{\gamma}{2}v_{x}^{2}\right){} \\ && -\frac{1}{\alpha^{2}} \left(2d_{0}u+u^{2}+\frac{\gamma}{2} v^{2}-\frac{\gamma}{2}v_{x}^{2}\right) = 0. \end{eqnarray}
(4.3)

引入

\begin{equation} M(t) = \int_{{{\Bbb R}} }u_{x}^{3}{\rm d}x, \; \; t\geq 0. \end{equation}
(4.4)

通过将(4.3)式与 u^{2}_{x} 相乘,并使用以下关系

\begin{eqnarray} &&\int_{{{\Bbb R}} }uu_{x}^{2}u_{xx}{\rm d}x = -\frac{1}{3} \int_{{{\Bbb R}} }u_{x}^{4}{\rm d}x, \; \; G\ast \left(u^{2}+\frac{\alpha^{2}}{2}u_{x}^{2}\right)\geq \frac{1}{2}u^{2}, {} \\ &&\|G\ast v_{x}^{2}\|_{L^{\infty}}\leq \|G\|_{L^{\infty}}\|v_{x}^{2}\|_{L^{1}} \leq\frac{1}{2\alpha}\|v_{x}^{2}\|_{L^{1}}, \end{eqnarray}
(4.5)

我们推导出关于 M(t) 的如下方程

\begin{eqnarray} &&\frac{{\rm d}M(t)}{{\rm d}t}+3\lambda M(t){}\\ & = &-\frac{3}{2}\int_{{{\Bbb R}} }u_{x}^{4}{\rm d}x +\int_{{{\Bbb R}} }u_{x}^{4}{\rm d}x-\frac{3}{\alpha^{2}}\int_{{{\Bbb R}} }u_{x}^{2} G\ast \left(2d_{0}u+u^{2}+\frac{\alpha^{2}}{2}u_{x}^{2}+\frac{\gamma}{2} v^{2}-\frac{\gamma}{2} v^{2}_{x}\right){\rm d}x{} \\ &&+\frac{3}{\alpha^{2}} \int_{{{\Bbb R}} }u_{x}^{2}\left(2d_{0}u+u^{2}+\frac{\gamma}{2} v^{2}-\frac{\gamma}{2} v^{2}_{x}\right){\rm d}x{} \\ &\leq&-\frac{1}{2}\int_{{{\Bbb R}} }u_{x}^{4}{\rm d}x +\frac{3}{2\alpha^{2}}\int_{{{\Bbb R}} }u^{2}u_{x}^{2}{\rm d}x+ \frac{3\gamma}{4\alpha^{2}}\int_{{{\Bbb R}} }u_{x}^{2}v^{2}{\rm d}x +\frac{6d_{0}}{\alpha^{4}}\sqrt{C_{1}E^{3}(0)} +\frac{9\gamma}{4\alpha^{2}} \int_{{{\Bbb R}} }u_{x}^{2}G\ast v^{2}_{x}{\rm d}x.{}\\ \end{eqnarray}
(4.6)

通过使用柯西-施瓦茨不等式,我们得到了

\begin{equation} \left|\int_{{{\Bbb R}} }u_{x}^{3}{\rm d}x\right|\leq\frac{1}{\alpha} \left(\int_{{{\Bbb R}} }u_{x}^{4}{\rm d}x\right)^{\frac{1}{2}} \left(\alpha^{2}\int_{{{\Bbb R}} }u_{x}^{2}{\rm d}x\right)^{\frac{1}{2}}, \end{equation}
(4.7)

因此

\begin{equation} \int_{{{\Bbb R}} }u_{x}^{4}{\rm d}x\geq\frac{\alpha^{2}}{E(0)}\left(\int_{{{\Bbb R}} } u_{x}^{3}\right)^{2}. \end{equation}
(4.8)

通过使用(2.14)和(2.15)式,进一步得到

\begin{equation} \int_{{{\Bbb R}} }u^{2}u_{x}^{2}{\rm d}x\leq \|u\|_{L^{\infty}}^{2} \int_{{{\Bbb R}} }u_{x}^{2}{\rm d}x\leq \frac{1}{2} \|u\|_{H^{1}}^{2} \int_{{{\Bbb R}} }u_{x}^{2}{\rm d}x\leq \frac{1}{2} \|u\|_{H^{1}}^{4}, \end{equation}
(4.9)

\begin{equation} \int_{{{\Bbb R}} }u_{x}^{2}v^{2}{\rm d}x\leq \|v\|_{L^{\infty}}^{2} \int_{{{\Bbb R}} }u_{x}^{2}{\rm d}x\leq \frac{1}{2} \|v\|_{H^{1}}^{2} \int_{{{\Bbb R}} }u_{x}^{2}{\rm d}x\leq \frac{1}{2} \|u\|_{H^{1}}^{2}\|v\|_{H^{1}}^{2}. \end{equation}
(4.10)

要注意的是

\begin{equation} \|G\ast v_{x}^{2}\|_{L^{\infty}}\leq \|G\|_{L^{\infty}} \|v_{x}^{2}\|_{L^{1}}\leq \frac{1}{2} \|v\|_{H^{1}}^{2}. \end{equation}
(4.11)

因此有

\begin{eqnarray} \int_{{{\Bbb R}} }u_{x}^{2}G\ast v_{x}^{2}{\rm d}x\leq \frac{1}{2} \|u\|_{H^{1}}^{2}\|v\|_{H^{1}}^{2}. \end{eqnarray}
(4.12)

因此,我们从上面的分析中得出

\begin{eqnarray} \frac{{\rm d}M(t)}{{\rm d}t}+3\lambda M(t)&\leq& -\frac{1}{2E(0)} M^{2}(t)+\frac{3}{4\alpha^{2}}\|u\|_{H^{1}}^{4} +\frac{3\gamma}{\alpha^{2}}\|u\|_{H^{1}}^{2}\|v\|_{H^{1}}^{2}+ \frac{6d_{0}}{\alpha^{4}}\sqrt{C_{1}E^{3}(0)}{} \\ &\leq& -\frac{1}{2E(0)} M^{2}(t)+\frac{3\gamma_{0}}{4\alpha^{2}}E^{2}(0)+ \frac{6d_{0}}{\alpha^{4}}\sqrt{C_{1}E^{3}(0)}, \end{eqnarray}
(4.13)

其中 \gamma_{0} = \max\{1, \gamma\} .我们可以进一步证明这一点

\begin{eqnarray} \frac{{\rm d}M(t)}{{\rm d}t}&\leq& -\frac{1}{8E(0)}\left( 2M(t)+6\lambda E(0)-E(0)\sqrt{36\lambda^{2}+\frac{6\gamma_{0}}{\alpha^{2}}E(0)+\frac{48d_{0} }{\alpha^{4}}\sqrt{C_{1}E(0)}}\right){} \\ &&\times \left( 2M(t)+6\lambda E(0)+E(0)\sqrt{36\lambda^{2}+\frac{6\gamma_{0}}{\alpha^{2}}E(0)+\frac{48d_{0} }{\alpha^{4}}\sqrt{C_{1}E(0)}}\right). \end{eqnarray}
(4.14)

根据假设,我们有 \frac{{\rm d}M}{{\rm d}t}|_{t = 0}<0 .通过考虑 M(t) t 的连续性,可以进一步得到,对所有 t\in[0, T) \frac{{\rm d}M}{{\rm d}t}<0 .因此

\begin{equation} \frac{{\rm d}M(t)}{{\rm d}t}<-3\lambda E(0)-\frac{1}{2}E(0)\sqrt{36\lambda^{2}+\frac{6\gamma_{0}}{\alpha^{2}}E(0)+\frac{48d_{0} }{\alpha^{4}}\sqrt{C_{1}E(0)}}\ , \; \mbox{所有} \; t\in[0, T). \end{equation}
(4.15)

求解不等式(4.15),有

\begin{eqnarray} &&\frac{2M(t)+6\lambda E(0)+E(0)\sqrt{36\lambda^{2}+\frac{6\gamma_{0}}{\alpha^{2}}E(0)+\frac{48d_{0} }{\alpha^{4}}\sqrt{C_{1}E(0)}}}{2M(t)+6\lambda E(0)-E(0)\sqrt{36\lambda^{2}+\frac{6\gamma_{0}}{\alpha^{2}}E(0)+\frac{48d_{0} }{\alpha^{4}}\sqrt{C_{1}E(0)}}} {} \\ &&\times\exp\left(\frac{\sqrt{36\lambda^{2}+\frac{6\gamma_{0}}{\alpha^{2}}E(0)+\frac{48d_{0} }{\alpha^{4}}\sqrt{C_{1}E(0)}}}{2}t\right)-1{} \\ &\leq& \frac{2E(0)\sqrt{36\lambda^{2}+\frac{6\gamma_{0}}{\alpha^{2}}E(0)+\frac{48d_{0} }{\alpha^{4}}\sqrt{C_{1}E(0)}}}{2M(t)+6\lambda E(0)-E(0)\sqrt{36\lambda^{2}+\frac{6\gamma_{0}}{\alpha^{2}}E(0)+\frac{48d_{0} }{\alpha^{4}}\sqrt{C_{1}E(0)}}} \leq 0. \end{eqnarray}
(4.16)

因为

\begin{equation} 0<\frac{2M(t)+6\lambda E(0)+E(0)\sqrt{36\lambda^{2}+\frac{6\gamma_{0}}{\alpha^{2}}E(0)+\frac{48d_{0} }{\alpha^{4}}\sqrt{C_{1}E(0)}}}{2M(t)+6\lambda E(0)-E(0)\sqrt{36\lambda^{2}+\frac{6\gamma_{0}}{\alpha^{2}}E(0)+\frac{48d_{0} }{\alpha^{4}}\sqrt{C_{1}E(0)}}}<1, \end{equation}
(4.17)

则存在一个 T

\begin{eqnarray} &&\frac{2}{\sqrt{36\lambda^{2}+\frac{6\gamma_{0}}{\alpha^{2}}E(0)+\frac{48d_{0} }{\alpha^{4}}\sqrt{C_{1}E(0)}}}{} \\ &&\times\ln\left( \frac{2M(t)+6\lambda E(0)+E(0)\sqrt{36\lambda^{2}+\frac{6\gamma_{0}}{\alpha^{2}}E(0)+\frac{48d_{0} }{\alpha^{4}}\sqrt{C_{1}E(0)}}}{2M(t)+6\lambda E(0)-E(0)\sqrt{36\lambda^{2}+\frac{6\gamma_{0}}{\alpha^{2}}E(0)+\frac{48d_{0} }{\alpha^{4}}\sqrt{C_{1}E(0)}}}\right)\geq T, \end{eqnarray}
(4.18)

满足

\begin{equation} \lim\limits_{t\rightarrow T}M(t) = \lim\limits_{t\rightarrow T}\int_{{{\Bbb R}} } u_{x}^{3}{\rm d}x = -\infty. \end{equation}
(4.19)

进一步考虑这一事实

\begin{equation} \int_{{{\Bbb R}} }u_{x}^{3}{\rm d}x\geq \inf u_{x}(t, x) \int_{{{\Bbb R}} }u_{x}^{2}{\rm d}x\geq \inf u_{x}(t, x) E(0), \end{equation}
(4.20)

我们可以证明

\begin{equation} \lim\limits_{t\rightarrow T}\inf\limits_{x\in {{\Bbb R}} }u_{x}(t, x) = -\infty. \end{equation}
(4.21)

证毕.

定理4.2  令 (u_{0}, v_{0})\in H^{s}({{\Bbb R}} )\times H^{s-1}({{\Bbb R}} ) ,且 s\geq\frac{5}{2} .如果存在 x_{0}\in {{\Bbb R}} 满足 y_{0}(x_{0}) = u_{0}(x_{0})-\alpha^{2}u_{0xx}(x_{0}) = 0 , \rho_{0}(x_{0}) = \rho_{0}(x_{0})-\rho_{0xx}(x_{0}) = 0 和下面的不等式

\begin{eqnarray} &&\int_{-\infty}^{x_{0}}e^{\frac{\xi}{\alpha}}\left(y_{0}(\xi)+d_{0}\right){\rm d}\xi> \sqrt{\frac{\gamma(1+2\alpha^{2}C_{1})}{2}E(0)}\ , {} \\ && \int^{-\infty}_{x_{0}}e^{-\frac{\xi}{\alpha}}\left(y_{0}(\xi)+d_{0}\right){\rm d}\xi< -\sqrt{\frac{\gamma(1+2\alpha^{2}C_{1})}{2}E(0)}\ . \end{eqnarray}
(4.22)

则对于 \lambda<0 和初始数据 (u_{0}, v_{0}) 的系统(2.2)的解在有限时间爆破.

  通过使用(2.3)式, (4.3)式和下列不等式

\begin{equation} G\ast \left((u+d_{0})^{2}+\frac{\alpha^{2}}{2}u_{x}^{2}\right)\geq \frac{1}{2} (u+d_{0})^{2}, \end{equation}
(4.23)

可以得到

\begin{eqnarray} &&\frac{\rm d}{{\rm d}t}u_{x}(t, q_{1}(t, x_{0}))+\lambda u_{x}(t, q_{1}(t, x_{0})){} \\ & = &(u_{xt}+uu_{xx}+ku_{xx})(t, q_{1}(t, x_{0}))+\lambda u_{x}(t, q_{1}(t, x_{0})){} \\ &\leq&-\frac{1}{2}u_{x}^{2}(t, q_{1}(t, x_{0}))+\frac{1}{2\alpha^{2}}(u+d_{0})^{2} (t, q_{1}(t, x_{0}))+\frac{\gamma}{2\alpha^{2}}v^{2}(t, q_{1}(t, x_{0})) -\frac{\gamma}{2\alpha^{2}}v_{x}^{2}(t, q_{1}(t, x_{0})) {} \\ &&+\frac{\gamma}{2\alpha^{2}}G\ast v_{x}^{2}(t, q_{1}(t, x_{0})) -\frac{\gamma}{2\alpha^{2}}G\ast v^{2}(t, q_{1}(t, x_{0})) +\frac{\gamma(1+2\alpha^{2} C_{1})}{4\alpha^{2}}. \end{eqnarray}
(4.24)

在接下来的文章中,我们提出了三个论点来证明我们的结论.

论点1  对所有 t , y(t, q_{1}(t, x_{0}))+d_{0} = 0 在它的预期使用期限内.

通过考虑(1.7)式中的第一个方程,并利用粒子轨迹法,我们得到了

\begin{eqnarray} \frac{\rm d}{{\rm d}t}\left(\left(y(t, q_{1}(t, x))+d_{0}\right)q_{1x}^{2}(t, x)\right) & = &\left(y_{t}+uy_{x}+2yu_{x}+ky_{x}+2d_{0}u_{x}\right)(t, q_{1}(t, x))q_{1x}^{2}(t, x){} \\ & = &(\gamma \rho v_{x}-\lambda y)(t, q_{1}(t, x))q_{1x}^{2}(t, x). \end{eqnarray}
(4.25)

由于(2.4)式引入的 q_{2}(\cdot, x) 是任意 t\in[0, T) 的直线的微分同构,则有

\begin{equation} q_{2}(t, \tilde{x}_{0}(t)) = q_{1}(t, x_{0}), \; \; t\in[0, T), \end{equation}
(4.26)

其中 \tilde{x}_{0}(t)\in {{\Bbb R}} .对于 t = 0 ,可以进一步得到

\begin{equation} \tilde{x}_{0}(0) = q_{2}(0, \tilde{x}_{0}(0)) = q_{1}(0, x_{0}) = x_{0}. \end{equation}
(4.27)

接下来,我们表明 \rho(t, q_{1}(t, x_{0})) = 0 .通过直接计算,则有

\begin{equation} \frac{\rm d}{{\rm d}t}\rho(t, q_{2}(t, \tilde{x}_{0}(t))) = -(\rho u_{x})(t, q_{2}(t, \tilde{x}_{0}(t))). \end{equation}
(4.28)

根据 \rho_{0}(x_{0}) = 0 ,方程(4.28)积分得到

\begin{eqnarray} \rho(t, q_{2}(t, \tilde{x}_{0}(t)))& = &\rho(0, q_{2}(0, \tilde{x}_{0}(0))) e^{-\int_{0}^{t}u_{x}(\tau, q_{2}(\tau, q_{2}(\tilde{x}_{0}(\tau)))){\rm d}\tau}{} \\ & = &\rho_{0}(x_{0})e^{-\int_{0}^{t}u_{x}(\tau, q_{2}(\tau, q_{2}(\tilde{x}_{0} (\tau)))){\rm d}\tau} = 0, \end{eqnarray}
(4.29)

然后有

\begin{equation} \rho(t, q_{1}(t, x_{0})) = \rho(t, q_{2}(t, \tilde{x}_{0}(t))) = 0. \end{equation}
(4.30)

因此,可以获得

\begin{equation} \frac{\rm d}{{\rm d}t}\left((y(t, q_{1}(t, x_{0}))+d_{0})q_{1x}^{2}(t, x_{0})\right) = -\rho(t, q_{1}(t, x_{0}))v_{x}(t, q_{1}(t, x_{0}))q_{1x}^{2}(t, x_{0}) = 0, \end{equation}
(4.31)

这意味着

\begin{equation} y(t, q_{1}(t, x_{0}))+d_{0} = y_{0}(x_{0})+d_{0} = 0. \end{equation}
(4.32)

这就完成了论点1.

论点2  对所有 x\in {{\Bbb R}} t>0 , v_{x}^{2}(t, x)-v^{2}(t, x)\leq v_{x}^{2}(t, x_{0})-v^{2}(t, x_{0}) .

由于引理2.2,则有

\begin{equation} \left\{ \begin{array}{ll} \rho(t, q_{2}(t, x))\geq 0, \; \; \mbox{对}\; \; x\in(-\infty, x_{0}), \\ \rho(t, q_{2}(t, x))\leq 0, \; \; \mbox{对}\; \; x\in(x_{0}, \infty), \end{array} \right. \end{equation}
(4.33)

对于所有 t\geq0 ,由于 v = G\ast \rho(t, x) , x\in{{\Bbb R}} , t\geq 0 , v(t, x) v_{x}(t, x) 可以改写成

\begin{equation} v(t, x) = \frac{1}{2\alpha}e^{-\frac{x}{\alpha}}\int_{-\infty}^{x} e^{\frac{\xi}{\alpha}}\rho(t, \xi){\rm d}\xi+\frac{1}{2\alpha}e^{\frac{x}{\alpha}} \int^{\infty}_{x} e^{-\frac{\xi}{\alpha}}\rho(t, \xi){\rm d}\xi, \end{equation}
(4.34)

\begin{equation} v_{x}(t, x) = -\frac{1}{2\alpha}e^{-\frac{x}{\alpha}}\int_{-\infty}^{x} e^{\frac{\xi}{\alpha}}\rho(t, \xi){\rm d}\xi+\frac{1}{2\alpha}e^{\frac{x}{\alpha}} \int^{\infty}_{x} e^{-\frac{\xi}{\alpha}}\rho(t, \xi){\rm d}\xi, \end{equation}
(4.35)

对任何固定 t .对于 x\leq q_{2}(t, x_{0}) ,有

\begin{eqnarray} v_{x}^{2}(t, x)-v^{2}(t, x)& = &-\left(\int_{-\infty}^{q_{2}(t, x_{0})} e^{\frac{\xi}{\alpha}}\rho(t, \xi){\rm d}\xi- \int_{x}^{q_{2}(t, x_{0})} e^{\frac{\xi}{\alpha}}\rho(t, \xi){\rm d}\xi\right){} \\ &&\times \left(\int^{\infty}_{q_{2}(t, x_{0})} e^{-\frac{\xi}{\alpha}}\rho(t, \xi){\rm d}\xi+\int_{x}^{q_{2}(t, x_{0})} e^{-\frac{\xi}{\alpha}}\rho(t, \xi){\rm d}\xi\right){} \\ &\leq&v_{x}^{2}(t, q_{2}(t, x_{0}))-v^{2}(t, q_{2}(t, x_{0})). \end{eqnarray}
(4.36)

循着同样的方法引出

\begin{eqnarray} v_{x}^{2}(t, x)-v^{2}(t, x) \leq&v_{x}^{2}(t, q_{2}(t, x_{0}))-v^{2}(t, q_{2}(t, x_{0})), \end{eqnarray}
(4.37)

对于 x\geq q_{2}(t, x_{0}) .

从(4.36)和(4.37)式,可以进一步得到

\begin{eqnarray} v_{x}^{2}(t, x)-v^{2}(t, x) \leq v_{x}^{2}(t, q_{2}(t, x_{0}))-v^{2}(t, q_{2}(t, x_{0})), \end{eqnarray}
(4.38)

对任何固定 t x\in{{\Bbb R}} .结合论点1和论点2,则有

\begin{eqnarray} &&\frac{\rm d}{{\rm d}t}u_{x}(t, q_{1}(t, x_{0}))+\lambda u_{x}(t, q_{1}(t, x_{0})){} \\ &\leq&-\frac{1}{2}u_{x}^{2}(t, q_{1}(t, x_{0}))+\frac{1}{2\alpha^{2}}(u+d_{0})^{2} (t, q_{1}(t, x_{0}))+\frac{\gamma(1+2\alpha^{2} C_{1})}{4\alpha^{2}}. \end{eqnarray}
(4.39)

论点3  在 [0, T) 上, (u+d_{0})^{2}(t, q_{1}(t, x_{0})) -\alpha^{2}u_{x}^{2}(t, q_{1}(t, x_{0}))+\gamma(C_{1}+\frac{1}{2\alpha})E(0)<0 ,且 u_{x}(t, q_{1}(t, x_{0}))<0 是关于 t 严格递减的.

假设存在这样一个 t_{0}

\begin{equation} (u+d_{0})^{2}(t, q_{1}(t, x_{0})) -\alpha^{2}u_{x}(t, q_{1}(t, x_{0})) +\gamma(C_{1}+\frac{1}{2\alpha})E(0)<0, \; \; \mbox{在}\; \; [0, t_{0}), \end{equation}
(4.40)

但是

\begin{equation} (u+d_{0})^{2}(t_{0}, q_{1}(t_{0}, x_{0})) -\alpha^{2}u_{x}(t_{0}, q_{1}(t_{0}, x_{0})) +\gamma(C_{1}+\frac{1}{2\alpha})E(0)\geq0. \end{equation}
(4.41)

u(t, x) y(t, x) 的关系可知, u(t, x)+d_{0} u_{x}(t, x) 可以改写成

\begin{equation} u(t, x)+d_{0} = \frac{1}{2\alpha}e^{-\frac{x}{\alpha}}\int_{-\infty}^{x} e^{\frac{\xi}{\alpha}}\left(y(t, \xi)+d_{0}\right){\rm d}\xi +\frac{1}{2\alpha}e^{\frac{x}{\alpha}} \int^{\infty}_{x} e^{-\frac{\xi}{\alpha}}\left(y(t, \xi)+d_{0}\right){\rm d}\xi, \end{equation}
(4.42)

\begin{equation} u_{x}(t, x) = -\frac{1}{2\alpha^{2}}e^{-\frac{x}{\alpha}}\int_{-\infty}^{x} e^{\frac{\xi}{\alpha}}\left(y(t, \xi)+d_{0}\right){\rm d}\xi+\frac{1}{2\alpha^{2}} e^{\frac{x}{\alpha}} \int^{\infty}_{x} e^{-\frac{\xi}{\alpha}}\left(y(t, \xi)+d_{0}\right){\rm d}\xi, \end{equation}
(4.43)

引入

\begin{equation} {\cal F}(t) = e^{-\frac{q_{1}(t, x_{0})}{\alpha}}\int_{-\infty}^{q_{1}(t, x_{0})} e^{\frac{\xi}{\alpha}}\left(y(t, \xi)+d_{0}\right){\rm d}\xi, \end{equation}
(4.44)

\begin{equation} {\cal G}(t) = e^{\frac{q_{1}(t, x_{0})}{\alpha}}\int^{\infty}_{q_{1}(t, x_{0})} e^{-\frac{\xi}{\alpha}}\left(y(t, \xi)+d_{0}\right){\rm d}\xi. \end{equation}
(4.45)

然后

\begin{eqnarray} \frac{{\rm d}{\cal F}(t)}{{\rm d}t}& = &-\frac{1}{\alpha}(u(t, q_{1}(t, x_{0}))+d_{0}) e^{-\frac{q_{1}(t, x_{0})}{\alpha}}\int_{-\infty}^{q_{1}(t, x_{0})} e^{\frac{\xi}{\alpha}}\left(y(t, \xi)+d_{0}\right){\rm d}\xi{} \\ &&+e^{-\frac{q_{1}(t, x_{0})}{\alpha}}\int_{-\infty}^{q_{1}(t, x_{0})} e^{\frac{\xi}{\alpha}}y_{t}(t, \xi){\rm d}\xi. \end{eqnarray}
(4.46)

通过分部积分,可以重写(4.46)式的第一项

\begin{eqnarray} &&-\frac{1}{\alpha}(u(t, q_{1}(t, x_{0}))+k)e^{-\frac{q_{1}(t, x_{0})}{\alpha}}\int_{-\infty}^{q_{1}(t, x_{0})} e^{\frac{\xi}{\alpha}}\left(y(t, \xi)+d_{0}\right){\rm d}\xi{} \\ & = &(\alpha uu_{x}-u^{2}-d_{0}u)(t, q_{1}(t, x_{0})) -\frac{1}{\alpha}e^{-\frac{q_{1}(t, x_{0})}{\alpha}}\int_{-\infty}^{q_{1}(t, x_{0})} e^{\frac{\xi}{\alpha}}\left(y(t, \xi)+d_{0}\right){\rm d}\xi. \end{eqnarray}
(4.47)

通过使用论点1,使用下面的等式

\begin{eqnarray} &&-\alpha e^{-\frac{q_{1}(t, x_{0})}{\alpha}}\int_{-\infty}^{q_{1}(t, x_{0})} e^{\frac{\xi}{\alpha}}(uu_{xx})(t, \xi){\rm d}\xi{} \\ & = &-\alpha(uu_{x})(t, q_{1}(t, x_{0})) +\frac{1}{2}u^{2}(t, q_{1}(t, x_{0})) +\alpha e^{-\frac{q_{1}(t, x_{0})}{\alpha}}\int_{-\infty}^{q_{1}(t, x_{0})} e^{\frac{\xi}{\alpha}}\left(u_{x}^{2}-\frac{1}{2\alpha^{2}}u^{2}\right)(t, \xi){\rm d}\xi.{}\\ \end{eqnarray}
(4.48)

我们可以重写(4.46)式的第二项

\begin{eqnarray} &&e^{-\frac{q_{1}(t, x_{0})}{\alpha}}\int_{-\infty}^{q_{1}(t, x_{0})} e^{\frac{\xi}{\alpha}}y_{t}(t, \xi){\rm d}\xi{} \\ & = &-e^{-\frac{q_{1}(t, x_{0})}{\alpha}}\int_{-\infty}^{q_{1}(t, x_{0})} e^{\frac{\xi}{\alpha}}\Big(((y+d_{0})u)_{x}+\frac{1}{2}(u^{2}-\alpha^{2}u_{x}^{2})_{x}{} \\ &&+k(y+d_{0})_{x}+d_{0}u_{x}-\gamma\rho v_{x}+\lambda y\Big){\rm d}\xi{} \\ & = &\Big(\frac{\alpha^{2}}{2}u_{x}^{2}-\alpha uu_{x}-d_{0}u+\frac{\gamma}{2} (v^{2}-v_{x}^{2})\Big)(t, q_{1}(t, x_{0})){} \\ &&-\frac{\gamma}{2\alpha}e^{-\frac{q_{1}(t, x_{0})}{\alpha}} \int_{-\infty}^{q_{1}(t, x_{0})}e^{\frac{\xi}{\alpha}}(v^{2}-v_{x}^{2}){\rm d}\xi -\lambda e^{-\frac{q_{1}(t, x_{0})}{\alpha}}\int_{-\infty}^{q_{1}(t, x_{0})}e^{\frac{\xi}{\alpha}} y{\rm d}\xi{} \\ &&+\frac{1}{\alpha}e^{-\frac{q_{1}(t, x_{0})}{\alpha}} \int_{-\infty}^{q_{1}(t, x_{0})} e^{\frac{\xi}{\alpha}}\left(u^{2}+\frac{\alpha^{2}}{2}u_{x}^{2} +k(y+d_{0})+2d_{0}u\right){\rm d}\xi. \end{eqnarray}
(4.49)

从以上分析,并根据事实

\begin{equation} \int_{-\infty}^{x}e^{\frac{\xi}{\alpha}}\left( (u+d_{0})^{2}+\frac{\alpha^{2}}{2}u_{x}^{2}\right) (t, \xi){\rm d}\xi\geq\frac{\alpha}{2}e^{\frac{x}{\alpha}}(u+d_{0})^{2}, \end{equation}
(4.50)

则在 [0, t_{0}) 上有

\begin{eqnarray} \frac{{\rm d}{\cal F}(t)}{{\rm d}t}+\lambda {\cal F}(t) & = &\left(\frac{\alpha^{2}}{2}u_{x}^{2}-u^{2}-2d_{0}u\right)(t, q_{1}(t, x_{0})) -\frac{\gamma}{2\alpha}e^{-\frac{q_{1}(t, x_{0})}{\alpha}} \int_{-\infty}^{q_{1}(t, x_{0})}e^{\frac{\xi}{\alpha}}(v^{2}-v_{x}^{2}){\rm d}\xi{} \\ &&+\frac{1}{\alpha}e^{-\frac{q_{1}(t, x_{0})}{\alpha}} \int_{-\infty}^{q_{1}(t, x_{0})} e^{\frac{\xi}{\alpha}}\left(u^{2}+\frac{\alpha^{2}}{2}u_{x}^{2} +2d_{0}u\right){\rm d}\xi +\frac{\gamma}{2} (v^{2}-v_{x}^{2})(t, q_{1}(t, x_{0})){} \\ &\geq&\frac{1}{2}\left(\alpha^{2}u_{x}^{2}-(u+d_{0})^{2}\right)(t, q_{1}(t, x_{0})) -\frac{\gamma}{2}C_{1}E(0) -\frac{\gamma}{4\alpha^{2}}E(0)>0, . \end{eqnarray}
(4.51)

根据同样的分析,则在 [0, t_{0}) 上有

\begin{eqnarray} \frac{{\rm d}{\cal G}(t)}{{\rm d}t}+\lambda{\cal G}(t) \leq\frac{1}{2}\left((u+d_{0})^{2}-\alpha^{2}u_{x}^{2}\right)(t, q_{1}(t, x_{0})) +\frac{\gamma}{2}C_{1}E(0) +\frac{\gamma}{4\alpha^{2}}E(0)<0. \end{eqnarray}
(4.52)

值得注意的是,这个假设确保了 {\cal F}(0)>0 {\cal G}(0)<0 ,由此可见(4.51)和(4.52)式在 (0, t_{0}) 上分别为

\begin{equation} {\cal F}(t)\geq e^{-\lambda t} {\cal F}(0)\; \; \mbox{和}\; \; {\cal G}(t)\leq e^{-\lambda t} {\cal G}(0). \end{equation}
(4.53)

因此,则有

\begin{eqnarray} &&(u+d_{0})^{2}(t, q_{1}(t, x_{0})) -\alpha^{2}u_{x}^{2}(t, q_{1}(t, x_{0})){} \\ & = &\frac{1}{\alpha^{2}}\int_{-\infty}^{q_{1}(t_{0}, x_{0})}e^{\frac{\xi}{\alpha}} (y(t_{0}, \xi)+d_{0}){\rm d}\xi\int^{\infty}_{q_{1}(t_{0}, x_{0})}e^{-\frac{\xi}{\alpha}} (y(t_{0}, \xi)+d_{0}){\rm d}\xi{} \\ &< &\left((u+d_{0})^{2}(x_{0}) -\alpha^{2}u_{x}(x_{0})\right)<-\gamma \left(C_{1}+\frac{1}{2\alpha^{2}}\right)E(0)<0, \end{eqnarray}
(4.54)

对于 \lambda<0 .这是一个明显的矛盾.然后, u_{x}(t, q_{1}(t, x_{0})) 是严格递减.另一方面,有

\begin{eqnarray} u_{x}(t, q_{1}(t, x_{0}))& = &-\frac{1}{2\alpha^{2}}e^{-\frac{q_{1}(t, x_{0})}{\alpha}} \int_{-\infty}^{q_{1}(t, x_{0})} e^{\frac{\xi}{\alpha}}\left(y(t, \xi)+d_{0}\right){\rm d}\xi{} \\ &&+\frac{1}{2\alpha^{2}} e^{\frac{q_{1}(t, x_{0})}{\alpha}} \int^{\infty}_{q_{1}(t, x_{0})} e^{-\frac{\xi}{\alpha}}\left(y(t, \xi)+d_{0}\right){\rm d}\xi{} \\ &\leq&-\frac{1}{2\alpha^{2}}e^{-\frac{x_{0}}{\alpha}} \int_{-\infty}^{x_{0}} e^{\frac{\xi}{\alpha}}\left(y_{0}(\xi)+d_{0}\right){\rm d}\xi{} \\ &&+\frac{1}{2\alpha^{2}} e^{\frac{x_{0}}{\alpha}} \int^{\infty}_{x_{0}} e^{-\frac{\xi}{\alpha}}\left(y_{0}(\xi)+d_{0}\right){\rm d}\xi. \end{eqnarray}
(4.55)

通过考虑初始假设,则有 u_{x}(t, q_{1}(t, x_{0}))<0 .这样,就完成了论点3的证明.

其次,通过引入

\begin{eqnarray} h(t) = u_{x}(t, q_{1}(t, x_{0})), \; \; t>0, \end{eqnarray}
(4.56)

则有

\begin{eqnarray} \frac{{\rm d} h(t)}{{\rm d}t}+\lambda h(t)&\leq& \frac{1}{2\alpha^{2}}(u+d_{0})^{2}(t, q_{1}(t, x_{0})) -\frac{1}{2}u_{x}^{2}(t, q_{1}(t, x_{0}))+\frac{\gamma}{2\alpha^{2}} C_{1}E(0)+\frac{\gamma}{4\alpha^{4}}E(0){} \\ &\leq&\frac{1}{2\alpha^{2}}(u+d_{0})^{2}(x_{0}) -\frac{1}{2}u_{x}^{2}(x_{0})+\frac{\gamma}{2\alpha^{2}} C_{1}E(0)+\frac{\gamma}{4\alpha^{4}}E(0)<0. \end{eqnarray}
(4.57)

假设相应的解在时间上是全局存在的.由于 h(t) 在初始假设 h(0)<0 时是严格递减的,所以存在这样一个 t_{1} ,对所有 t>t_{1} ,有

\begin{equation} h(t)<-\frac{1}{\alpha^{2}}\sqrt{2\alpha^{2}\left( \sqrt{C_{1}E(0)}+|d_{0}|\right)^{2}+\gamma(1+2\alpha^{2}C_{1})E(0)}: = -C<0. \end{equation}
(4.58)

然后对 t\in (t_{1}, \infty) ,有

\begin{eqnarray} \frac{{\rm d} h(t)}{{\rm d}t}+\lambda h(t)&\leq& \frac{1}{2\alpha^{2}}(u+d_{0})^{2}(t, q_{1}(t, x_{0})) -\frac{1}{2}u_{x}^{2}(t, q_{1}(t, x_{0}))+\frac{\gamma}{2\alpha^{2}} C_{1}E(0)+\frac{\gamma}{4\alpha^{4}}E(0){} \\ &\leq&-\frac{1}{2}h^{2}(t)+\frac{2\alpha^{2}(\sqrt{C_{1}E(0)}+|d_{0}|)^{2}+ \gamma(1+2\alpha^{2}C_{1})E(0)}{4\alpha^{4}}{} \\ &\leq&-\frac{1}{4}h^{2}(t). \end{eqnarray}
(4.59)

求解不等式(4.59)得到

\begin{equation} h(t)\leq \frac{4\lambda h(t_{1})}{(h(t_{1})+4\lambda)e^{\lambda(t-t_{1})}-h(t_{1})}. \end{equation}
(4.60)

我们可以证明当 t\rightarrow t_{1}+\frac{1}{\lambda}\ln\left(\frac{h(t_{1})}{h(t_{1})+4\lambda}\right) h(t)\rightarrow\infty .表明对应的解并不全局存在,即出现爆破波.

对于 t_{1} ,我们回忆(4.57)式,有

\begin{eqnarray} \frac{{\rm d} h(t)}{{\rm d}t}+\lambda h(t) \leq\frac{1}{2\alpha^{2}}(u+d_{0})^{2}(x_{0}) -\frac{1}{2}u_{x}^{2}(x_{0})+\frac{\gamma}{2\alpha^{2}} C_{1}E(0)+\frac{\gamma}{4\alpha^{4}}E(0). \end{eqnarray}
(4.61)

如果 h(0)<-C ,可以选择 t_{1} = 0 .另外,如果 h(0)>-C h(t_{1}) = -e^{-\lambda t_{1}}C ,将(4.57)式从 0 t_{1} 积分得到

\begin{eqnarray} -C-h(0)\leq \left(\frac{1}{2\alpha^{2}}(u_{0}(x_{0})+d_{0})^{2} -\frac{1}{2}u_{0x}^{2}(x_{0})+\frac{\gamma(1+2\alpha^{2}C_{1})}{4\alpha^{4}}E(0)\right)t_{1}. \end{eqnarray}
(4.62)

因此,我们有

\begin{equation} t_{1}\leq -\frac{C+h(0)}{\left(\frac{1}{2\alpha^{2}}(u_{0}(x_{0})+d_{0})^{2} -\frac{1}{2}u_{0x}^{2}(x_{0})+\frac{\gamma(1+2\alpha^{2}C_{1})}{4\alpha^{4}}E(0)\right)}. \end{equation}
(4.63)

则时间 t_{1} 可以被选择为

\begin{equation} t_{1} = -\frac{C+h(0)}{\left(\frac{1}{2\alpha^{2}}(u_{0}(x_{0})+d_{0})^{2} -\frac{1}{2}u_{0x}^{2}(x_{0})+\frac{\gamma(1+2\alpha^{2}C_{1})}{4\alpha^{4}}E(0)\right)}. \end{equation}
(4.64)

证毕.

基于定理4.2的证明,我们给出下面的结论.

定理4.3  设 (u_{0}, v_{0})\in H^{s}({{\Bbb R}} )\times H^{s-1}({{\Bbb R}} ) ,且 s\geq\frac{5}{2} .如果存在 x_{0}\in {{\Bbb R}} y_{0}(x_{0}) = u_{0}(x_{0})-\alpha^{2}u_{0xx}(x_{0}) = 0 , \rho_{0}(x_{0}) = \rho_{0}(x_{0})-\rho_{0xx}(x_{0}) = 0 和不等式(4.22).设 \lambda 满足不等式

\begin{equation} \lambda<\frac{1}{8\alpha^{2}}e^{-\frac{q_{1}(t, x_{0})}{\alpha}} \int_{-\infty}^{q_{1}(t, x_{0})} e^{\frac{\xi}{\alpha}}\left(y(t, \xi)+d_{0}\right){\rm d}\xi-\frac{1}{8\alpha^{2}} e^{\frac{q_{1}(t, x_{0})}{\alpha}} \int^{\infty}_{q_{1}(t, x_{0})} e^{-\frac{\xi}{\alpha}}\left(y(t, \xi)+d_{0}\right){\rm d}\xi. \end{equation}
(4.65)

那么具有初始数据 (u_{0}, v_{0}) 的系统(2.2)的解在有限时间内爆破.

  这个证明的前半部分类似于定理4.2.基于(4.59)式,则有

\begin{eqnarray} \frac{{\rm d} h(t)}{{\rm d}t}+\lambda h(t) \leq -\frac{1}{4}h^{2}(t)\; \; \mbox{对}\; \; t\in (t_{1}, \infty). \end{eqnarray}
(4.66)

t\geq 0 h(t)<0 ,从(4.66)式中可以看出

\begin{equation} \frac{\rm d}{{\rm d}t}\left(\frac{1}{h(t)}\right)-\frac{\lambda}{h(t)}\geq\frac{1}{4}, \; \; t\geq 0. \end{equation}
(4.67)

从(4.67)式,则有

\begin{equation} \left(\frac{1}{h(0)}+\frac{1}{4\lambda}\right)e^{\lambda t}-\frac{1}{4\lambda} \leq \frac{1}{h(t)}<0, \; \; t\geq 0. \end{equation}
(4.68)

通过考虑定理的假设,我们可以推导出

\begin{equation} \frac{1}{h(0)}+\frac{1}{4\lambda}>0, \end{equation}
(4.69)

这表明

\begin{equation} \left(\frac{1}{h(0)}+\frac{1}{4\lambda}\right)e^{\lambda t}\rightarrow\infty, \; \; \mbox{当}\; \; t\rightarrow\infty. \end{equation}
(4.70)

结合(4.68)式,可以发现与定理4.2证明中所提供的假设相矛盾的地方.因此,有初始数据 (u_{0}, v_{0}) 的系统(2.2)的解在有限时间内爆破.证毕

定理4.4  令 (u_{0}, v_{0})\in H^{s}\times H^{s-1} s\geq\frac{5}{2} 为初始数据.如果存在一个 x_{0}\in {{\Bbb R}} 满足

\begin{equation} u'_{0}(x_{0})<-\lambda- \sqrt{\lambda^{2}+\frac{(\sqrt{C_{1}E(0)}+|d_{0}|)^{2}}{\alpha^{2}}+ \frac{\gamma(1+2\alpha^{2}C_{1})E(0)}{2\alpha^{4}}}. \end{equation}
(4.71)

则系统(2.2)的相应解在有限时间内爆破.

  根据定理4.2,则在 [0, T) 上有

\begin{eqnarray} \frac{{\rm d} h(t)}{{\rm d}t} &\leq&-\frac{1}{2}h^{2}(t)-\lambda h(t)+\frac{(\sqrt{C_{1}E(0)}+|d_{0}|)^{2}}{2\alpha^{2}}+ \frac{\gamma(1+2\alpha^{2}C_{1})E(0)}{4\alpha^{4}}{} \\ &\leq&-\frac{1}{2}\left(h(t)+\lambda+ \sqrt{\lambda^{2}+\frac{(\sqrt{C_{1}E(0)}+|d_{0}|)^{2}}{\alpha^{2}}+ \frac{\gamma(1+2\alpha^{2}C_{1})E(0)}{2\alpha^{4}}}\right){} \\ &&\times\left(h(t)+\lambda- \sqrt{\lambda^{2}+\frac{(\sqrt{C_{1}E(0)}+|d_{0}|)^{2}}{\alpha^{2}}+ \frac{\gamma(1+2\alpha^{2}C_{1})E(0)}{2\alpha^{4}}}\right), \end{eqnarray}
(4.72)

其中 h(t) = u_{x}(t, q_{1}(t, x_{0})) .根据该定理的假设,可以得到 \frac{{\rm d}h(t)}{{\rm d}t}|_{t = 0}< 0 .然后,根据与定理4.1的证明相似的论证,可以很容易地得到这个定理的证明.证毕.

定理4.5  令 (u_{0}, v_{0})\in H^{s}({{\Bbb R}} )\times H^{s-1}({{\Bbb R}} ) s\geq\frac{5}{2} .如果存在一个 x_{0}\in {{\Bbb R}}

\begin{eqnarray} u'_{0}(x_{0})<-\lambda+\sqrt{\lambda^{2}+\frac{1}{\alpha^{2}} (\sqrt{C_{1}E(0)}+|d_{0}|)^{2}+\frac{\gamma}{2\alpha}E(0)+\gamma C_{1}E(0)}. \end{eqnarray}
(4.73)

那么,初始数据 (u_{0}, v_{0}) 的系统(2.2)的解只在有限时间内存在,即发生爆破波.

  假设 (u, v) 是有初始数据 (u_{0}, v_{0}) 的系统(2.2)的解.令 T 为解的最大存在时间.引入

\begin{equation} H(t) = \inf\limits_{x\in{{\Bbb R}} }\{u_{x}(t, x)\} = u_{x}(t, \xi(t)), \end{equation}
(4.74)

这意味着 H 几乎在 [0, T) 上任何地方都是可微的,且有

\begin{equation} \frac{{\rm d}H(t)}{{\rm d}t} = u_{tx}(t, \xi(t)). \end{equation}
(4.75)

根据 u_{xx}(t, \xi(t)) = 0 和(4.3)式,则有

\begin{eqnarray} \frac{{\rm d}H(t)}{{\rm d}t}& = &-H(t)^{2}-\lambda H(t)-\frac{1}{\alpha^{2}} G\ast \left(2d_{0}u+u^{2}+\frac{\alpha^{2}}{2}u_{x}^{2}+\frac{\gamma}{2} v^{2}-\frac{\gamma}{2}v_{x}^{2}\right){} \\ & &+\frac{1}{\alpha^{2}} \left(2d_{0}u+u^{2}+\frac{\alpha^{2}}{2}u_{x}^{2}+\frac{\gamma}{2} v^{2}-\frac{\gamma}{2}v_{x}^{2}\right){} \\ &\leq&-\frac{1}{2}H(t)^{2}-\lambda H(t)+\frac{1}{2\alpha^{2}} \left((\sqrt{C_{1}E(0)}+|d_{0}|)^{2}+\frac{\gamma}{2\alpha}E(0)+ \gamma C_{1}E(0)\right){} \\ & : = &-\frac{1}{2}H(t)^{2}-\lambda H(t)+H_{0} \end{eqnarray}
(4.76)

通过使用(4.23),其中 H_{0}>0 可以被给出

\begin{equation} H_{0} = \frac{1}{2\alpha^{2}} \left((\sqrt{C_{1}E(0)}+|d_{0}|)^{2}+\frac{\gamma}{2\alpha}E(0)+ \gamma C_{1}E(0)\right)>0. \end{equation}
(4.77)

如果 H(0)<-\lambda+\sqrt{\lambda^{2}+2H_{0}} ,则

\begin{equation} \lim\limits_{t\rightarrow T}H(t) = -\infty, \end{equation}
(4.78)

对一些 T>0 .因此,我们可以证明这个定理是成立的.证毕

在下面的定理中,我们证明了在周期情况下可能会发生爆破波.我们使用 {\Bbb S}: = {{\Bbb R}} /{\Bbb Z} 作为单位圆.我们首先引入一个引理来证明这个定理.

引理4.1  令 f(x)\in H^{2}({\Bbb S}) .因此

\begin{equation} f^{2}(x)\leq \frac{1}{\alpha}\|f(x)\|^{2}_{H_{\alpha}^{1}} +\left(\int_{{\Bbb S}}f(x){\rm d}x\right)^{2}. \end{equation}
(4.79)

由于 f(x) {\Bbb S} 上是连续的,因此存在一个点 x_{0}\in {\Bbb S} 满足 \int_{{\Bbb S}}f(x){\rm d}x = f(x_{0}) .对于任何的 x\in{\Bbb S} ,我们有

\begin{eqnarray} \alpha\left(f^{2}(x)-\left(\int_{{\Bbb S}}f(x){\rm d}x\right)^{2}\right) = \alpha(f^{2}(x)-f^{2}(x_{0})) = \alpha\int_{x_{0}}^{x}2ff_{x}{\rm d}x\leq \|f(x)\|^{2}_{H^{1}_{\alpha}}. \end{eqnarray}
(4.80)

不等式(4.80)产生引理.同样的方法则有

\begin{equation} f^{2}(x)\leq \|f(x)\|^{2}_{H^{1}} +\left(\int_{{\Bbb S}}f(x){\rm d}x\right)^{2}. \end{equation}
(4.81)

定理4.6  令 (u_{0}, v_{0})\in H^{s}({{\Bbb R}} )\times H^{s-1}({{\Bbb R}} ) s\geq\frac{5}{2} 2c_{0}+\frac{\beta}{\alpha^{2}} = 0 为初始数据.如果存在 x_{0}\in {\Bbb S} ,则

\begin{eqnarray} u'_{0}(x_{0})<-\lambda-\sqrt{\lambda^{2}+\frac{2(1-C_{0})}{\alpha^{2}}D_{1} +\frac{\gamma}{2\alpha^{2}}E(0)+\frac{\gamma}{\alpha^{2}} D_{2}}\ , \end{eqnarray}
(4.82)

其中 C_{0} , D_{1} D_{2} 被如下给出

\begin{equation} C_{0} = \frac{1}{2}+\frac{\arctan\left(\sinh\left(\frac{1}{2\alpha}\right)\right)} {2\sinh\left(\frac{1}{\alpha}\right)+2\arctan\left(\sinh\left(\frac{1}{2\alpha}\right)\right) \sinh^{2}\left(\frac{1}{2\alpha}\right)}, \end{equation}
(4.83)

\begin{equation} D_{1} = \frac{1}{\alpha}E(0)+\left(\int_{{\Bbb S}}u_{0}(x){\rm d}x\right)^{2}, \; \; D_{2} = E(0)+\left(\int_{{\Bbb S}}v_{0}(x){\rm d}x\right)^{2}. \end{equation}
(4.84)

则有初始数据 (u_{0}, v_{0}) 的系统(2.2)的解在有限时间内爆破.

  基于这个事实 \int_{{\Bbb S}}u(t, x){\rm d}x \int_{{\Bbb S}}v(t, x){\rm d}x 关于时间 t 的不变量,可以得到以下 u v 的估计数

\begin{equation} u^{2}(x)\leq\frac{1}{\alpha}\|u(x)\|_{H^{1}_{\alpha}}^{2} +\left(\int_{{\Bbb S}}u(x){\rm d}x\right)^{2} \leq\frac{1}{\alpha}E(0) +\left(\int_{{\Bbb S}}u_{0}(x){\rm d}x\right)^{2}: = D_{1}, \end{equation}
(4.85)

\begin{equation} v^{2}(x)\leq\frac{1}{\alpha}\|v(x)\|_{H^{1}_{\alpha}}^{2} +\left(\int_{{\Bbb S}}v(x){\rm d}x\right)^{2} \leq\frac{1}{\alpha}E(0) +\left(\int_{{\Bbb S}}v_{0}(x){\rm d}x\right)^{2}: = D_{2}, \end{equation}
(4.86)

通过运用引理4.1.根据文献[20]的结果,进一步得到了Sobolev不等式

\begin{equation} G\ast \left(u^{2}+\frac{\alpha^{2}}{2}u_{x}^{2}\right)(x)\geq C_{0} u^{2}(x). \end{equation}
(4.87)

按照与定理4.5相同的方法,可以得到

\begin{eqnarray} \frac{{\rm d}H(t)}{{\rm d}t}& = &-H(t)^{2}-\lambda H(t)-\frac{1}{\alpha^{2}} G\ast \left(u^{2}+\frac{\alpha^{2}}{2}u_{x}^{2}+\frac{\gamma}{2} v^{2}-\frac{\gamma}{2}v_{x}^{2}\right){} \\ & &+\frac{1}{\alpha^{2}} \left(u^{2}+\frac{\alpha^{2}}{2}u_{x}^{2}+\frac{\gamma}{2} v^{2}-\frac{\gamma}{2}v_{x}^{2}\right){} \\ &\leq&-\frac{1}{2}H(t)^{2}-\lambda H(t)+\frac{1-C_{0}}{\alpha^{2}}D_{1} +\frac{\gamma}{4\alpha^{3}}E(0)+\frac{\gamma}{2\alpha^{2}}D_{2}. \end{eqnarray}
(4.88)

可以看出不等式(4.88)是一个Riccati类型的方程.根据与定理4.5相同的证明,可以看出这个定理是成立的.证毕.

注4.1  在最后两个定理的证明中,我们对 u(t, x) v(t, x) 给出了不同的估计.按照文献 [9] 中提供的相同方法,我们也可以找到一些有趣的例子来揭示它们之间的区别.

5 爆破率

在本节,我们介绍了系统(2.2)爆破波解的爆破机制.

引理5.1[3]  假设 T>0 u\in C^{1}([0, T);H^{2}({{\Bbb R}} ) ,那么对于所有 t\in[0, T) ,至少存在一个点 \xi(t)\in {{\Bbb R}} ,使得

\begin{equation} H(t): = \inf\limits_{x\in{{\Bbb R}} }u_{x}(t, x) = u_{x}(t, \xi(t)). \end{equation}
(5.1)

函数 H(t) (0, T) 上是可微的,且

\begin{equation} \; \; \frac{{\rm d}H(t)}{{\rm d}t} = u_{tx}(t, \xi(t)). \end{equation}
(5.2)

定理5.1  假设 (u_{0}, v_{0})\in H^{s}({{\Bbb R}} )\times H^{s-1}({{\Bbb R}} ) s\geq\frac{5}{2} 是初始数据,其中 T 为系统(2.2)对应解的最大存在时间.如果 T 是有限的,则

\begin{eqnarray} \lim\limits_{t\rightarrow T}\left(\inf\limits_{x\in{{\Bbb R}} } u_{x}(t, x) (T-t)\right) = -2. \end{eqnarray}
(5.3)

  根据定理2.2,有

\begin{equation} \lim\limits_{t\rightarrow T}\inf\limits_{x\in{{\Bbb R}} }\{u_{x}(t, x)\} = -\infty. \end{equation}
(5.4)

根据引理5.1,我们可以证明至少存在一个点 \xi(t)\in{{\Bbb R}} 满足 { } u_{x}(t, \xi(t)) = \inf_{x\in {{\Bbb R}} }\{u_{x}(t, x)\} 对所有 t\in[0, T) .引入

\begin{equation} H(t) = u_{x}(t, \xi(t)) = \inf\limits_{x\in{{\Bbb R}} }\{u_{x}(t, x)\}, \; \; t\in[0, T), \end{equation}
(5.5)

因此对于每一个 t\in [0, T) u_{xx}(t, \xi(t)) = 0 .从(4.3)式,则有

\begin{eqnarray} \frac{{\rm d}H(t)}{{\rm d}t}& = &-H(t)^{2}-\lambda H(t)-\frac{1}{\alpha^{2}} G\ast \left(2d_{0}u+u^{2}+\frac{\alpha^{2}}{2}u_{x}^{2}+\frac{\gamma}{2} v^{2}-\frac{\gamma}{2}v_{x}^{2}\right)(t, \xi(t)){} \\ & &+\frac{1}{\alpha^{2}} \left(2d_{0}u+u^{2}+\frac{\alpha^{2}}{2}u_{x}^{2}+\frac{\gamma}{2} v^{2}-\frac{\gamma}{2}v_{x}^{2}\right)(t, \xi(t)). \end{eqnarray}
(5.6)

通过运用引理2.3,进一步有

\begin{eqnarray} &&\left| \left( G\ast \left(2d_{0}u+u^{2}+\frac{\alpha^{2}}{2}u_{x}^{2}+\frac{\gamma}{2} v^{2}-\frac{\gamma}{2}v_{x}^{2}\right)\right)(t, \xi(t))\right|_{L^{\infty}}{} \\ &\leq&\|G\|_{L^{\infty}}\left\|2d_{0}u+u^{2}+\frac{\alpha^{2}}{2}u_{x}^{2}+\frac{\gamma}{2} v^{2}-\frac{\gamma}{2}v_{x}^{2}\right\|_{L^{1}}{} \\ &\leq&\tilde{\gamma}_{0} C_{1}E(0)+\sqrt{2d_{0}C_{1}E(0)}, \end{eqnarray}
(5.7)

对所有 t\in[0, T) ,其中 \tilde{\gamma}_{0} = \max\{1, \gamma\} .然后运用引理2.3,引理2.4和不等式(5.7),我们可以证明存在一个常数 L>0 满足

\begin{eqnarray} &&\left|-\frac{1}{\alpha^{2}} G\ast \left(2d_{0}u+u^{2}+\frac{\alpha^{2}}{2}u_{x}^{2}+\frac{\gamma}{2} v^{2}-\frac{\gamma}{2}v_{x}^{2}\right)(t, \xi(t))\right.{} \\ & &\left. +\frac{1}{\alpha^{2}} \left(2d_{0}u+u^{2}+\frac{\alpha^{2}}{2}u_{x}^{2}+\frac{\gamma}{2} v^{2}-\frac{\gamma}{2}v_{x}^{2}\right)(t, \xi(t))\right|\leq L, \; \; \mbox{即在}\; \; t\in[0, T). \end{eqnarray}
(5.8)

根据(5.6)式,则有

\begin{equation} \left|\frac{{\rm d}H(t)}{{\rm d}t}+\frac{1}{2}H(t)^{2}+\lambda H(t)\right| \leq L\; \; \mbox{即在}\; \; t\in[0, T). \end{equation}
(5.9)

因此

\begin{equation} \left|\frac{{\rm d}H(t)}{{\rm d}t}+\frac{1}{2}(H(t)+\lambda)^{2}\right| \leq \frac{1}{2}\lambda^{2}+L\; \; \mbox{即在}\; \; t\in[0, T). \end{equation}
(5.10)

考虑(5.4)式生成 { } \lim\limits_{t\uparrow T}\inf(H(t)+\lambda) = -\infty . \epsilon\in(0, \frac{1}{2}) 存在一个 t_{1}\in (0, T) 满足 H(t_{1})+\lambda<0

\begin{equation} (H(t_{1})+\lambda)^{2}>\frac{1}{\epsilon}\left(L+\frac{1}{2}\lambda^{2}\right). \end{equation}
(5.11)

因此我们有

\begin{equation} (H(t)+\lambda)^{2}>\frac{1}{\epsilon}\left(L+\frac{1}{2}\lambda^{2}\right), \; \; t\in[t_{1}, T). \end{equation}
(5.12)

因为 H(t)\in W_{\mbox{loc}}^{1, \infty} 是局部Lipschitz,其中一些 \delta>0 满足

\begin{equation} (H(t)+\lambda)^{2}>\frac{1}{\epsilon}\left(L+\frac{1}{2}\lambda^{2}\right), \; \; t\in[t_{1}, t_{1}+\delta). \end{equation}
(5.13)

考虑(5.10)和(5.12)式,获得

\begin{equation} \frac{{\rm d}H(t)}{{\rm d}t} \leq \left(\epsilon-\frac{1}{2}\right)(H(t)+\lambda)^{2}\; \; \mbox{即在}\; \; t\in[t_{1}, t_{1}+\delta). \end{equation}
(5.14)

由于 H(t) 是局部Lipschitz,所以它也是连续的.因此通过在 [t_{1}, t_{1}+\delta] 对不等式(5.14)积分,能够找到 H(t_{1}+\delta)\leq H(t_{1}) .因此有

\begin{equation} H(t_{1}+\delta)+\lambda\leq H(t_{1})+\lambda<0. \end{equation}
(5.15)

通过运用不等式(5.15),进一步有

\begin{equation} (H(t_{1}+\delta)+\lambda)^{2}\geq (H(t_{1})+\lambda)^{2}>\frac{1}{\epsilon} (L+\frac{1}{2}\lambda^{2}). \end{equation}
(5.16)

通过使用连续扩展,可以证明不等式(5.12)是新的.结合(5.10)和(5.12)式,则当 t\in[t_{1}, T) 时有

\begin{equation} \left|\frac{2\frac{{\rm d}H(t)}{{\rm d}t}+(H(t)+\lambda)^{2}}{2(H(t)+\lambda)^{2}} \right|<\epsilon. \end{equation}
(5.17)

通过在 (t, T) 上对(5.17)式积分,可以发现

\begin{equation} \left|\frac{2+(H(t)+\lambda)(T-t)}{2(H(t)+\lambda)(T-t)}\right|<\epsilon, \; \; t\in[t_{1}, T). \end{equation}
(5.18)

\epsilon\rightarrow 0 生成

\begin{equation} \lim\limits_{t\rightarrow T}\left((H(t)+\lambda)(T-t)\right) = -2, \end{equation}
(5.19)

这相当于

\begin{equation} \lim\limits_{t\rightarrow T}\left(H(t)(T-t)\right) = -2. \end{equation}
(5.20)

证毕.

注5.1  由定理4.1–4.6,可以看出,系统(1.3)强解的爆破现象受耗散参数的影响.然而,根据定理5.1,系统(1.3)强解的爆破率不受弱耗散项 \lambda(u-\alpha^{2}u_{xx}) \lambda\rho 的影响.

参考文献

Camassa R , Holm D .

An integrable shallow water equation with peaked solitons

Phys Rev Lett, 1993, 71, 1661- 1664

DOI:10.1103/PhysRevLett.71.1661      [本文引用: 1]

Camassa R , Holm D , Hyman J .

A new integrable shallow water equation

Adv Appl Mech, 1994, 31, 1- 33

DOI:10.1016/S0065-2156(08)70254-0      [本文引用: 1]

Constantin A , Escher J .

Wave breaking for nonlinear nonlocal shallow water equations

Acta Mathematica, 1998, 181, 229- 243

DOI:10.1007/BF02392586      [本文引用: 1]

Constantin A , Lannes D .

The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations

Arch Ration Mech Anal, 2009, 192, 165- 186

DOI:10.1007/s00205-008-0128-2      [本文引用: 1]

Constantin A , Kolev B .

On the geometric approach to the motion of inertial mechanical systems

J Phys A, 2002, 35 (32): R51- R79

DOI:10.1088/0305-4470/35/32/201      [本文引用: 1]

Fokas A , Fuchssteiner B .

Symplectic structures, their Bäcklund transformation and hereditary symmetries

Phys D, 1981, 4, 47- 66

DOI:10.1016/0167-2789(81)90004-X      [本文引用: 1]

Ghidaglia J M .

Weakly damped forced Korteweg-de Vries equations behave as a finite dimensional dynamical system in the long time

J Differential Equations, 1988, 74, 369- 390

DOI:10.1016/0022-0396(88)90010-1      [本文引用: 1]

Guo F , Gao H , Liu Y .

On the wave-breaking phenomena for the two-component Dullin-Gottwald-Holm system

J London Math Soc, 2012, 86, 810- 834

DOI:10.1112/jlms/jds035      [本文引用: 1]

Guo Z .

Blow-up and global solutions to a new integrable model with two components

J Math Anal Appl, 2010, 372, 316- 327

DOI:10.1016/j.jmaa.2010.06.046     

Holm D , Ó Náraigh L , Tronci C .

Singular solutions of a modified two-component Camassa-Holm equation

Phys Rev E, 2009, 79, 016601

DOI:10.1103/PhysRevE.79.016601      [本文引用: 2]

Ivanov R .

Two-component integrable systemsmodelling shallow water waves:The constant vorticity case

Wave Motion, 2009, 46, 389- 396

DOI:10.1016/j.wavemoti.2009.06.012      [本文引用: 1]

Ionescu-Kruse D .

Variational derivation of the Camassa-Holm shallow water equation

J Nonlinear Math Phys, 2007, 14, 303- 312

URL     [本文引用: 1]

Kato T. Quasi-linear Equations of Evolution, with Applications to Partial Differential Equations//Everitt N. Spectral Theory and Differential Equations. Berlin: Springer-Verlag, 1975

[本文引用: 1]

Mustafa O G .

Existence and uniqueness of low regularity solutions forthe Dullin-Gottwald-Holm equation

Comm Math Phys, 2006, 265, 189- 200

DOI:10.1007/s00220-006-1532-9      [本文引用: 1]

Novruzov E .

Blow-up of solutions for the dissipative Dullin-Gottwald-Holm equation with arbitrary coefficients

J Differential Equations, 2016, 261, 1115- 1127

DOI:10.1016/j.jde.2016.03.034      [本文引用: 2]

Ott E , Sudan RN .

Damping of solitary waves

Phys Fluids, 1970, 13, 1432- 1434

DOI:10.1063/1.1693097      [本文引用: 1]

Tian L , Gui G , Liu L .

On the Cauchy problem and the scattering problem for the Dullin-Gottwald-Holm equation

Comm Math Phys, 2005, 257 (3): 667- 701

URL     [本文引用: 1]

Zhu M , Xu J .

On the wave-breaking phenomena for the periodic two-component Dullin-Gottwald-Holm system

J Math Anal Appl, 2012, 391, 415- 428

DOI:10.1016/j.jmaa.2012.02.058      [本文引用: 1]

Zhai P P , Guo Z G , Wang W M .

Wave breaking phenomenon for a modified two-component Dullin-Gottwald-Holm equation

J Math Phys, 2014, 55, 093101

DOI:10.1063/1.4894368      [本文引用: 2]

Zhou Y .

Blow-up of solutions to the DGH equation

J Funct Anal, 2007, 250, 227- 248

DOI:10.1016/j.jfa.2007.04.019      [本文引用: 1]

/