Processing math: 8%

数学物理学报, 2020, 40(5): 1186-1191 doi:

论文

一类次线性双调和方程变号解的存在性与多重性

包贵,, 孙倩,

Existence and Multiplicity of Sign-Changing Solutions for a Bi-Harmonic Equation with Sublinear Nonlinearity

Bao Gui,, Sun Qian,

通讯作者: 包贵, E-mail: baoguigui@163.com

收稿日期: 2018-11-14  

Received: 2018-11-14  

作者简介 About authors

孙倩,E-mail:julysunqian@gmail.com , E-mail:julysunqian@gmail.com

摘要

该文研究了一类带有p-Laplacian和Neumann边值条件的次线性双调和问题.利用变分方法得到了该问题变号解的存在性与多重性.

关键词: 次线性 ; 双调和方程 ; p-Laplacian ; Neumann边值条件

Abstract

In this paper, we study a class of sublinear biharmonic equation with p-Laplacian and Neumann boundary condition. By using a dual approach, we prove the existence and multiplicity of sign-changing solutions for the problem.

Keywords: Sublinear ; Biharmonic equation ; p-Laplacian ; Neumann boundary condition

PDF (244KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

包贵, 孙倩. 一类次线性双调和方程变号解的存在性与多重性. 数学物理学报[J], 2020, 40(5): 1186-1191 doi:

Bao Gui, Sun Qian. Existence and Multiplicity of Sign-Changing Solutions for a Bi-Harmonic Equation with Sublinear Nonlinearity. Acta Mathematica Scientia[J], 2020, 40(5): 1186-1191 doi:

1 引言

该文考虑如下形式的双调和方程

{Δ2uλΔpu=f(x,u)μ1|Ω|Ωf(y,u(y))dy,xΩ,un=(Δu)n=0,xΩ,
(1.1)

其中ΩRN(N1)中带有光滑边界Ω的有界区域, |Ω|Ω的测度, λ0, μR为参数, fC(ˉΩ×R,R), Δpu=div(|u|p2u), 2<p<2,这里2:=,当1N2; 2:=2NN2,当N>2.

近年来,四阶方程问题备受关注,已有许多结果,见文献[1-14]及其参考文献.例如,文献[7]中讨论如下带有p-Laplacian项的双调和方程

{Δ2uλΔpu+μV(x)u=f(x,u),xRN,uH2(RN),
(1.2)

其中f(x,u)满足超线性条件.利用山路引理,作者得到了方程(1.2)的非平凡解的存在性和多解性.更多双调和方程非平凡解的存在性及变号解的存在性问题,参见文献[10-14].

问题(1.1)可用于描述纳米薄膜外延生长的演化,详见文献[1, 3-6, 8].文献[6]讨论了问题(1.1)的超线性情形.利用喷泉定理,得到了无穷多变号解的存在性.

受文献[6]启发,本文将讨论问题(1.1)的次线性情形.首先作如下假设.

(F1)  lim x\in\Omega 一致成立.

({\rm F}_2)   存在参数 C>0 1<\sigma<2 使得 f\in C(\bar{\Omega} \times{{\Bbb R}} , {{\Bbb R}} ) ,

|f(x, t)|\leq b(x)|t|^{\sigma-1}, \; \; \forall (x, t)\in(\Omega\times{{\Bbb R}} ),

其中 b(x)\in L^{\frac{2}{2-\sigma}}(\Omega) .

({\rm F}_3)    f(x, -t) = -f(x, t) , \forall (x, t)\in(\Omega\times{{\Bbb R}} ) .

F(x, v) = \int_0^vf(x, s){\rm d}s .本文主要结果如下.

定理 1.1   假设 ({\rm F}_1) ({\rm F}_2) 成立.则问题(1.1)至少存在一个变号解.

定理 1.2   假设 ({\rm F}_1) ({\rm F}_3) 成立.则问题(1.1)存在无穷多变号解 \{v_k\} ,且满足当 k\to\infty 时,有

\frac{1}{2}\int_{\Omega }(|\Delta v_k|^2){\rm d}x+\frac{\lambda}{\mu}\int_{\Omega }|\nabla v_k|^p{\rm d}x-\int_{\Omega }F(x, v_k){\rm d}x\to0^-

v_k\to0 .

2 预备知识

L^p(\Omega), 1\leq p\leq +\infty 为Lebesgue空间,其范数为 |\cdot|_{p}. H^2(\Omega) 为通常的Sobolev空间,范数为

\|v\|_{H^2} = \Big(\int_{\Omega}(|v|^2+|\nabla v|^2+|\Delta v|^2){\rm d}x\Big)^{\frac{1}{2}}.

定义

E: = \Big\{v\in H^2(\Omega):\frac{\partial v}{\partial n}\mid_{\partial\Omega} = 0\; \mbox{且}\; \int_{\Omega}v{\rm d}x = 0\Big\}.

E 中的任意非零元 u \Omega 上几乎处处变号.由文献[6]可知, E 是一个Hilbert空间,其內积范数为 (v, w) = \int_{\Omega}\Delta v\cdot\Delta w{\rm d}x .此外,范数 \|v\|: = (v, v)^{\frac{1}{2}} = |\Delta v|_2 等价于 E 的范数 \|\cdot\|_{H^2} .

定义 2_*: = \infty ,若 1\leq N\leq4 ; 2_*: = \frac{2N}{N-4} ,若 N>4 .注意到 E\hookrightarrow L^p(\Omega)(1< p<2_*) H^1(\Omega)\hookrightarrow L^t(\Omega)(1< q<2^*) 都是紧嵌入.类似于文献[6, Lemma 2.2],可得如下引理.

引理 2.1   假设 v\in E , 1< p< 2^* 以及 1< t< 2_* .则存在正参数 \tau_1 \tau_2 使得对于 v\in E ,有 |\nabla v|_p\leq \tau_1\|v\| |v|_t\leq \tau_2\|v\| 成立.

定义 2.1   假若 v\in E 满足

\begin{eqnarray*} \int_{\Omega }\Delta v\Delta w{\rm d}x+\lambda\int_{\Omega}|\nabla v|^{p-2}\nabla v\cdot\nabla w{\rm d}x-\int_{\Omega}f(x, v)w{\rm d}x = 0, \; \; \forall w\in E, \end{eqnarray*}

则称 v 为问题(1.1)的弱解.

考虑泛函 I

I(v) = \frac{1}{2}|\Delta v|^2_2+\frac{\lambda}{p}|\nabla v|^p_p-\int_{\Omega }F(x, v){\rm d}x.

众所周知, I C^1 泛函,且

\begin{eqnarray*} \langle I'(v), w\rangle = \int_{\Omega }\Delta v\Delta w{\rm d}x+\lambda\int_{\Omega}|\nabla v|^{p-2}\nabla v\cdot\nabla w{\rm d}x-\int_{\Omega}f(x, v)w{\rm d}x, \; v, w\in E. \end{eqnarray*}

泛函 I 的临界点即为问题(1.1)的解.

下述引理参见文献[9].

引理 2.2   假设 E 为实Banach空间, I\in C^1(E, {{\Bbb R}} ) 满足Palais-Smale条件 {\rm(PS)} . I 下方有界,则 c = \inf_EI I 的临界值.

\Gamma_k E 中的闭对称子集族 A 且满足 0 \notin A \gamma(A)\geq k .下述临界点定理参见文献[2].

引理 2.3   假设 E 为无穷维Banach空间, I\in C^1(E, {\Bbb R}) 满足

({\rm A}_1)    I(v) 为偶,下方有界, I(0) = 0 I(v) 满足 {\rm(PS)} 条件;

({\rm A}_2)   对每个 k \in{\Bbb N} ,存在 A_k\in \Gamma_k 使得 { }\sup_{v\in A_k} I(v) < 0 .

则存在 I(v) 的临界点列 {v_k} 满足 I(v_k)\leq0, v_k\neq0 { }\lim_{k\to\infty} v_k = 0 .

3 定理的证明

引理 3.1    I 下方有界且满足(PS)条件.

  由条件 ({\rm F}_2) 可得

\begin{equation} |F(x, v)|\leq \frac{b(x)}{\sigma}|v|^{\sigma}, \; \; \forall(x, v)\in(\Omega , {{\Bbb R}} ). \end{equation}
(3.1)

对任意给定的 v\in E .由(3.1)式和Hölder不等式,有

\begin{eqnarray} I(v)& = & \frac{1}{2}\|v\|^2+\frac{\lambda}{p}|\nabla v|^p_p- \int_{\Omega }F(x, v){\rm d}x\\ &\geq&\frac{1}{2}\|v\|^2+\frac{\lambda}{p}|\nabla v|^p_p- \int_{\Omega}\frac{b(x)}{\sigma}|v|^{\sigma}{\rm d}x\\ &\geq&\frac{1}{2}\|v\|^2- \frac{1}{\sigma}|b(x)|_{\frac{2}{2-\sigma}}|v|_2^{\sigma}\\ &\geq&\frac{1}{2}\|v\|^2-\frac{\tau_2^{\sigma}}{\sigma}|b(x)|_{\frac{2}{2-\sigma}}\|v\|^{\sigma}. \end{eqnarray}
(3.2)

因为 \sigma\in(1, 2) ,由(3.2)式可知 I 下方有界.

下面证明 I 满足(PS)条件.设 \{v_n\}\subset E I 的(PS)序列,即, \{I(v_n)\} 有界且 I'(v_n)\to0 E^* .由(3.2)式知, \{v_n\} E 有界.因此,存在 \{v_n\} 的子列(仍记为 \{v_n\} )满足 v_n\rightharpoonup v E , v_n\to v L^t(\Omega), 1< t<2_* v_n\to v a.e.于 \Omega . ({\rm F}_2) 和Hölder不等式,有

\begin{eqnarray*} \label{} &&\int_{\Omega }\Big(f(x, v_n)-f(x, v)\Big)(v_n-v){\rm d}x\nonumber\\ &\leq&\int_{\Omega}\Big(|b(x)||v_n|^{\sigma-1}+|b(x)||v|^{\sigma-1}\Big)|v_n-v|{\rm d}x\nonumber\\ &\leq&\Big(|b(x)|_{\frac{2}{2-\sigma}}|v_n|_2^{\sigma-1}+|b(x)|_{\frac{2}{2-\sigma}}|v|_2^{\sigma-1}\Big)|v_n-v|_2\nonumber\\ & = &o(1). \end{eqnarray*}

因此

\begin{eqnarray*} &&\lambda\int_{\Omega }\Big(|\nabla v_n|^{p-2}\nabla v_n-|\nabla v|^{p-2}\nabla v\Big)\nabla(v_n-v){\rm d}x\nonumber\\ & = &\langle I'(v_n)-I'(v), v_n-v\rangle+\int_{\Omega }\Big(f(x, v_n)-f(x, v)\Big)(v_n-v){\rm d}x\nonumber\\ & = &o(1). \end{eqnarray*}

从而有

\begin{eqnarray*} \|v_n-v\|^2 & = &\int_{\Omega }\Delta v_n\Delta(v_n-v)-\Delta v\Delta(v_n-v){\rm d}x\\ & = &\langle I'(v_n)-I'(v), v_n-v\rangle-\lambda\int_{\Omega }\Big(|\nabla v_n|^{p-2}\nabla v_n-|\nabla v|^{p-2}\nabla v\Big)\nabla(v_n-v){\rm d}x\nonumber\\ &&+ \int_{\Omega }\Big(f(x, v_n)-f(x, v)\Big)(v_n-v){\rm d}x\\ & = &o(1). \end{eqnarray*}

所以 v_n\to v E .

引理 3.2   对任意 n\in{\Bbb N} ,存在闭对称子集 A_n\subset E 使得 \gamma(A_n)\geq n { }\sup_{v\in A_n}I_h(v)<0 成立.

  设 E_n E 的任意 n 维子空间.由于有限维空间中范数等价,存在参数 \alpha = \alpha(E_n) 使得对 \forall v\in E_n ,有

\begin{eqnarray*} \|v\|\leq\alpha|v|_{2}. \end{eqnarray*}

下面证明:存在常数 \kappa>0 使得对 \forall v\in E_n , \|v\|\leq \kappa ,成立不等式

\begin{equation} \frac{1}{2}\int_{\Omega }|v|^2{\rm d}x\geq\int_{|v|>l}|v|^2{\rm d}x. \end{equation}
(3.3)

事实上,若(3.3)式不成立,则存在 \{v_k\}\subset E_n\setminus\{0\} 满足 v_k\to0 E

\begin{eqnarray*} \frac{1}{2}\int_{\Omega }|v_k|^2{\rm d}x<\int_{|v_k|>l}|v_k|^2{\rm d}x, \; \; k\in{\Bbb N}. \end{eqnarray*}

u_k = \frac{v_k}{|v_k|_{2}} .则有

\begin{equation} \frac{1}{2}<\int_{|v_k|>l}|u_k|^2{\rm d}x, \; \; k\in{\Bbb N}. \end{equation}
(3.4)

另一方面,由于 E_n 是有限维的,可假设 u_k\to u E .因此 u_k\to u L^2(\Omega ) .此外,由 v_k\to 0 E ,可得

\begin{eqnarray*} {\rm meas}\{x\in\Omega :|v_k|>l\}\to0, \; \; k\to\infty. \end{eqnarray*}

因此

\begin{eqnarray*} \int_{|v_k|>l}|u_k|^2{\rm d}x\leq2\int_{\Omega }|u_k-u|^2{\rm d}x+2\int_{|v_k|>l}|u|^2{\rm d}x\to0, \; \; k\to\infty, \end{eqnarray*}

这与(3.4)式矛盾.从而(3.3)式成立.

({\rm F}_1) ,取 l 足够小,使得对于 \forall x\in\Omega , 0\leq v\leq l ,有

\begin{eqnarray*} f(x, v)\geq8\Big(\frac{1}{2}+\frac{\lambda}{p}\tau^p_1\Big)\alpha^2v \end{eqnarray*}

成立.因此

\begin{equation} F(x, v)\geq 4\Big(\frac{1}{2}+\frac{\lambda}{p}\tau^p_1\Big)\alpha^2v^2, \; \; \forall(x, v)\in\Omega \times[0, l]. \end{equation}
(3.5)

({\rm F}_3) F(x, v) 是关于 v 的偶函数.所以由(3.5)式,有对 \forall v\in E_n \|v\|\leq \min\{\kappa, 1\} ,有

\begin{eqnarray*} I(v)& = &\frac{1}{2}\|v\|^2+\frac{\lambda}{p}|\nabla v|_p^p-\int_{\Omega }F(x, v){\rm d}x\\ &\leq&\frac{1}{2}\|v\|^2+\frac{\lambda}{p}|\nabla v|_p^p-\int_{|v|\leq l}F(x, v){\rm d}x\\ &\leq&\frac{1}{2}\|v\|^2+\frac{\lambda}{p}\tau_1^p\|v\|^p -4\Big(\frac{1}{2}+\frac{\lambda}{p}\tau^p_1\Big)\alpha^2\int_{|v|\leq l}|v|^2{\rm d}x\\ &\leq&\Big(\frac{1}{2}+\frac{\lambda}{p}\tau_1^p\Big)\|v\|^2 -4\Big(\frac{1}{2}+\frac{\lambda}{p}\tau^p_1\Big)\alpha^2\Big(\int_{\Omega }|v|^2{\rm d}x-\int_{|v|> l}|v|^2{\rm d}x\Big)\\ &\leq&-\Big(\frac{1}{2}+\frac{\lambda}{p}\tau_1^p\Big)\|v\|^2. \end{eqnarray*}

0<\rho\leq \min\{\kappa, 1\} A_n = \{v\in E_n: \|v\| = \rho\} .则有 \gamma(A_n)\geq n 以及

\begin{equation} \sup\limits_{v\in A_n}I(v)\leq -\Big(\frac{1}{2}+\frac{\lambda}{p}\tau_1^p\Big)\rho^2<0. \end{equation}
(3.6)

证毕.

定理 1.1 的证明   由引理2.1和引理3.1,可知 I 有一个临界点 v_0 ,其临界值为 c = \inf_EI .由(3.6)式知存在 u_0 使得 I(u_0)<0 .因此, v_0 I 的非平凡临界点,即为方程(1.1)的非平凡解.由于 E 中的任意非零元 v \Omega 上几乎处处变号,则 v_0 为方程(1.1)的变号解.

定理 1.2 的证明  由 ({\rm F}_1) ({\rm F}_3) ,可知 I 为偶且有 I(0) = 0 .因此由引理2.3,引理3.1以及引理3.2可得, I 有临界点列 \{v_n\} 收敛于 0 .因此得到了方程(1.1)无穷多解.

参考文献

King B B , Stein O , Winkler M .

A fourth-order parabolic equation modeling epitaxial thin film growth

Journal of Mathematical Analysis and Applications, 2003, 286 (2): 459- 490

DOI:10.1016/S0022-247X(03)00474-8      [本文引用: 2]

Kajikiya R .

A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations

Journal of Functional Analysis, 2005, 225 (2): 352- 370

URL     [本文引用: 1]

Li D , Qiao Z , Tang T .

Gradient bounds for a thin film epitaxy equation

Journal of Differential Equations, 2017, 262 (3): 1720- 1746

URL     [本文引用: 1]

Li Q , Gao W , Han Y .

Global existence blow up and extinction for a class of thin-film equation

Nonlinear Analysis:Theory, Methods & Applications, 2016, 147, 96- 109

URL    

Qu C , Zhou W .

Blow-up and extinction for a thin-film equation with initial-boundary value conditions

Journal of Mathematical Analysis and Applications, 2016, 436 (2): 796- 809

DOI:10.1016/j.jmaa.2015.11.075     

Sun F , Liu L , Wu Y .

Infinitely many sign-changing solutions for a class of biharmonic equation with p-Laplacian and Neumann boundary condition

Applied Mathematics Letters, 2017, 73, 128- 135

DOI:10.1016/j.aml.2017.05.001      [本文引用: 5]

Sun J , Chu J , Wu T .

Existence and multiplicity of nontrivial solutions for some biharmonic equations with p-Laplacian

Journal of Differential Equations, 2017, 262 (2): 945- 977

URL     [本文引用: 1]

Winkler M .

Global solutions in higher dimensions to a fourth-order parabolic equation modeling epitaxial thin-film growth

Zeitschrift für angewandte Mathematik und Physik, 2011, 62 (4): 575- 608

DOI:10.1007/s00033-011-0128-1      [本文引用: 1]

Rabinowitz P H .

Minimax Methods in Critical Point Theory with Applications to Differential Equations

Providence, RI:Amer Math Soc, 1986

URL     [本文引用: 1]

Weth T .

Nodal solutions to superlinear biharmonic equations via decomposition in dual cones

Topological Methods in Nonlinear Analysis, 2006, 28 (1): 33- 52

URL     [本文引用: 1]

Xu G , Zhang J .

Existence results for some fourth-order nonlinear elliptic problems of local superlinearity and sublinearity

Journal of Mathematical Analysis and Applications, 2003, 281 (2): 633- 640

DOI:10.1016/S0022-247X(03)00170-7     

Zhang J .

Existence results for some fourth-order nonlinear elliptic problems

Nonlinear Analysis, 2001, 45 (1): 29- 36

URL    

Zhang J , Li S .

Multiple nontrivial solutions for some fourth-order semilinear elliptic problems

Nonlinear Analysis:Theory, Methods & Applications, 2005, 60 (2): 221- 230

URL    

Zhou J , Wu X .

Sign-changing solutions for some fourth-order nonlinear elliptic problems

Journal of Mathematical Analysis and Applications, 2008, 342 (1): 542- 558

DOI:10.1016/j.jmaa.2007.12.020      [本文引用: 2]

Zou W, Schechter M. Critical Point Theory and Its Applications. New York:Springer, 2006

URL    

/