数学物理学报, 2020, 40(5): 1186-1191 doi:

论文

一类次线性双调和方程变号解的存在性与多重性

包贵,, 孙倩,

Existence and Multiplicity of Sign-Changing Solutions for a Bi-Harmonic Equation with Sublinear Nonlinearity

Bao Gui,, Sun Qian,

通讯作者: 包贵, E-mail: baoguigui@163.com

收稿日期: 2018-11-14  

Received: 2018-11-14  

作者简介 About authors

孙倩,E-mail:julysunqian@gmail.com , E-mail:julysunqian@gmail.com

摘要

该文研究了一类带有p-Laplacian和Neumann边值条件的次线性双调和问题.利用变分方法得到了该问题变号解的存在性与多重性.

关键词: 次线性 ; 双调和方程 ; p-Laplacian ; Neumann边值条件

Abstract

In this paper, we study a class of sublinear biharmonic equation with p-Laplacian and Neumann boundary condition. By using a dual approach, we prove the existence and multiplicity of sign-changing solutions for the problem.

Keywords: Sublinear ; Biharmonic equation ; p-Laplacian ; Neumann boundary condition

PDF (244KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

包贵, 孙倩. 一类次线性双调和方程变号解的存在性与多重性. 数学物理学报[J], 2020, 40(5): 1186-1191 doi:

Bao Gui, Sun Qian. Existence and Multiplicity of Sign-Changing Solutions for a Bi-Harmonic Equation with Sublinear Nonlinearity. Acta Mathematica Scientia[J], 2020, 40(5): 1186-1191 doi:

1 引言

该文考虑如下形式的双调和方程

$ \begin{equation} \left\{\begin{array}{ll} { } \Delta^2{u}-\lambda\Delta_pu = f(x, u) -\mu\frac{1}{|\Omega|}\int_{\Omega}f(y, u(y)){\rm d}y, &x\in \Omega, \\ { } \frac{\partial u}{\partial n} = \frac{\partial(\Delta u)}{\partial n} = 0, &x\in\; \partial\Omega, \end{array}\right. \end{equation} $

其中$ \Omega $$ {{\Bbb R}} ^N(N\geq1) $中带有光滑边界$ \partial\Omega $的有界区域, $ |\Omega| $$ \Omega $的测度, $ \lambda\geq0 $, $ \mu\in{{\Bbb R}} $为参数, $ f\in C(\bar{\Omega}\times{{\Bbb R}} , {{\Bbb R}} ) $, $ \Delta_pu = \mbox{div}(|\nabla u|^{p-2}\nabla u) $, $ 2<p<2^* $,这里$ 2^*: = \infty $,当$ 1\leq N\leq 2 $; $ 2^*: = \frac{2N}{N-2} $,当$ N>2 $.

近年来,四阶方程问题备受关注,已有许多结果,见文献[1-14]及其参考文献.例如,文献[7]中讨论如下带有$ p $-Laplacian项的双调和方程

$ \begin{equation} \left\{\begin{array}{ll} \Delta^2{u}-\lambda\Delta_pu+\mu V(x)u = f(x, u), &x\in {{\Bbb R}} ^N, \\ u\in H^2({{\Bbb R}} ^N), \end{array}\right. \end{equation} $

其中$ f(x, u) $满足超线性条件.利用山路引理,作者得到了方程(1.2)的非平凡解的存在性和多解性.更多双调和方程非平凡解的存在性及变号解的存在性问题,参见文献[10-14].

问题(1.1)可用于描述纳米薄膜外延生长的演化,详见文献[1, 3-6, 8].文献[6]讨论了问题(1.1)的超线性情形.利用喷泉定理,得到了无穷多变号解的存在性.

受文献[6]启发,本文将讨论问题(1.1)的次线性情形.首先作如下假设.

$ ({\rm F}_1) $  $ \lim\limits_{t\to0}\frac{f(x, t)}{t} = +\infty $$ x\in\Omega $一致成立.

$ ({\rm F}_2) $  存在参数$ C>0 $$ 1<\sigma<2 $使得$ f\in C(\bar{\Omega} \times{{\Bbb R}} , {{\Bbb R}} ) $,

其中$ b(x)\in L^{\frac{2}{2-\sigma}}(\Omega) $.

$ ({\rm F}_3) $  $ f(x, -t) = -f(x, t) $, $ \forall (x, t)\in(\Omega\times{{\Bbb R}} ) $.

$ F(x, v) = \int_0^vf(x, s){\rm d}s $.本文主要结果如下.

定理 1.1   假设$ ({\rm F}_1) $$ ({\rm F}_2) $成立.则问题(1.1)至少存在一个变号解.

定理 1.2   假设$ ({\rm F}_1) $$ ({\rm F}_3) $成立.则问题(1.1)存在无穷多变号解$ \{v_k\} $,且满足当$ k\to\infty $时,有

$ v_k\to0 $.

2 预备知识

$ L^p(\Omega), 1\leq p\leq +\infty $为Lebesgue空间,其范数为$ |\cdot|_{p}. $$ H^2(\Omega) $为通常的Sobolev空间,范数为

定义

$ E $中的任意非零元$ u $$ \Omega $上几乎处处变号.由文献[6]可知, $ E $是一个Hilbert空间,其內积范数为$ (v, w) = \int_{\Omega}\Delta v\cdot\Delta w{\rm d}x $.此外,范数$ \|v\|: = (v, v)^{\frac{1}{2}} = |\Delta v|_2 $等价于$ E $的范数$ \|\cdot\|_{H^2} $.

定义$ 2_*: = \infty $,若$ 1\leq N\leq4 $; $ 2_*: = \frac{2N}{N-4} $,若$ N>4 $.注意到$ E\hookrightarrow L^p(\Omega)(1< p<2_*) $$ H^1(\Omega)\hookrightarrow L^t(\Omega)(1< q<2^*) $都是紧嵌入.类似于文献[6, Lemma 2.2],可得如下引理.

引理 2.1   假设$ v\in E $, $ 1< p< 2^* $以及$ 1< t< 2_* $.则存在正参数$ \tau_1 $$ \tau_2 $使得对于$ v\in E $,有$ |\nabla v|_p\leq \tau_1\|v\| $$ |v|_t\leq \tau_2\|v\| $成立.

定义 2.1   假若$ v\in E $满足

则称$ v $为问题(1.1)的弱解.

考虑泛函$ I $

众所周知, $ I $$ C^1 $泛函,且

泛函$ I $的临界点即为问题(1.1)的解.

下述引理参见文献[9].

引理 2.2   假设$ E $为实Banach空间, $ I\in C^1(E, {{\Bbb R}} ) $满足Palais-Smale条件$ {\rm(PS)} $.$ I $下方有界,则$ c = \inf_EI $$ I $的临界值.

$ \Gamma_k $$ E $中的闭对称子集族$ A $且满足$ 0 \notin A $$ \gamma(A)\geq k $.下述临界点定理参见文献[2].

引理 2.3   假设$ E $为无穷维Banach空间, $ I\in C^1(E, {\Bbb R}) $满足

$ ({\rm A}_1) $  $ I(v) $为偶,下方有界, $ I(0) = 0 $$ I(v) $满足$ {\rm(PS)} $条件;

$ ({\rm A}_2) $  对每个$ k \in{\Bbb N} $,存在$ A_k\in \Gamma_k $使得$ { }\sup_{v\in A_k} I(v) < 0 $.

则存在$ I(v) $的临界点列$ {v_k} $满足$ I(v_k)\leq0, v_k\neq0 $$ { }\lim_{k\to\infty} v_k = 0 $.

3 定理的证明

引理 3.1    $ I $下方有界且满足(PS)条件.

  由条件$ ({\rm F}_2) $可得

$ \begin{equation} |F(x, v)|\leq \frac{b(x)}{\sigma}|v|^{\sigma}, \; \; \forall(x, v)\in(\Omega , {{\Bbb R}} ). \end{equation} $

对任意给定的$ v\in E $.由(3.1)式和Hölder不等式,有

$ \begin{eqnarray} I(v)& = & \frac{1}{2}\|v\|^2+\frac{\lambda}{p}|\nabla v|^p_p- \int_{\Omega }F(x, v){\rm d}x\\ &\geq&\frac{1}{2}\|v\|^2+\frac{\lambda}{p}|\nabla v|^p_p- \int_{\Omega}\frac{b(x)}{\sigma}|v|^{\sigma}{\rm d}x\\ &\geq&\frac{1}{2}\|v\|^2- \frac{1}{\sigma}|b(x)|_{\frac{2}{2-\sigma}}|v|_2^{\sigma}\\ &\geq&\frac{1}{2}\|v\|^2-\frac{\tau_2^{\sigma}}{\sigma}|b(x)|_{\frac{2}{2-\sigma}}\|v\|^{\sigma}. \end{eqnarray} $

因为$ \sigma\in(1, 2) $,由(3.2)式可知$ I $下方有界.

下面证明$ I $满足(PS)条件.设$ \{v_n\}\subset E $$ I $的(PS)序列,即, $ \{I(v_n)\} $有界且$ I'(v_n)\to0 $$ E^* $.由(3.2)式知, $ \{v_n\} $$ E $有界.因此,存在$ \{v_n\} $的子列(仍记为$ \{v_n\} $)满足$ v_n\rightharpoonup v $$ E $, $ v_n\to v $$ L^t(\Omega), 1< t<2_* $$ v_n\to v $ a.e.于$ \Omega $.$ ({\rm F}_2) $和Hölder不等式,有

因此

从而有

所以$ v_n\to v $$ E $.

引理 3.2   对任意$ n\in{\Bbb N} $,存在闭对称子集$ A_n\subset E $使得$ \gamma(A_n)\geq n $$ { }\sup_{v\in A_n}I_h(v)<0 $成立.

  设$ E_n $$ E $的任意$ n $维子空间.由于有限维空间中范数等价,存在参数$ \alpha = \alpha(E_n) $使得对$ \forall v\in E_n $,有

下面证明:存在常数$ \kappa>0 $使得对$ \forall v\in E_n $, $ \|v\|\leq \kappa $,成立不等式

$ \begin{equation} \frac{1}{2}\int_{\Omega }|v|^2{\rm d}x\geq\int_{|v|>l}|v|^2{\rm d}x. \end{equation} $

事实上,若(3.3)式不成立,则存在$ \{v_k\}\subset E_n\setminus\{0\} $满足$ v_k\to0 $$ E $

$ u_k = \frac{v_k}{|v_k|_{2}} $.则有

$ \begin{equation} \frac{1}{2}<\int_{|v_k|>l}|u_k|^2{\rm d}x, \; \; k\in{\Bbb N}. \end{equation} $

另一方面,由于$ E_n $是有限维的,可假设$ u_k\to u $$ E $.因此$ u_k\to u $$ L^2(\Omega ) $.此外,由$ v_k\to 0 $$ E $,可得

因此

这与(3.4)式矛盾.从而(3.3)式成立.

$ ({\rm F}_1) $,取$ l $足够小,使得对于$ \forall x\in\Omega $, $ 0\leq v\leq l $,有

成立.因此

$ \begin{equation} F(x, v)\geq 4\Big(\frac{1}{2}+\frac{\lambda}{p}\tau^p_1\Big)\alpha^2v^2, \; \; \forall(x, v)\in\Omega \times[0, l]. \end{equation} $

$ ({\rm F}_3) $$ F(x, v) $是关于$ v $的偶函数.所以由(3.5)式,有对$ \forall v\in E_n $$ \|v\|\leq \min\{\kappa, 1\} $,有

$ 0<\rho\leq \min\{\kappa, 1\} $$ A_n = \{v\in E_n: \|v\| = \rho\} $.则有$ \gamma(A_n)\geq n $以及

$ \begin{equation} \sup\limits_{v\in A_n}I(v)\leq -\Big(\frac{1}{2}+\frac{\lambda}{p}\tau_1^p\Big)\rho^2<0. \end{equation} $

证毕.

定理 1.1 的证明   由引理2.1和引理3.1,可知$ I $有一个临界点$ v_0 $,其临界值为$ c = \inf_EI $.由(3.6)式知存在$ u_0 $使得$ I(u_0)<0 $.因此, $ v_0 $$ I $的非平凡临界点,即为方程(1.1)的非平凡解.由于$ E $中的任意非零元$ v $$ \Omega $上几乎处处变号,则$ v_0 $为方程(1.1)的变号解.

定理 1.2 的证明  由$ ({\rm F}_1) $$ ({\rm F}_3) $,可知$ I $为偶且有$ I(0) = 0 $.因此由引理2.3,引理3.1以及引理3.2可得, $ I $有临界点列$ \{v_n\} $收敛于$ 0 $.因此得到了方程(1.1)无穷多解.

参考文献

King B B , Stein O , Winkler M .

A fourth-order parabolic equation modeling epitaxial thin film growth

Journal of Mathematical Analysis and Applications, 2003, 286 (2): 459- 490

DOI:10.1016/S0022-247X(03)00474-8      [本文引用: 2]

Kajikiya R .

A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations

Journal of Functional Analysis, 2005, 225 (2): 352- 370

URL     [本文引用: 1]

Li D , Qiao Z , Tang T .

Gradient bounds for a thin film epitaxy equation

Journal of Differential Equations, 2017, 262 (3): 1720- 1746

URL     [本文引用: 1]

Li Q , Gao W , Han Y .

Global existence blow up and extinction for a class of thin-film equation

Nonlinear Analysis:Theory, Methods & Applications, 2016, 147, 96- 109

URL    

Qu C , Zhou W .

Blow-up and extinction for a thin-film equation with initial-boundary value conditions

Journal of Mathematical Analysis and Applications, 2016, 436 (2): 796- 809

DOI:10.1016/j.jmaa.2015.11.075     

Sun F , Liu L , Wu Y .

Infinitely many sign-changing solutions for a class of biharmonic equation with p-Laplacian and Neumann boundary condition

Applied Mathematics Letters, 2017, 73, 128- 135

DOI:10.1016/j.aml.2017.05.001      [本文引用: 5]

Sun J , Chu J , Wu T .

Existence and multiplicity of nontrivial solutions for some biharmonic equations with p-Laplacian

Journal of Differential Equations, 2017, 262 (2): 945- 977

URL     [本文引用: 1]

Winkler M .

Global solutions in higher dimensions to a fourth-order parabolic equation modeling epitaxial thin-film growth

Zeitschrift für angewandte Mathematik und Physik, 2011, 62 (4): 575- 608

DOI:10.1007/s00033-011-0128-1      [本文引用: 1]

Rabinowitz P H .

Minimax Methods in Critical Point Theory with Applications to Differential Equations

Providence, RI:Amer Math Soc, 1986

URL     [本文引用: 1]

Weth T .

Nodal solutions to superlinear biharmonic equations via decomposition in dual cones

Topological Methods in Nonlinear Analysis, 2006, 28 (1): 33- 52

URL     [本文引用: 1]

Xu G , Zhang J .

Existence results for some fourth-order nonlinear elliptic problems of local superlinearity and sublinearity

Journal of Mathematical Analysis and Applications, 2003, 281 (2): 633- 640

DOI:10.1016/S0022-247X(03)00170-7     

Zhang J .

Existence results for some fourth-order nonlinear elliptic problems

Nonlinear Analysis, 2001, 45 (1): 29- 36

URL    

Zhang J , Li S .

Multiple nontrivial solutions for some fourth-order semilinear elliptic problems

Nonlinear Analysis:Theory, Methods & Applications, 2005, 60 (2): 221- 230

URL    

Zhou J , Wu X .

Sign-changing solutions for some fourth-order nonlinear elliptic problems

Journal of Mathematical Analysis and Applications, 2008, 342 (1): 542- 558

DOI:10.1016/j.jmaa.2007.12.020      [本文引用: 2]

Zou W, Schechter M. Critical Point Theory and Its Applications. New York:Springer, 2006

URL    

/