数学物理学报, 2020, 40(4): 983-992 doi:

论文

一类具有时滞的非局部反应扩散方程非单调临界行波解的全局稳定性

周永辉,

Global Stability of the Nonmonotone Critical Traveling Waves for Reaction Diffusion Equations

Zhou Yonghui,

收稿日期: 2018-11-30  

基金资助: 河西学院青年基金.  QN2018008

Received: 2018-11-30  

Fund supported: the Youth Fund of Hexi University.  QN2018008

作者简介 About authors

周永辉,E-mail:2823877618@qq.com , E-mail:2823877618@qq.com

摘要

该文利用傅里叶变换方法结合加权能量方法中的一些新的技巧,研究了一类具有时滞的非局部反应扩散方程非单调临界波速下行波解的全局稳定性.

关键词: 傅里叶变换方法 ; 加权能量方法 ; 全局稳定性

Abstract

In this paper, by using the Fourier's transform method combining with the weighted energy method with some new skills, the global stability of the nonmonotone critical traveling waves for a delayed equation is established.

Keywords: Fourier's transform method ; Weighted energy method ; Global stability

PDF (319KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

周永辉. 一类具有时滞的非局部反应扩散方程非单调临界行波解的全局稳定性. 数学物理学报[J], 2020, 40(4): 983-992 doi:

Zhou Yonghui. Global Stability of the Nonmonotone Critical Traveling Waves for Reaction Diffusion Equations. Acta Mathematica Scientia[J], 2020, 40(4): 983-992 doi:

1 引言

本文主要研究一类具有时滞的非局部人口动力学模型

$ \begin{equation} \frac{\partial u(t, x)}{\partial t}-D\frac{\partial^{2}u(t, x)}{\partial x^{2}}+d(u(t, x)) = \int_{{{\Bbb R}} }h(y)b(u(t-\tau, x-y)){\rm d}y, \; t>0, x\in {{\Bbb R}} \end{equation} $

满足初始条件

$ \begin{equation} u(s, x) = u_{0}(s, x), \ \ \ (s, x)\in [-\tau, 0]\times {{\Bbb R}} \end{equation} $

的非单调临界波速下行波解的全局稳定性,该方程模拟了具有两个年龄结构的单物种成熟子种群在一维无界区域中的进化过程.其中$ u(t, x) $表示时刻$ t $位置$ x $处的成年子种群的密度, $ D>0 $表示成年子种群的扩散率系数, $ \tau\geq0 $表示种群的成熟期, $ d(u) $是死亡率函数, $ b(u) $是出生率函数, $ h(x) $是非负对称的单位核函数.本文还需要如下假设条件:

(H$ _{1}) $  $ d(u)\in C^{2} $是递增的非负光滑函数,且满足当$ u\in [0, \infty) $时, $ d'(u)\geq d'(0)>0 $;

(H$ _{2}) $  $ b(u)\in C^{2} $是递增的非负光滑函数,且满足当$ u\in [0, \infty) $时, $ |b'(u)|\leq b'(0) $;

(H$ _{3}) $  方程(1.1)有两个常数平衡点: $ u_{-} = 0 $是不稳定的平衡点, $ u_{+} $是稳定的平衡点,即, $ d(0) = 0, \ b(0) = 0, \ d(u_{+}) = b(u_{+}), \ d'(0)-b'(0)<0 $, $ d'(u_{+})-b'(u_{+})>0 $;

(H$ _{4}) $  $ h\in C^{1}({{\Bbb R}} ) $是非负可积函数,并对所有的$ x\in{{\Bbb R}} $满足$ \int^{+\infty}_{-\infty}h(y){\rm d}y = 1 $$ h(-x) = h(x) $;

(H$ _{5}) $  $ \int^{+\infty}_{-\infty}e^{-\lambda_{*}y}h(y){\rm d}y<\infty $.

如果取

$ \begin{equation} d(u) = \delta u, \ \ b(u) = pue^{-au}, \ \delta>0, \ a>0, \ p>0, \end{equation} $

那么方程(1.1)化为著名的Nicholson's苍蝇模型,参见文献[2],其中

是Nicholson's苍蝇模型的两个常数平衡点.当$ \frac{p}{\delta}>e $时,有$ u_{+}>u_{-}>0 $.在本文中,假设

由条件(H$ _{3}) $可知,方程(1.1)有两个常数平衡点: $ u_{-} = 0 $是不稳定的平衡点, $ u_{+} $是稳定的平衡点,因此我们研究的是单稳行波解.方程(1.1)的行波解是指连接两个平衡点$ u_{-} $$ u_{+} $的形如$ u(t, x) = \phi(x+c_{*}t) $的解,且满足常微分方程

$ \begin{equation} \left\{\begin{array}{ll} { } c\phi'(\xi) = D\phi''(\xi)-d(\phi(\xi)) +\int_{{{\Bbb R}} }h(y)b(\phi(\xi-y-c_{*}\tau)){\rm d}y, \\ [2mm] \phi(-\infty) = 0, \ \ \phi(+\infty) = K. \end{array}\right. \end{equation} $

许钊泉和肖冬梅[13]利用辅助方程的思想结合Schauder不动点定理,建立了方程(1.1) (非)临界波速下单稳行波解的存在性及其渐近行为.

由于行波解在生物学,流行病学和种群动力学中的重要作用,反应扩散方程的行波解被广泛的研究,参见文献[1-2, 4-16].其中,行波解的稳定性是行波理论中的一个重要研究内容.对于单调的时滞反应扩散方程,研究其行波解稳定性常用的方法是挤压技术[11],加权能量方法[5],加权能量方法结合比较原理[6-7],加权能量方法结合傅里叶变换方法[8]和谱分析方法[16].

对于非单调的时滞反应扩散方程,由于方程缺失了单调性,比较原理不再成立,所以行波解稳定性的结果是十分有限的. 2015年,通过使用技巧性的加权能量方法结合连续性方法, Chern和梅茗等人[1]得到了一类Nicholson's苍蝇模型非单调临界波速下行波解的局部稳定性.最近,通过在得到解的有界估计时使用的一些新的技巧性的加权能量方法,梅茗等人[10]证明了一类Nicholson's苍蝇模型非单调临界波速下行波解的全局稳定性并得到了最优收敛速率.受梅茗等人工作[10]的启发,本文主要研究具有时滞的非局部人口动力学模型(1.1)非单调临界波速下行波解的全局稳定性并得到了最优收敛速率,这推广了梅茗等人的结论.

本文的安排如下:第2部分,介绍本文的一些预备知识和主要结论;第3部分,证明本文的主要结论.

2 预备知识和主要结论

$ u(t, x) $是柯西问题(1.1)–(1.2)的解, $ \phi(\xi) $是给定的(1.1)临界波速下的行波解, $ \xi = x+c_{*}t $

则方程(1.1)化为

$ \begin{equation} v_{t}(t, \xi)+c_{*}v_{\xi}(t, \xi)-Dv_{\xi\xi}(t, \xi) = \int_{{{\Bbb R}} }h(y)P_{1}\big(v(t-\tau, \xi-y-c_{*}\tau)\big){\rm d}y-P_{2}(v(t, \xi)), \end{equation} $

并满足

其中

$ v = v(t-\tau, \xi-y-c_{*}\tau), \ \ \phi = \phi(\xi-y-c_{*}\tau) $,及

定义加权函数

$ \begin{equation} w(\xi) = e^{-2\lambda_{*} \xi} \end{equation} $

和空间$ C_{unif}[-\tau, T] $, $ 0<T\leq \infty $,

下面给出本文的主要结论.

定理2.1(全局稳定性)  假设(H$ _{1}) $–(H$ _{5}) $成立,任意给定方程(1.1)的行波解,当初始扰动满足$ v_{0}(s, \xi): = u_{0}(s, x)-\phi(\xi)\in C_{unif}(-\tau, 0)\cap C([-\tau, 0];W^{2, 1}({{\Bbb R}} )) $$ \partial_{s}\big[u_{0}(s, x)-\phi(\xi)\big]\in L^{1}([-\tau, 0];L_{w}^{1}({{\Bbb R}} )) $时,对任意给定的$ \tau>0 $, $ e<\frac{b'(u^{+})}{d'(u^{+})}\leq e^{2} $,或$ 0<\tau<\overline{\tau} $ ($ \overline{\tau} $为正常数), $ \frac{b'(u^{+})}{d'(u^{+})}>e^{2} $,柯西问题(1.1)–(1.2)的解$ u(t, x) $满足

$ \begin{eqnarray} \sup\limits_{x\in {{\Bbb R}} }\Big|u(t, x)-\phi(x+c_{*}t)\Big|\leq Ct^{-\frac{1}{2}}. \end{eqnarray} $

3 主要结论的证明

命题3.1(全局存在唯一性)  假设(H$ _{1}) $–(H$ _{5}) $成立,当任意给定$ \tau>0 $, $ e<\frac{b'(u^{+})}{d'(u^{+})}\leq e^{2} $,或$ 0<\tau<\overline{\tau} $ ($ \overline{\tau} $为正常数), $ \frac{b'(u^{+})}{d'(u^{+})}>e^{2} $时,若初始扰动$ v_{0}(t, \xi)\in C_{unif}[-\tau, 0] $,则扰动方程(2.1)的解$ v(t, \xi) $在空间$ C_{unif}[-\tau, \infty) $上是全局唯一存在的.

  当$ t\in [0, \tau] $时, $ t-\tau\in[-\tau, 0] $,从而$ P_{1}(v(t-\tau, \xi-y-c_{*}\tau)) = P_{1}(v_{0}(t-\tau, \xi-y-c_{*}\tau)) $,此时方程(2.1)是线性的.因此当$ t\in[0, \tau] $时,方程(2.1)的解表示如下

$ \begin{eqnarray} v(t, \xi)& = &\int_{{{\Bbb R}}}G(\eta, t)v_{0}(0, \xi-\eta){\rm d}\eta+\int_{0}^{t}\int_{{{\Bbb R}}}G(\eta, t-s)\\ &&\cdot\bigg[\int_{{{\Bbb R}} }h(y)P_{1}(v_{0}(s-\tau, \xi-\eta-y-c_{*}\tau)){\rm d}y -P_{2}(v(s, \xi-\eta))\bigg]{\rm d}\eta {\rm d}s, \end{eqnarray} $

其中$ G(\eta, t) = \frac{1}{\sqrt{4\pi Dt}}e^{-\frac{(\eta+c_{*}t)^{2}}{4Dt}} $.

因为$ v_{0}(t, \xi)\in C_{unif}[-\tau, 0] $,可以证明$ v(t, \xi)\in C_{unif}[0, \tau] $.事实上

$ \begin{eqnarray} \lim\limits_{\xi\rightarrow +\infty}v(t, \xi) & = &\int_{{{\Bbb R}} }G(\eta, t)\lim\limits_{\xi\rightarrow +\infty}v_{0}(0, \xi-\eta){\rm d}\eta\\ &&+ \int_{0}^{t}\int_{{{\Bbb R}}}G(\eta, t-s)\bigg[\int_{{{\Bbb R}} }h(y) \lim\limits_{\xi\rightarrow +\infty}P_{1}(v_{0}(s-\tau, \xi-\eta-y-c_{*}\tau)){\rm d}y {}\\ && -\lim\limits_{\xi\rightarrow +\infty}P_{2}(v(s, \xi-\eta))\bigg]{\rm d}\eta {\rm d}s\\ & = &v_{0, \infty}(0)\int_{{{\Bbb R}} }G(\eta, t){\rm d}\eta+ \int_{0}^{t}P_{1}(v_{0, \infty}(s-\tau))\int_{{{\Bbb R}}}G(\eta, t-s)\int_{{{\Bbb R}} }h(y){\rm d}y{\rm d}\eta {\rm d}s\\ &&-\int_{0}^{t}P_{2}(v_{\infty}(s))\int_{{{\Bbb R}}}G(\eta, t-s){\rm d}\eta {\rm d}s\\ & = &v_{0, \infty}(0)+\int_{0}^{t}P_{1}(v_{0, \infty}(s-\tau)){\rm d}s-\int_{0}^{t}P_{2}(v_{\infty}(s)) {\rm d}s\\ &: = &g_{1}(t) \end{eqnarray} $

$ \begin{eqnarray} \lim\limits_{\xi\rightarrow +\infty}\partial_{\xi}^{k}v(t, \xi) & = &\int_{{{\Bbb R}} }\partial_{\eta}^{k}G(\eta, t)\lim\limits_{\xi\rightarrow +\infty}v_{0}(0, \xi-\eta){\rm d}\eta\\ &&+ \int_{0}^{t}\int_{{{\Bbb R}}}\partial_{\eta}^{k}G(\eta, t-s)\bigg[\int_{{{\Bbb R}} }h(y) \lim\limits_{\xi\rightarrow +\infty}P_{1}(v_{0}(s-\tau, \xi-\eta-y-c_{*}\tau)){\rm d}y{}\\ && -\lim\limits_{\xi\rightarrow +\infty}P_{2}(v(s, \xi-\eta))\bigg]{\rm d}\eta {\rm d}s\\ & = &v_{0, \infty}(0)\int_{{{\Bbb R}} }\partial_{\eta}^{k}G(\eta, t){\rm d}\eta+ \int_{0}^{t}P_{1}(v_{0, \infty}(s-\tau))\int_{{{\Bbb R}}}\partial_{\eta}^{k}G(\eta, t-s)\\ &&\int_{{{\Bbb R}} }h(y){\rm d}y{\rm d}\eta {\rm d}s-\int_{0}^{t}P_{2}(v_{\infty}(s))\int_{{{\Bbb R}}}\partial_{\eta}^{k}G(\eta, t-s){\rm d}\eta {\rm d}s\\ & = &0 \end{eqnarray} $

都关于$ t\in[0, \tau] $一致成立.因此, $ v(t, \xi)\in C_{unif}[-\tau, \tau]. $

重复上述步骤,可以证明方程(2.1)存在唯一解$ v(t, \xi)\in C_{unif}[-\tau, (n+1)\tau] $,利用连续性方法得到方程(2.1)的解$ v(t, \xi)\in C_{unif}[-\tau, \infty) $的全局存在唯一性.

下面,我们将证明本文的主要结论.

命题3.2(全局稳定性)  假设(H$ _{1}) $–(H$ _{5}) $成立,当任意给定$ \tau>0 $, $ e<\frac{b'(u^{+})}{d'(u^{+})}\leq e^{2} $,或$ 0<\tau<\overline{\tau} $ ($ \overline{\tau} $为正常数), $ \frac{b'(u^{+})}{d'(u^{+})}>e^{2} $时,若初始扰动$ v_{0}(s, \xi)\in C_{unif}[-\tau, 0]\cap L^{1}([-\tau, 0];W^{2, 1}({{\Bbb R}})) $$ \partial_{s}v_{0}(s, \xi)\in L^{1}([-\tau, 0];L_{\omega}^{1}({{\Bbb R}})) $,那么无论初始扰动$ v_{0}(s, \xi) $有多大,总有

$ \begin{equation} \sup\limits_{\xi\in {{\Bbb R}}}|v(t, \xi)|\leq Ct^{-\frac{1}{2}}. \end{equation} $

为了证明命题3.2,需要以下引理.令

$ \begin{equation} v(t, \xi) = \frac{1}{\sqrt{\omega(\xi)}}\widetilde{v}(t, \xi), \ {\rm i.e., \ } \widetilde{v}(t, \xi) = \sqrt{\omega(\xi)}v(t, \xi) = e^{-\lambda_{*}\xi}v(t, \xi), \end{equation} $

其中$ \lambda_{*}\in(\lambda_{1}, \lambda_{2}) $,则方程(2.1)化为

$ \begin{eqnarray} &&\widetilde{v}_{t}(t, \xi)+k_{1}\widetilde{v}_{\xi}(t, \xi)-D\widetilde{v}_{\xi\xi}(t, \xi) +k_{2}\widetilde{v}(t, \xi){}\\ & = &\int_{{{\Bbb R}} }h(y)\widetilde{P}_{1} \big(\widetilde{v}(t-\tau, \xi-y-c_{*}\tau)\big){\rm d}y -\widetilde{P}_{2} \big(v(t, \xi)\big)+d'(0)\widetilde{v}(t, \xi) \end{eqnarray} $

满足

其中

满足

$ \begin{equation} c_{*}\lambda-D\lambda_{*}^{2}+d'(\phi)>c_{*}\lambda_{*}-D\lambda_{*}^{2}+d'(0) >b'(0)\int_{{{\Bbb R}} }h(y)e^{-\lambda(y+c_{*}\tau)}{\rm d}y. \end{equation} $

这里, $ \widetilde{P}_{i}(\widetilde{v}) = e^{-\lambda_{*}\xi}P_{i}(v), i = 1, 2, $满足

$ \begin{equation} \widetilde{P}_{1}(\widetilde{v}(t-\tau, \xi-y-c_{*}\tau)) = \int_{{{\Bbb R}} } b'(\overline{\phi}(\xi-y-c_{*}\tau))\widetilde{v}(t-\tau, \xi-y-c_{*}\tau)h(y)e^{-\lambda(y+c_{*}\tau)}{\rm d}y \end{equation} $

$ \widetilde{P}_{2}(\widetilde{v}(t, \xi)) = d'(\tilde{\phi}(\xi))\widetilde{v}(t, \xi) $.由条件(H$ _{2}) $可得

$ \begin{equation} \widetilde{P}_{1}(\widetilde{v}(t-\tau, \xi-y-c_{*}\tau))\leq b'(0)\int_{{{\Bbb R}}} \widetilde{v}(t-\tau, \xi-y-c_{*}\tau)h(y)e^{-\lambda(y+c_{*}\tau)}{\rm d}y. \end{equation} $

$ \phi\in(0, u_{+}) $时, $ b'(\phi) $是负的,于是当时滞$ \tau $充分大时,方程(3.6)的解$ \widetilde{v}(t, \xi) $$ u_{+} $附近是非单调的.我们首先研究下面线性方程

$ \begin{eqnarray} &&v^{+}_{t}(t, \xi)+k_{1}v^{+}_{\xi}(t, \xi)-Dv^{+}_{\xi\xi}(t, \xi) +k_{2}v^{+}(t, \xi)\\ & = &\int_{{{\Bbb R}}}h(y)b'(0)v^{+}(t-\tau, \xi-y-c_{*}\tau)e^{-\lambda(y+c_{*}\tau)}{\rm d}y \end{eqnarray} $

满足

的解$ \widetilde{v}(t, \xi) $的有界性估计.

引理3.1  当初始扰动$ v_{0}^{+}(s, \xi)\geq 0 $时,有$ v^{+}(t, \xi)\geq 0, (t, \xi)\in[-\tau, \infty)\times{{\Bbb R}} $.

  当$ t\in[0, \tau] $时, $ t-\tau\in[-\tau, 0] $,则

因此, (3.10)式化为

由比较原理可知当$ t\in[0, \tau] $时, $ v^{+}(t, \xi)\geq 0 $.

重复上述步骤可得当$ t\in[n\tau, (n+1)\tau], n = 1, 2, 3, \cdots $时, $ v^{+}(t, \xi)\geq 0 $.再结合连续性方法就证明了当$ t>0 $时, $ v^{+}(t, \xi)\geq 0 $.引理3.1得证.

接下来,将建立方程(3.6)解的有界性估计.

引理3.2(有界性)  令$ \widetilde{v}(t, \xi) $$ v^{+}(t, \xi) $分别是方程(3.6)和(3.10)的解,那么当

$ \begin{equation} |\widetilde{v}_{0}(s, \xi)|\leq v_{0}^{+}(s, \xi), \ \ (s, \xi)\in[-\tau, 0]\times {{\Bbb R}} \end{equation} $

时,有

$ \begin{equation} |\widetilde{v}(t, \xi)|\leq v^{+}(t, \xi), \ \ (t, \xi)\in(0, \infty)\times {{\Bbb R}} . \end{equation} $

  当$ t\in[0, \tau] $时, $ t-\tau\in[-\tau, 0] $,则

$ \begin{eqnarray} |\widetilde{v}(t-\tau, \xi-y-c_{*}\tau)|& = &|\widetilde{v}_{0}(t-\tau, \xi-y-c_{*}\tau)|\\ &\leq& v_{0}^{+}(t-\tau, \xi-y-c_{*}\tau)\\ & = &v^{+}(t-\tau, \xi-y-c_{*}\tau). \end{eqnarray} $

$ U^{-}(t, \xi) = v^{+}(t, \xi)-\widetilde{v}(t, \xi) $$ U^{+}(t, \xi) = v^{+}(t, \xi)+\widetilde{v}(t, \xi) $,下面将分别建立$ U^{\pm} $的有界性估计.

首先估计$ U^{-}(t, \xi) $的有界性.由(3.6)和(3.10)式可得$ U^{-}(t, \xi) $满足

$ \begin{eqnarray} &&U_{t}^{-}(t, \xi)+k_{1}U^{-}(t, \xi)+k_{2}U_{\xi}^{-}(t, \xi)-DU_{\xi\xi}^{-}(t, \xi)\\ & = &\int_{{{\Bbb R}} }b'(0)v^{+}(t-\tau, \xi-y-c_{*}\tau)e^{-\lambda(y+c_{*}\tau)}h(y){\rm d}y\\ &&- \int_{{{\Bbb R}} }b'(\widetilde{\phi})\widetilde{v}(t-\tau, \xi-y-c_{*}\tau)e^{-\lambda(y+c_{*}\tau)}h(y){\rm d}y+\widetilde{P}_{2} \big(\widetilde{v}(t, \xi)\big)-d'(0)\widetilde{v}(t, \xi) \\ &\geq&\int_{{{\Bbb R}} }b'(0)v^{+}(t-\tau, \xi-y-c_{*}\tau)e^{-\lambda(y+c_{*}\tau)}h(y){\rm d}y\\ &&- \int_{{{\Bbb R}} }\big|b'(\widetilde{\phi})\big|\big|\widetilde{v}(t-\tau, \xi-y-c_{*}\tau)\big|e^{-\lambda(y+c_{*}\tau)}h(y){\rm d}y\\ &\geq&0, \ \ t\in[0, \tau]. \end{eqnarray} $

因此,方程(3.14)与初始条件$ U_{0}^{-}(s, \xi) = v_{0}^{+}(s, \xi)-\widetilde{v}_{0}(s, \xi)\geq 0 $化为

$ \begin{eqnarray} \left\{\begin{array}{ll} U_{t}^{-}(t, \xi)+k_{1}U^{-}(t, \xi)+k_{2}U_{\xi}^{-}(t, \xi)-DU_{\xi\xi}^{-}(t, \xi) \geq0, \\ U_{0}^{-}(0, \xi)\geq0. \end{array}\right. \end{eqnarray} $

再由比较原理可得

$ \begin{eqnarray} U^{-}(t, \xi) = v^{+}(t, \xi)-\widetilde{v}(t, \xi)\geq 0, \ \ (t, \xi)\in[0, \tau]\times{{\Bbb R}} . \end{eqnarray} $

$ U^{+}(t, \xi) = v^{+}(t, \xi)+\widetilde{v}(t, \xi) $替换$ U^{-}(t, \xi) = v^{+}(t, \xi)-\widetilde{v}(t, \xi) $,类似可证

$ \begin{eqnarray} U^{+}(t, \xi) = v^{+}(t, \xi)+\widetilde{v}(t, \xi)\geq 0, \ \ (t, \xi)\in[0, \tau]\times{{\Bbb R}} \end{eqnarray} $

满足

结合(3.16)和(3.17)式,可得

$ \begin{eqnarray} |\widetilde{v}(t, \xi)|\leq v^{+}(t, \xi), \ \ (t, \xi)\in[0, \tau]\times{{\Bbb R}} . \end{eqnarray} $

在每个区间$ [n\tau, (n+1)\tau], n = 1, 2, 3, \cdots $上重复上述步骤,结合连续性方法可得

$ \begin{equation} |\widetilde{v}(t, \xi)|\leq v^{+}(t, \xi),   (t, \xi)\in[0, \infty)\times{{\Bbb R}} . \end{equation} $

引理3.2得证.

接下来,将通过使用加权能量方法结合基本解的关键估计来证明全局稳定性.为了导出方程(3.10)解的最优衰减速率,我们首先需要得到基本解,然后证明基本解的最优衰减速率.

引理3.3[3]  令$ z(t) $是下面具有时滞$ \tau>0 $的线性常微分方程

$ \begin{eqnarray} \left\{\begin{array}{ll} { } \frac{{\rm d}z(t)}{{\rm d}t}+m_{1}z(t) = m_{2}z(t-\tau), \\ [2mm] z(s) = z_{0}(s), \ \ \ s\in[-\tau, 0] \end{array}\right. \end{eqnarray} $

的解, $ m_{1} $$ m_{2} $是两个常数,那么

$ \begin{eqnarray} z(t) = e^{-m_{1}(t+\tau)}e_{\tau}^{\overline{m}_{2}t}z_{0}(-\tau) +\int_{-\tau}^{0}e^{-m_{1}(t-s)}e_{\tau}^{\overline{m}_{2}(t-\tau-s)} [z_{0}'(s)+m_{1}z_{0}(s)]{\rm d}s, \end{eqnarray} $

其中

$ \begin{equation} \overline{m}_{2} = m_{2}e^{m_{1}\tau}, \end{equation} $

$ e_{\tau}^{\overline{m}_{2}t} $具有如下形式

$ \begin{eqnarray} e_{\tau}^{\overline{m}_{2}t} = \left\{\begin{array}{ll} 0, & -\infty<t<-\tau, \\ 1, & -\tau\leq t<0, \\ { } 1+\frac{m_{2}t}{1!}, &0\leq t<\tau, \\ \cdot\cdot\cdot\\ { } 1+\frac{m_{2}t}{1!}+\frac{m_{2}^{2}(t-\tau)^{2}}{2!} +\cdot\cdot\cdot+\frac{l_{2}^{m}[t-(l-1)\tau]^{l}}{l!},   & (l-1)\tau\leq t<l\tau, \\ \cdot\cdot\cdot \end{array}\right. \end{eqnarray} $

并且$ e_{\tau}^{\overline{m}_{2}t} $

$ \begin{equation} \left\{\begin{array}{ll} { } \frac{{\rm d}z(t)}{{\rm d}t} = \overline{m}_{2}z(t-\tau), \\ [2mm] z(s) = 1, \ \ \ s\in[-\tau, 0] \end{array}\right. \end{equation} $

的基本解.

类似于文献[8],我们给出具有时滞的线性常微分方程解的性质.

引理3.4  令$ m_{1}\geq 0 $$ m_{2}\geq 0 $,那么方程(3.20)的解$ z(t) $满足

其中

且方程(3.24)的基本解$ e_{\tau}^{\overline{m}_{2}t} $, $ \overline{m}_{2}>0 $满足对任意的$ \beta>0 $,有

进一步,当$ m_{1}\geq m_{2}\geq 0 $时,存在常数$ 0<\epsilon_{1}<1 $使得

$ \begin{eqnarray} e^{-m_{1}t}e_{\tau}^{\overline{m}_{2}t}\leq Ce^{-\epsilon_{1}(m_{1}-m_{2})t}, \ \ \ t>0 \end{eqnarray} $

和方程(3.20)的解$ z(t) $满足

对方程(3.10)进行傅里叶变换可得

$ \begin{eqnarray} \frac{{\rm d}\check{v}^{+}(t, \eta)}{{\rm d}t}+A(\eta)\check{v}^{+}(t, \eta) = B(\eta)\check{v}^{+}(t-\tau, \eta), \end{eqnarray} $

其中$ \check{v}^{+} = \mathfrak{F}[v^{+}] $,

$ \begin{eqnarray} A(\eta) = k_{2}i\eta+a_{1}(c_{*})+{\rm d}\eta^{2}, \ \ B(\eta) = b'(0)\int_{{{\Bbb R}} }h(y)e^{-\lambda(y+c_{*}\tau)}e^{-{\rm i}(y+c_{*}\tau)\eta}{\rm d}y. \end{eqnarray} $

因此,方程(3.26)的解可以表示为

$ \begin{eqnarray} \check{v}^{+}(t, \eta)& = &e^{-A(\eta)(t+\tau)}e_{\tau}^{\overline{B}(\eta)t} \check{v}_{0}^{+}(-\tau, \eta)\\ &&+\int_{-\tau}^{0}e^{-A(\eta)(t-s)} e_{\tau}^{\overline{B}(\eta)(t-\tau-s)} \bigg[\frac{\rm d}{{\rm d}s}\check{v}_{0}^{+}(s, \eta)+A(\eta)\check{v}_{0}^{+}(s, \eta)\bigg]{\rm d}s, \end{eqnarray} $

其中

$ \begin{eqnarray} \overline{B}(\eta): = B(\eta)e^{A(\eta)\tau}. \end{eqnarray} $

对(3.28)式两边取傅里叶逆变换,有

$ \begin{eqnarray} v^{+}(t, \eta)& = &\frac{1}{2\pi}\int_{{{\Bbb R}} }e^{{\rm i}x\eta}e^{-A(\eta)(t+\tau)} e_{\tau}^{\overline{B}(\eta)t}\check{v}_{0}(-\tau, \eta){\rm d}\eta\\ && +\int_{-\tau}^{0}\frac{1}{2\pi}\int_{{{\Bbb R}} }e^{{\rm i}x\eta}e^{-A(\eta)(t-s)} e_{\tau}^{\overline{B}(\eta)(t-\tau-s)} \bigg[\frac{\rm d}{{\rm d}s}\check{v}_{0}(s, \eta)+A(\eta)\check{v}_{0}(s, \eta)\bigg]{\rm d}\eta {\rm d}s.{\qquad} \end{eqnarray} $

下面将证明最优衰减速率.

引理3.5  当$ v_{0}^{+}(s, \xi)\in L^{1}([-\tau, 0];W^{2, 1}({{\Bbb R}} )) $$ \partial_{s}v_{0}^{+}(s, \xi)\in L^{1}([-\tau, 0];L^{1}({{\Bbb R}} )) $时,有

证明类似于文献[10],故此省略.

再取$ v_{0}^{+}(s, \xi) $使得$ v_{0}^{+}(s, \xi)\in L^{1}([-\tau, 0];W^{2, 1}({{\Bbb R}} )) $, $ \partial_{s}v_{0}^{+}(s, \xi)\in L^{1}([-\tau, 0];L^{1}({{\Bbb R}} )) $,和

结合引理3.2和引理3.5,我们可以得到$ \widetilde{v}(t, \xi) $的衰减速率.

引理3.6  当$ \widetilde{v}_{0}(s, \xi)\in L^{1}([-\tau, 0];W^{2, 1}({{\Bbb R}} )) $$ \partial_{s}\widetilde{v}_{0}(s, \xi)\in L^{1}([-\tau, 0];L^{1}({{\Bbb R}} )) $时,有

$ \begin{equation} ||\widetilde{v}(t, \xi)||_{L^{\infty}({{\Bbb R}} )}\leq C(1+t)^{-\frac{1}{2}}. \end{equation} $

因为当$ \xi\rightarrow +\infty $时, $ \widetilde{v}(t, \xi) = \sqrt{w(\xi)}v(t, \xi) = e^{-\lambda_{*} \xi}v(t, \xi)\rightarrow 0 $,所以我们不能由引理3.6得到当$ \xi\rightarrow +\infty $$ v(t, \xi) $的衰减估计.下面研究当$ \xi\rightarrow +\infty $$ v(t, \xi) $的衰减估计.

引理3.7  当$ \tau>0 $, $ e<\frac{b'(u^{+})}{d'(u^{+})}\leq e^{2} $,或$ 0<\tau<\overline{\tau} $ ($ \overline{\tau} $为正常数), $ \frac{b'(u^{+})}{d'(u^{+})}>e^{2} $时,存在数$ \xi_{0}>>1 $使得方程(2.1)的解$ v(t, \xi) $满足

其中$ 0<\mu_{2} = \mu_{2}(d'(u_{+}), \tau, b'(u_{+}))<d'(0) $.

  由方程(2.1)可得

$ \begin{eqnarray} &&v_{t}(t, \xi)+c_{*}v_{\xi}(t, \xi)-Dv_{\xi\xi}(t, \xi)+d'(\phi(\xi))v(t, \xi)\\ &&-\int_{-\infty}^{\infty}h(y)b'(\phi(\xi-y-c_{*}\tau))v(t-\tau, \xi-y-c_{*}\tau){\rm d}y\\ & = &\int_{-\infty}^{\infty}h(y)Q_{1}(v(t-\tau, \xi-y-c_{*}\tau)){\rm d}y-Q_{2}(v(t, \xi)). \end{eqnarray} $

因为$ v(t, \xi)\in C_{unif}(0, \infty), $即,当$ t\in [-\tau, \infty) $时, $ { }\lim_{\xi\rightarrow+\infty}v(t, \xi) = v(t, \infty) = :z(t) $一致存在,且$ { }\lim_{\xi\rightarrow+\infty}v_{\xi}(t, \xi) = \lim_{\xi\rightarrow+\infty}v_{\xi\xi}(t, \xi) = 0 $一致成立.在(3.32)式中令$ \xi\rightarrow+\infty $,可得

$ \begin{equation} Z'(t)+d'(u_{+})Z-b'(u_{+})Z(t-\tau) = Q_{1}(Z(t-\tau))-Q_{2}(Z(t)) . \end{equation} $

类似于文献[4],当$ \tau>0 $, $ e<\frac{b'(u^{+})}{d'(u^{+})}\leq e^{2} $,或$ 0<\tau<\overline{\tau} $, $ \frac{b'(u^{+})}{d'(u^{+})}>e^{2} $时,方程(3.33)的解满足

$ \begin{equation} |v(t, \infty)| = Z(t)\leq Ce^{-\mu_{2}t}, \ \ t>0, \end{equation} $

其中$ 0<\mu_{2} = \mu_{2}(d'(u_{+}), \tau, b'(u_{+}))<d'(0) $.

$ \xi\rightarrow\infty $时,由$ v(t, \xi) $的连续性和一致收敛性可得,存在一个数$ \xi_{0}>>1 $使得(3.34)式暗含着不等式

引理3.7得证.

引理3.8  当$ t>0 $时,有

  因为当$ \xi\leq\xi_{0} $时,有

且注意到$ \widetilde{v}(t, \xi) = \sqrt{w(\xi)}v(t, \xi) $,所以由(3.31)式可得

引理3.8得证.

结合引理3.7和3.8可得本文的主要结论(3.4).

参考文献

Chern I L , Mei M , Yang X F , Zhang Q F .

Stability of non-monotone critical traveling waves for reactiondiffusion equations with time-delay

J Differential Equations, 2015, 259 (4): 1503- 1541

DOI:10.1016/j.jde.2015.03.003      [本文引用: 2]

Gourley S A , Wu J .

Delayed nonlocal diffusive system in biological invasion and disease spread

Fields Inst Commun, 2006, 48, 137- 200

URL     [本文引用: 2]

Khusainov D Ya , Ivanov A F , Kovarzh I V .

Solution of one heat equation with delay

Nonlinear Oscillasions, 2009, 12, 260- 282

DOI:10.1007/s11072-009-0075-3      [本文引用: 1]

Lin C K , Lin C T , Lin Y , Mei M .

Exponential stability of nonmonotone traveling waves for Nicholson's Blowfilws equation

SIAM J Math Anal, 2014, 46, 1053- 1084

DOI:10.1137/120904391      [本文引用: 2]

Mei M , So J W H , Li M Y , Shen S S .

Asymptotic stability of traveling waves for the Nicholson's blowflies equation with diffusion

Proc Roy Soc Edinburgh Sect A, 2004, 134, 579- 594

DOI:10.1017/S0308210500003358      [本文引用: 1]

Mei M , Lin C K , Lin C T , So J W H .

Traveling wavefronts for time-delayed reaction-diffusion equation:(Ⅰ) local nonlinearity

J Differential Equations, 2009, 247, 495- 510

DOI:10.1016/j.jde.2008.12.026      [本文引用: 1]

Mei M , Lin C K , Lin C T , So J W H .

Traveling wavefronts for time-delayed reaction-diffusion equation:(Ⅱ) nonlocal nonlinearity

J Differential Equations, 2009, 247, 511- 529

DOI:10.1016/j.jde.2008.12.020      [本文引用: 1]

Mei M , Wang Y .

Remark on stability of traveling waves for nonlocal Fisher-KPP equations

Int J Num Anal Model, 2011, B (2): 379- 401

URL     [本文引用: 2]

Mei M , Ou C , Zhao X Q .

Global stability of monostable traveling waves for nonlocal time-delayed reactiondiffusion equations

SIAM J Math Anal, 2010, 42, 2762- 2790

DOI:10.1137/090776342     

Mei M , Zhang K J , Zhang Q F .

Global stability of traveling waves with oscillations for Nicholson's blowflies equation

Int J Numer Anal Model, 2019, 16 (3): 375- 397

URL     [本文引用: 3]

Fife P C , Mcleod J B .

The approach of solutions nonlinear diffusion equations to traveling front soutions

Arch Ration Mech Anal, 1977, 65, 335- 361

DOI:10.1007/BF00250432      [本文引用: 1]

Wang X H , Lv G Y .

Stability of traveling wave fronts for nonlocal reaction diffusion equations with delay

Acta Mathematica Sinica (Chinese Series), 2015, 1, 13- 28

Xu Z Q , Xiao D M .

Spreading speeds and uniqueness of traveling waves for a reaction diffusion equation with spatio-temporal delays

J Differential Equations, 2016, 260, 268- 303

DOI:10.1016/j.jde.2015.08.049      [本文引用: 1]

Yang Z X , Zhang G B .

Global stability of traveling wavefronts for nonlocal reaction-diffusion equations with time delay

Acta Mathematica Scientia, 2018, 38B (1): 289- 302

URL    

Zhou Y H , Yang Y R , Liu K P .

Stability of traveling waves in a population dynamic model with delay and quiescent stage

Acta Mathematica Scientia, 2018, 38B (3): 1001- 1024

URL    

Volpert V A , Volpert A I .

Locations of spectrum and stability of solutions for monotone parabolic systems

Adv Diffrential Equations, 1997, 2, 811- 830

URL     [本文引用: 2]

/