次可加拓扑压变分原理的另一证明
Another Proof of Variational Principle for Sub-Additive Potentials
收稿日期: 2019-04-19
基金资助: |
|
Received: 2019-04-19
Fund supported: |
|
作者简介 About authors
徐兰,E-mail:
对拓扑动力系统
关键词:
The variational principle of topological pressure for sub-additive potentials was proved by Cao etal. This generalized variational principle plays an important role in the theory of dimension and equilibrium state for some expansive dynamical systems such as, for example, self-affine fractals and non-conformal repellers. The main purpose of this paper is to give another proof for the variational principle in the sub-additive case when the entropy map is upper semi-continuous.
Keywords:
本文引用格式
徐兰.
Xu Lan.
1 引言
设
则映射
记
定理1.1[2,定理9.10] 设
定义1.1 设
则函数序列
定义
其中
定理1.2[6] 设
2 主要结果及证明
定理2.1 设
证 首先,对任意
事实上,对上述取定的
将上述各式相加,可得
其中
若记
从而
下面,我们证明
因为熵映射是上半连续性的,所以存在
由
类似的,有
因为
因此
对一般的
由
注2.1 上述证明过程主要简化了定理中
设
对
引理2.1[2,引理9.9] 设
对任意
两边除以
3 应用
本文的方法也可应用到次可加不稳定拓扑压变分原理证明中去.
设
则称映射
在文献[11-12]中,作者分别引入了不稳定拓扑熵、不稳定拓扑压和不稳定度量熵的概念,下面我们回顾一下这些概念.设
则流形
显然,当势函数
记
在文献[12]中,作者证明了不稳定压的变分原理,即
另一方面,在文献[11]中,作者还证明了定义在
现考虑
类似于不稳定拓扑熵的定义,我们定义次可加不稳定拓扑压为
利用本文的方法,我们首先证明对任意
又因为熵映射
参考文献
Statistical mechanics on a compact set with Zu action satisfying expansiveness and specification
,
The Hausdorff dimension of self-affine fractals
,DOI:10.1017/S0305004100064926 [本文引用: 1]
The multifractal spectrum of statistically self-similar measures
,
A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems
,DOI:10.1017/S0143385700010117 [本文引用: 1]
The thermodynamical formalism for submultiplicative potentials
,DOI:10.3934/dcds.2008.20.639 [本文引用: 6]
Equilibrium states of generalised singular value potentials and applications to affine iterated function systems
,
Non-conformal repellers and the continuity of pressure for matrix cocycles
,
The dimension of a non-conformal repeller and an average conformalrepeller
,
Unstable entropies and variational principle for partially hyperbolic diffeomorphisms
,DOI:10.1016/j.aim.2017.09.039 [本文引用: 4]
/
〈 | 〉 |