Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

数学物理学报, 2020, 40(4): 934-946 doi:

论文

带阻尼项的二阶非线性中立型Emden-Fowler微分方程的振动准则

仉志余,1, 宋菲菲1, 李同兴,2, 俞元洪3

Oscillation Criteria of Second Order Nonlinear Neutral Emden-Fowler Differential Equations with Damping

Zhang Zhiyu,1, Song Feifei1, Li Tongxing,2, Yu Yuanhong3

通讯作者: 仉志余, E-mail:litongx2007@163.com

收稿日期: 2019-09-6  

基金资助: 国家自然科学基金.  11701528
国家自然科学基金.  11747098
国家自然科学基金.  61503171
山西省自然科学基金.  2011011002-3

Received: 2019-09-6  

Fund supported: the NSFC.  11701528
the NSFC.  11747098
the NSFC.  61503171
the NSF of Shanxi Province.  2011011002-3

作者简介 About authors

李同兴,E-mail:litongx2007@163.com , E-mail:litongx2007@163.com

摘要

该文研究一类带有更广泛而不失物理意义阻尼项的二阶非线性中立型Emden-Fowler时滞微分方程的振动性.利用指数函数变换、Riccati变换和不等式技巧,获得了该类方程几个新的振动定理,推广、改进和丰富了已有文献中的研究结果,并逐一给出例子说明了相应定理的实用效果.

关键词: 振动准则 ; Emden-Fowler方程 ; 中立型 ; 非线性微分方程 ; 阻尼项

Abstract

In this paper, by using the methods of exponential function transformation, Riccati transformation and inequality techniques, we study the oscillation behavior for a class of second order nonlinear neutral delay Emden-Fowler differential equations with the most extensive and physically meaningful damping term. Several new oscillation theorems which extend and improve some known results in the literature recently are established and some examples are provided to illustrate the relevance of new theorems.

Keywords: Oscillation criteria ; Emden-Fowler equation ; Neutral ; Nonlinear differential equation ; Damping term

PDF (414KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

仉志余, 宋菲菲, 李同兴, 俞元洪. 带阻尼项的二阶非线性中立型Emden-Fowler微分方程的振动准则. 数学物理学报[J], 2020, 40(4): 934-946 doi:

Zhang Zhiyu, Song Feifei, Li Tongxing, Yu Yuanhong. Oscillation Criteria of Second Order Nonlinear Neutral Emden-Fowler Differential Equations with Damping. Acta Mathematica Scientia[J], 2020, 40(4): 934-946 doi:

1 引言

据文献可知,起源于偏微分方程的Emden-Fowler型泛函微分方程在科学理论研究和工程技术应用中发挥着重要作用.带有阻尼项后的二阶Emden-Fowler方程更广泛,已被应用在天体物理、气体动力学、物理化学、高速计算机无损传输、智能机器人设计和神经动力系统理论与工程等高新技术领域中[1-4].

本文研究一类带阻尼项的二阶非线性中立型广义Emden-Fowler时滞微分方程

(r(t)ϕα(z(t)))+g(t)ϕα(z(t))+f(t,ϕβ(x(σ(t))))=0,  tt00
(1.1)

的振动性,其中z(t)=x(t)+p(t)x(τ(t)); ϕα(u)=|u|α1u,uR; rC1([t0,),(0,));g,p,τ,σC([t0,),R);τ(t)t,σ(t)t,limtτ(t)=limtσ(t)=;fC([t0,)×R,R);α>0,β>0为常数.

如通常所述,我们称xC([Tx,),R)是方程(1.1)的解,其中Tx=min{τ(T),σ(T)},Tt0,是指rϕα(z)C1([Tx,),R)且在[Tx,)上满足方程(1.1).本文仅考虑方程(1.1)的非平凡解,即方程(1.1)在[Tx,)上的解x(t)满足sup{|x(t)|:tT}>0,对一切TTx成立.方程(1.1)的解称为振动的,如果它有任意大的零点,否则,称它为非振动的.若方程(1.1)的一切解均振动,则称方程(1.1)振动.

近十几年来,对于二阶泛函微分方程振动性理论的研究,又产生了一大批新的研究成果,可参见文献[5-35]及其参考文献,但对于带有阻尼项的二阶泛函微分方程振动性的研究结果较少且几乎其阻尼项系数(例如g(t)0)均为非负.那么这一限定是否可在不失物理意义的前提下进一步放宽,并可得到方程(1.1)的振动结果呢?为此,我们先对近年来研究的带阻尼和不带阻尼项的经典方程简要分析如下.

Liu等[7]、曾云辉等[8]、Li等[9-10]、Luo等[11]和吴英柱等[12]分别研究了二阶中立型广义Emden-Fowler微分方程

(r(t)|z(t)|α1z(t))+q(t)|x(σ(t))|β1x(σ(t))=0,  tt0>0
(1.2)

的振动性和渐近性,其中z(t)=x(t)+p(t)x(τ(t)),αβ>0βα=1,0p(t)1,q(t)0,r(t)>0,r(t)0,τ(t)t,0<σ(t)t,σ>0,limtτ(t)=limtσ(t)=.

Agarwal等[13]、Grace等[14]和Bohner等[15]先后研究了二阶中立型Emden-Fowler时滞微分方程

(r(t)((x(t)+p(t)x(τ(t))))α)+q(t)xγ(σ(t))=0,  tt0,
(1.3)

分别对γα,γ<α,γ<α=1γ=α等情况给出了多个振动定理,其中α,γ>0是两正奇数之比的常数.

Wang等[16]、Sun等[17]、罗红英等[21]和吴英柱[22]分别将方程(1.3)扩展到方程

(r(t)|z(t)|α1z(t))+f(t,x(σ(t)))=0,  tt0,
(1.4)

其中z(t)=x(t)+p(t)x(τ(t)), r,pC([t0,),R),0p(t)1,τ(t)t,σ(t)t,σ(t)>0,limtτ(t)=limtσ(t)=,fC([t0,)×R,R),uf(t,u)0,f(t,u)/uβq(t)0,u0,1<βα为常数.

显然,方程(1.2)-(1.4)均不带阻尼项.对于带阻尼项的二阶Emden-Fowler型方程振动性与渐近性的研究成果也已相继出现,例如Erbe等[23]和Zhang等[24]先后研究了时间尺度上二阶阻尼时滞动力方程

(a(t)(xΔ(t))γ)Δ+r(t)(xΔ(t))γ+q(t)xγ(g(t))=0,  t[t0,)T
(1.5)

的振动性,其中γ>0是两正奇数之比的常数, r(t)0右稠连续.

Saker等[25], Rogovchenko和Tuncay [26]也分别对二阶阻尼动力方程

(a(t)xΔ(t))Δ+r(t)xΔ(t)+q(t)f(x(t))=0,  t[t0,)T
(1.6)

给出了不同的振动性定理,其中r(t)0右稠连续.

方程(1.5)先后被张全信等[27-29],孙一冰等[30]和杨甲山、李同兴[31, 32]等许多学者拓展为更一般的形式

(a(t)|zΔ(t)|γ1zΔ(t))Δ+p(t)|zΔ(t)|γ1zΔ(t)+q(t)|x(δ(t))|β1x(δ(t))=0,
(1.7)

其中t[t0,)T,z(t)=x(t)+r(t)x(τ(t)), γ,β>0为常数, a(t),r(t),p(t),q(t)都是正值右稠连续函数.

李文娟等[33]将方程(1.2)的类型拓展到了带阻尼项的中立型时滞微分方程

(r(t)|z(t)|α1z(t))+p(t)|z(t)|α1z(t)+q(t)|x(σ(t))|β1x(σ(t))=0,  tt0>0,
(1.8)

其中z(t)=x(t)+g(t)x(τ(t)),rC1([t0,),(0,)),p,qC([t0,),[0,)),α>0,β>0为常数,在0g(t)1,p(t)0,q(t)0,r(t)>0等基本假设条件下,获得了多个振动定理,推广了上述有关文献的部分结果.

可见,方程(1.2)-(1.8)所带的阻尼项系数(例如方程(1.5), (1.6)中的r(t)和方程(1.7), (1.8)中的p(t))都是非负函数.但是,我们发现,当方程(1.1)中的阻尼项系数g(t)0时还是可以具有物理意义的.事实上,由文献[34]知,当r(t)>0,r(t)0时,二阶微分方程

(r(t)ϕα(x(t)))+g(t)ϕα(x(t))+f(t,x(t))=0

与二阶微分方程

(ϕα(x(t)))+r(t)+g(t)r(t)ϕα(x(t))+f(t,x(t))r(t)=0

等价.而又当r(t)+g(t)0时,后一方程是阻尼系数为(r(t)+g(t))/r(t)0的有阻尼简谐振动系统(α=1)数学模型[36]的推广,有着实在的物理意义.顺便指出,文献[35]研究了带阻尼的分数阶微分方程

[r(t)(Dα0+y)(t)]+p(t)(Dα0+y)(t)+q(t)f(t0(ts)αy(s)ds)=0
(1.9)

的振动性,其中α(0,1),Dα0+yyα阶导数,在其假设条件A1),A2)

ω(t)=exp(tt0r(s)+p(s)r(s)ds),t01ω(t)dt=

之下建立了方程(1.9)的振动定理.显然这里有(r(t)+p(t))/r(t)<0的情况(如其例4.1),但这时的“阻尼”已不再是实际物理意义的阻尼了[36].

因此,为使方程(1.1)所带的阻尼系数广泛而不失物理意义,本文考虑以下假设条件

(H1)r(t)+g(t)0,0p(t)1且非p(t)1;

(H2)σ(t)0;

(H3)  存在不恒为零的qC([t0,),[0,)),满足f(t,u)/uq(t)0,u0,tt0.

本文将引入指数函数变换并借助于Riccati变换、积分平均和不等式技巧研究方程(1.1)的振动性和渐近性,建立新的振动准则,推广、改进和统一文献[7-33]及其引文中关于带或不带阻尼项方程的相应结果.

首先,引入指数函数变换

φ(t)=exp(tt0g(u)/r(u)du),
(1.10)

φ(t)乘以方程(1.1)的两端,则方程(1.1)变为等价的不显含阻尼项的方程

(R(t)|z(t)|α1z(t))+φ(t)f(t,|x(σ(t))|β1x(σ(t)))=0, tt0,                    (E0)

其中R(t)=r(t)φ(t).

我们通过方程(E0),在两种情况

t0(1/R(t))1/αdt=,
(1.11)

t0(1/R(t))1/αdt<
(1.12)

下,分别讨论方程(1.1)的振动性和渐近性,首先给出以下几个重要引理.

引理1.1  设条件(H3)(1.11)成立,如果x(t)是方程(1.1)的最终正解,则z(t)>0.

  因为x(t)是方程(1.1)在[t0,)上的最终正解,则存在t1t0,使得当tt1时有x(t)>0,x(τ(t))>0,x(σ(t))>0,由条件(H3)(E0),我们得到

z(t)x(t)>0,(φ(t)r(t)|z(t)|α1z(t))0,tt1.
(1.13)

因此φ(t)r(t)|z(t)|α1z(t)是非增函数且z(t)最终保号,于是z(t)仅有两种可能.我们断言z(t)>0,t>t1.否则,假设z(t)0,t>t1.由(1.13)式知,存在常数K>0,使得

R(t)(z(t))αR(t1)(z(t1))α=K<0,t>t1,

z(t)K1/α(R(t))1/α,t>t1.

t1t积分上式,我们得到

z(t)z(t1)K1/αtt1(R(s))1/αds,t>t1.

上式中令t,由条件(1.11)得z(t).此与(1.13)式矛盾,故结论成立.

引理1.2  设条件(H1)-(H3)(1.11)成立,如果x(t)是方程(1.1)的最终正解,则存在Tt0和某个常数mλ(0,1](特别,当α=βmλ=1),使得不等式

w(t)+Q(t)+λmλσ(t)R1λ(t)wλ+1λ(t)0, tT
(1.14)

成立,其中

w(t)=R(t)(z(t))αzβ(σ(t)),tT,

λ=min{α,β},Q(t)=φ(t)q(t)[1p(σ(t))]β, R(t)由方程(E0)定义.

  因为x(t)是方程(1.1)在[t0,)上的最终正解,则存在Tt0,使得当tT时,有x(t)>0,x(τ(t))>0,x(σ(t))>0.由引理1.1,不妨设这时也有z(t)>0.又由条件(H3)知方程(1.1)的等价方程(E0)变为

(R(t)(z(t))α)+φ(t)q(t)xβ(σ(t))0,  tT.

由于z(t)=x(t)+p(t)x(τ(t)),则

x(t)=z(t)p(t)x(τ(t)),  z(τ(σ(t)))z(σ(t)),

x(σ(t))=z(σ(t))p(σ(t))x(τ(σ(t)))z(σ(t))[1p(σ(t))], tT,

将其代入上式,我们有

(R(t)(z(t))α)+Q(t)zβ(σ(t))0,  tT,

其中Q(t)=φ(t)q(t)[1p(σ(t))]β.从而,由w(t)的定义又得

w(t)Q(t)R(t)(z(t))αβσ(t)z(σ(t))zβ+1(σ(t)),  tT.
(1.16)

αβ时,由(1.13)式,我们得到R(t)(z(t))α为减函数,即

R(t)(z(t))αR(σ(t))(z(σ(t)))α,

亦即

z(σ(t))(R(t)R(σ(t)))1αz(t),tT.

将上式代入(1.16)式,可得

w(t)Q(t)βσ(t)R(t)(z(t))α+1zβ+1(σ(t))(R(t)R(σ(t)))1αQ(t)βσ(t)zβα1(σ(t))R1α(σ(t))wα+1α(t), tT.

又知

zβαα(σ(t))zβαα(σ(T))mα,  tT,

其中mα=min{zβαα(σ(T)),1}.代入上式并注意到σ(t)t和条件(H1),有R(t)=φ(t)(g(t)+r(t))0,从而R(σ(t))R(t),可得

w(t)Q(t)βmασ(t)R1α(t)wα+1α(t).
(1.17)

α>β时,又由(1.13)式知

(R(t)(z(t))α)=R(t)(z(t))α+αR(t)(z(t))α1z

再由R'(t)\geq 0及上式,可得z''(t)\le0,从而, z'(t)单调减,于是,有

z'(t)\le z'(\sigma(t)), ~~(z'(t))^{1-\frac{\alpha}{\beta}}\ge (z'(T))^{1-\frac{\alpha}{\beta}}\ge m_\beta, ~t\geq T,

其中m_\beta=\min\{(z'(T))^{1-\frac{\alpha}{\beta}}, 1 \}.再将上式代入(1.16)式,可得

\begin{equation}w'(t)\le-Q(t)-\frac{\beta m_\beta \sigma'(t)}{R^{\frac{1}{\beta}}(t)}w^{\frac{\beta+1}{\beta}}(t).\end{equation}
(1.18)

综合(1.17)和(1.18)式,得

w'(t)\le-Q(t)-\frac{\lambda m_\lambda \sigma'(t)}{R^{\frac{1}{\lambda}}(t)}w^{\frac{\lambda+1}{\lambda}}(t), ~~t\geq T,

其中m_\lambda=\min{\{m_\alpha, m_\beta \}}, \alpha=\beta时, m_\lambda=1, \lambda=\min{\{\alpha, \beta\}}.故(1.14)式成立.

引理1.3  设A>0, B\ge0, \lambda>0且均为常数,则当u>0时,有

\begin{equation}Bu-Au^{\frac{\lambda+1}{\lambda}}\le \frac{\lambda^\lambda}{(\lambda+1)^{\lambda+1}}\frac{B^{\lambda+1}}{A^\lambda}.\end{equation}
(1.19)

引理1.4  设X>0, Y>0, \lambda>0为任意实数,则有

\begin{equation}X^\lambda+Y^\lambda\geq C_\lambda (X+Y)^\lambda, ~~~~C_\lambda=\left\{\begin{array}{ll}1, ~&0<\lambda\leq 1, \\2^{1-\lambda}, ~&\lambda > 1, \end{array}\right.\end{equation}
(1.20)

当且仅当X=Y, \lambda\geq1时第一式等号成立.

引理1.3与引理1.4的证明从略.

2 主要结果

定理2.1  设条件{\rm (H_1)}-{\rm (H_3)}(1.11)满足.如果存在函数\rho(t)\in C^1([t_0, \infty), (0, \infty)),使得对任意常数m\in(0, 1] (当\alpha=\beta时, m=1),有

\begin{equation}\int_{t_0}^{\infty}\left[\rho(t)Q(t)-\frac{R(t)(\rho'(t))^{\lambda+1}}{(\lambda+1)^{\lambda+1}(m\rho(t)\sigma'(t))^\lambda}\right]{\rm d} t=\infty\end{equation}
(2.1)

成立,其中\lambda=\min\{\alpha, \beta\}, ~~Q(t)=\varphi(t)q(t)[1-p(\sigma(t))]^\beta,则方程(1.1)振动.

  假设x(t)是方程(1.1)的非振动解,不失一般性,设x(t)[t_0, \infty)上的最终正解(x(t)<0的情况类似可证),则由引理1.2知,存在某个常数m_\lambda \in(0, 1],使得(1.14)式成立.对其两边同时乘以\rho(t),再对 tTt积分,可得

\begin{eqnarray}\int_{T}^{t}\rho(s)Q(s){\rm d} s &\le&-\int_{T}^{t}\rho(s)w'(s){\rm d} s-\int_{T}^{t}\rho(s)\frac{\lambda m_\lambda\sigma'(s)}{R^{\frac{1}{\lambda}}(s)}w^{\frac{\lambda+1}{\lambda}}(s){\rm d} s \nonumber\\&\le&\rho(T)w(T)-\rho(t)w(t)+\int_{T}^{t} \left[\rho'(s)w(s)-\rho(s)\frac{\lambda m_\lambda\sigma'(s)}{R^{\frac{1}{\lambda}}(s)}w^{\frac{\lambda+1}{\lambda}}(s)\right]{\rm d} s, t\ge T.\nonumber\end{eqnarray}

由上式及引理1.3可得

\begin{eqnarray}\int_{T}^{t}\rho(s)Q(s){\rm d} s &\le&\rho(T)w(T)+\int_{T}^{t}\frac{\lambda^\lambda}{(\lambda+1)^{\lambda+1}}(\rho'(s))^{\lambda+1}\frac{R(s)}{(m_\lambda\sigma'(s)\rho(s))^\lambda}{\rm d} s \nonumber\\&\le&\rho(T)w(T)+\int_{T}^{t} \frac{(\rho'(s))^{\lambda+1}R(s)}{(\lambda+1)^{\lambda+1}(m_\lambda\sigma'(s)\rho(s))^\lambda}{\rm d} s, t\ge T.\nonumber\end{eqnarray}

可以看出

\int_{t_0}^{\infty}\left[\rho(t)Q(t)-\frac{R(t)(\rho'(t))^{\lambda+1}}{(\lambda+1)^{\lambda+1}(m_\lambda\rho(t)\sigma'(t))^\lambda}\right]{\rm d} t<\infty.

这与定理条件(2.1)式矛盾,故方程(1.1)振动.

推论2.1  设(1.11)式成立,且 g(t)\geq0, r'(t)>0, \sigma'(t)\geq 0, f(t, u)=q(t)u.若存在函数\rho(t)\in C^1([t_0, \infty), (0, \infty)),使得对任意常数m\in(0, 1] (当\alpha=\beta时, m=1),有

\int_{t_0}^{\infty}\left[\rho(s)Q(s)-\frac{R(s)(\rho'(s))^{\lambda+1}}{(\lambda+1)^{\lambda+1}(m\rho(s)\sigma'(s))^\lambda}\right]{\rm d}t=\infty

成立,其中\lambda=\min\{\alpha, \beta\}, ~~Q(t)=\varphi (t)q(t)[1-p(\sigma(t))]^\beta, 则方程(1.1)振动.

注2.1  推论2.1即文献[33]中定理1,因此推论2.1既包含和统一了文献[8](其中对应本文g(t)=0)的定理2.1和定理3.1,又改进了文献[7]仅关于\alpha\geq\beta>0时方程的解振动或渐近于零的定理2.1.特别地,当g(t)<0时本文定理2.1的结论对于本文所列文献均为新的.

注2.2  当取\rho(t)为正常数时,定理2.1的振动条件(2.1)成为

\int_{t_0}^\infty \varphi(t)q(t)[1-p(\sigma(t))]^\beta {\rm d} t=\infty,

其中\varphi(t)(1.10)式确定.因此,定理2.1是著名的Leighton振动定理[37](关于方程(r(t)x'(t))'+q(t)x(t)=0)的推广.

例2.1  考虑方程

\begin{eqnarray}&&[t|z'(t)|^{\alpha-1}z'(t)]'-|z'(t)|^{\alpha-1}z'(t)\nonumber\\&&+t^\beta|x(\sigma(t))|^{\beta-1}x(\sigma(t))[1+\ln(1+(|x(\sigma(t))|^{\beta-1}x(\sigma(t)))^4)]=0, ~~t\geq1\end{eqnarray}
(2.2)

的振动性,其中z(t)=x(t)+(1-1/t)x(t-1), \sigma(t)=t/2;\alpha>0, \beta>0为常数.

对应于定理2.1,这里有

r(t)=t, ~~ p(t)=1-\frac{1}{t}, ~~g(t)=-1, ~~\tau(t)=t-1, ~~\sigma(t)=\frac{t}{2}, ~~q(t)=t^\beta, ~~t_0=1,

则有

\varphi(t)=\exp\left(\int_{1}^{t}\frac{-1}{s}{\rm d}s\right)=\frac{1}{t}, ~~R(t)=\varphi(t)r(t)=1,

Q(t)=\varphi(t)q(t)[1-p(\sigma(t))]^\beta=t^{-1}t^\beta[1-(1-\frac{2}{t})]^\beta=2^\beta t^{-1} ,

显然满足条件{\rm (H_1)}-{\rm (H_3)}和(1.11)式.若取\rho(t)=1, 则有\rho'(t)=0, 所以,有

\int_{t_0}^{\infty}\left[\rho(t)Q(t)-\frac{R(t)(\rho'(t))^{\lambda+1}}{(\lambda+1)^{\lambda+1}(m\rho(t)\sigma'(t))^\lambda}\right]{\rm d} t=\int_{t_0}^{\infty}\frac{2^\beta}{t}{\rm d} t=\infty.

因此(2.1)式成立,故由定理2.1可得方程(2.2)振动.

定理2.2  设条件{\rm (H_1)}-{\rm (H_3)}(1.11)成立.若对任意常数m\in(0, 1](\alpha=\betam=1)均有

\begin{equation}\liminf\limits_{t\to \infty}\frac{1}{Q_1(t)}\int_{t}^{\infty} [Q_1(s)]^{\frac{\lambda+1}{\lambda}}\frac{\lambda m\sigma'(s)}{R^{\frac{1}{\lambda}}(s)}{\rm d} s>\frac{\lambda}{(\lambda+1)^{\frac{\lambda+1}{\lambda}}}\end{equation}
(2.3)

成立,其中\lambda=\min\{\alpha, \beta\}, ~~Q_1(t)=\int_{t}^{\infty} Q(s){\rm d}s, ~~Q(t)=\varphi(t)q(t)[1-p(\sigma(t))]^\beta, 则方程(1.1)振动.

  假设x(t)是方程(1.1)的非振动解.不失一般性,设x(t)[t_0, \infty)上的最终正解(x(t)<0的情况类似可证),则由引理1.2知(1.14)成立,即存在某个m_\lambda \in (0, 1](\alpha=\betam_\lambda=1)T\geq t_0, 使得

w'(t)+Q(t)+\frac{\lambda m_\lambda \sigma'(t)}{R^{\frac{1}{\lambda}}(t)}w^{\frac{\lambda+1}{\lambda}}(t)\le0, ~~t\ge T.

再从t\infty积分上式,得

w(\infty)-w(t)+\int_{t}^{\infty} Q(s){\rm d} s+\int_{t}^{\infty} \frac{\lambda m_\lambda\sigma'(s)}{R^{\frac{1}{\lambda}}(s)}w^{\frac{\lambda+1}{\lambda}}(s){\rm d} s\le0, t\ge T.

从而,有

w(t)\ge\int_{t}^{\infty} Q(s){\rm d} s+\int_{t}^{\infty} \frac{\lambda m_\lambda\sigma'(s)}{R^{\frac{1}{\lambda}}(s)}w^{\frac{\lambda+1}{\lambda}}(s){\rm d} s, ~~t\ge T.

Q_1(t)=\int_{t}^{\infty} Q(s){\rm d} s, 将上式两边同除以Q_1(t),得

\begin{equation}\frac{w(t)}{Q_1(t)}\ge 1+\frac{1}{Q_1(t)}\int_{t}^{\infty} \frac{\lambda m_\lambda\sigma'(s)}{R^{\frac{1}{\lambda}}(s)}[Q_1(s)]^{\frac{\lambda+1}{\lambda}}[\frac{w(s)}{Q_1(s)}]^{\frac{\lambda+1}{\lambda}}{\rm d} s, t\ge T.\end{equation}
(2.4)

再令

\eta=\inf\limits_{t\geq T}\frac{w(t)}{Q_1(t)}, ~~\delta=\frac{\lambda}{(\lambda+1)^{\frac{\lambda+1}{\lambda}}},

由条件(2.3)式,可得

\liminf\limits_{t\to \infty}\frac{1}{Q_1(t)}\int_{t}^{\infty} [Q_1(s)]^{\frac{\lambda+1}{\lambda}}\frac{\lambda m_\lambda\sigma'(s)}{R^{\frac{1}{\lambda}}(s)}{\rm d} s>\frac{\lambda}{(\lambda+1)^{\frac{\lambda+1}{\lambda}}}=\delta,

因此,由上式和(2.4)式,得

\eta>1+\eta^{\frac{\lambda+1}{\lambda}}\delta.

在引理1.3的不等式(1.19)中,取A=\delta, B=1, u=\eta,

\eta-\eta^{\frac{\lambda+1}{\lambda}}\delta\le\frac{\lambda^\lambda}{(\lambda+1)^{\lambda+1}}\frac{1}{\delta^\lambda}=1,

这与上式结论\eta>1+\eta^{\frac{\lambda+1}{\lambda}}\delta矛盾.因此,方程(1.1)振动.

推论2.2  设条件{\rm (H_1)}, {\rm (H_3)}(1.11)成立,又设f(t, u)=q(t)u.若对任意常数m\in(0, 1] (当\alpha=\betam=1)均有

\lim\limits_{t\to \infty}\inf\frac{1}{Q_1(t)}\int_{t}^{\infty} [Q_1(s)]^{\frac{\lambda+1}{\lambda}}\frac{\lambda m\sigma'(s)}{R^{\frac{1}{\lambda}}(s)}{\rm d} s>\frac{\lambda}{(\lambda+1)^{\frac{\lambda+1}{\lambda}}}

成立,其中\lambda, Q_1(t)(2.3)式定义,则方程(1.1)振动.

注2.3  显然,文献[7, 33]中的定理2和文献[8]中的定理3.2均为本文推论2.2的特例,其中文献[7-8]中对应的阻尼系数g(t)=0,文献[33]中对应方程(1.8)的阻尼系数p(t)\geq0.再者,文献[7-8]是关于\alpha\geq\beta >0\beta\geq\alpha >0时方程的解振动或渐近收敛于零的结果,而我们的结果是方程更广泛且一切解为振动的.由下例可见本文所列文献的结果均对其无效.

例2.2  考虑方程

\begin{eqnarray}&&[t^{1+\lambda/2}|z'(t)|^{\alpha-1}z'(t)]'-(1+\frac{\lambda}{2})t^{\lambda/2}|z'(t)|^{\alpha-1}z'(t)\nonumber\\&&+2^\beta [(|x(t/2)|^{\beta-1}x(t/2))^5+|x(t/2)|^{\beta-1}x(t/2)]=0, ~~t\geq 1\end{eqnarray}
(2.5)

的振动性,其中z(t)=x(t)+\frac{1}{2}x(t-1), \alpha >0, \beta >0为常数, \lambda=\min \{ \alpha, \beta \}.

易知,这里有r(t)=t^{1+\lambda/2}, ~~g(t)=-(1+\frac{\lambda}{2})t^{\lambda/2}<0, ~~\tau(t)=t-1, ~~\sigma(t)=\frac{t}{2}, ~~q(t)=2^\beta, 从而\sigma'(t)=\frac{1}{2}, ~~g(t)+r'(t)=0.故方程(2.5)满足假设条件{\rm (H_1)}-{\rm (H_3)}.又易知

\varphi(t)=\exp\left(\int_{1}^{t}\frac{g(u)}{r(u)}{\rm d} u\right)=t^{-(1+\lambda/2)}, \quad R(t)=\varphi(t)r(t)=1,

所以, (1.11)式满足.又由于

Q_1(t)=\int_t^\infty Q(s){\rm d} s=\int_t^\infty \varphi(s)q(s)[1-\frac{1}{2}]^\beta {\rm d} s=\int_t^\infty s^{-(1+\lambda/2)} {\rm d} s=\frac{2}{\lambda}t^{-\lambda/2},

所以,对于任意的m\in (0, 1],有

\begin{eqnarray*}\frac{1}{Q_1(t)}\int_{t}^{\infty} [Q_1(s)]^\frac{\lambda+1}{\lambda}\frac{\lambda m\sigma'(s)}{R^{\frac{1}{\lambda}}(s)}{\rm d} s&=&\frac{\lambda^2 m t^{\frac{\lambda}{2}}}{4}(\frac{2}{\lambda})^{\frac{\lambda+1}{\lambda}}\int_{t}^{\infty}s^{-\frac{\lambda+1}{2}}{\rm d} s\\&=&\left\{ \begin{array}{ll} \infty, &0< \lambda\leq 1, \\[2mm] \frac{\lambda^2m}{2(\lambda-1)}(\frac{2}{\lambda})^{\frac{\lambda+1}{\lambda}}t^{\frac{1}{2}}, &\lambda>1. \end{array}\right.\end{eqnarray*}

故条件(2.3)式满足.因此,由定理2.2知,方程(2.5)振动.

注2.4  推论2.2,从而定理2.2完全包含了文献[33]的定理2.

下面再讨论当正则条件(1.11)不成立,即非正则条件(1.12)成立时方程(1.1)的振动性.

定理2.3  设条件{\rm (H_1)}-{\rm (H_3)}(1.12)满足且有 \tau'(t)\geq 0, p'(t)\geq 0.如果存在函数\rho(t), \eta(t)\in C^1([t_0, \infty), (0, \infty)), \eta'(t)\geq 0,使得对任意常数m\in(0, 1] (当\alpha=\betam=1),有(2.1)式和

\begin{equation}\int_{t_0}^{\infty}\left[\frac{1}{\eta (t)R(t)} \int_{t_0}^t \eta(s)\varphi(s)q(s){\rm d} s\right]^{\frac{1}{\alpha}}{\rm d} t=\infty\end{equation}
(2.6)

成立,其中\varphi(t), R(t)分别由(1.10)式, (E_0)式定义.则方程(1.1)的每一解x(t)振动或

\lim\limits_{t\to\infty}x(t)=0.

  假设x(t)是方程(1.1)的非振动解.类似于引理1.1证明中的(1.13)式知, z'(t)最终保号且仅有两种可能.

当为z'(t)>0时,注意到条件(2.1)式成立,所以完全类似于定理2.1的证明推出矛盾.故知方程(1.1)在[t_0, \infty)上无最终正解.

当为z'(t)<0时,因有

\tau'(t)>0, p'(t)\ge 0, z'(t)=x'(t)+p'(t)x(\tau(t))+p(t)x'(\tau(t))\tau'(t)<0,

所以必有 x'(t)\leq 0.又因为z(t)>0, z'(t)<0, 故有\lim\limits_{t\to\infty}z(t)=a\ge0.我们可断定a=0.否则,有\lim\limits_{t\to\infty}x(t)=\frac{a}{1+c}>0, 其中 c=\lim _{t\to \infty}p(t).故存在常数M>0,使得最终有x^\beta(\sigma(t))>M,从而由方程 (E_0)知,存在 T>t_0, 使得

(R(t)(-z'(t))^\alpha)'\geq \varphi(t)q(t)x^\beta (\sigma(t))\geq M\varphi(t)q(t), ~~t\geq T.

定义V(t)=\eta(t)R(t)(-z'(t))^\alpha,则显然有V(t)\ge0, ~t\geq T.又注意到\eta'(t)\geq0,由上式,得

\begin{equation} V'(t)=\eta'(t)R(t)(-z'(t))^\alpha +\eta(t)(R(t)(-z'(t))^\alpha)'\geq M \eta(t)\varphi(t)q(t), ~~t\geq T.\end{equation}
(2.7)

对(2.7)式两端从Tt积分,可得

V(t)\ge V(T)+M\int_{T}^{t} \eta(s)\varphi(s)q(s){\rm d} s\ge M\int_{T}^{t} \eta(s)\varphi(s)q(s){\rm d} s,

\eta(t)R(t)(-z'(t))^\alpha \ge M\int_{T}^{t} \eta(s)\varphi (s)q(s){\rm d} s,

从而,有

-z'(t)\ge M^{\frac{1}{\alpha}}\left[\frac{1}{\eta(t)R(t)}\int_{T}^{t} \eta(s)\varphi (s)q(s){\rm d} s\right]^{\frac{1}{\alpha}}.

再对上式两端从Tt积分,得

z(t)\leq z(T)-M^{\frac{1}{\alpha}}\int_{T}^{t}\left[\frac{1}{\eta(s)R(s)}\int_{T}^{s}\eta(\xi)\varphi (\xi)q(\xi){\rm d} \xi\right]^{\frac{1}{\alpha}}{\rm d} s.

由条件(2.6)式知上式与z(t)>0, ~t\geq T矛盾.故必有\lim\limits_{t\to\infty}z(t)=\lim\limits_{t\to\infty}x(t)=0.

在定理2.3中取 \rho(t)=\eta(t)\equiv1,立即可得

推论2.3  设条件{\rm (H_1)}-{\rm (H_3)}(1.12)成立且有\tau'(t)\geq0, ~p'(t)\geq0.如果

\begin{equation} \int_{t_0}^\infty \varphi(t)q(t)\left[1-p(\sigma(t))\right]^\beta {\rm d} t=\infty\end{equation}
(2.8)

\begin{equation} \int_{t_0}^\infty \left[\frac{1}{\varphi (t)r(t)}\int_{t_0}^t\varphi(s)q(s){\rm d} s\right]^{\frac{1}{\alpha}}{\rm d} t=\infty\end{equation}
(2.9)

均成立,其中 \varphi(t)(1.10)式定义,则方程(1.1)的每一个解 x(t)振动或\lim\limits_{x\to\infty}x(t)=0.

注2.5  推论2.3是著名的Leighton振动定理[37](关于方程(r(t)x'(t))'+q(t)x(t)=0)在非正则条件下的推广.显然,本文定理2.3已完全包含和改进了文献[7]中定理3、文献[8]中定理2.3和文献[33]中定理3.

例2.3  讨论方程

\begin{eqnarray}&&[t^{2\alpha+1}|z'(t)|^{\alpha-1}z'(t)]'-(1+\frac{\alpha}{2})t^{2\alpha}|z'(t)|^{\alpha-1}z'(t)\nonumber\\&&+2^\beta t^{1+\alpha}[(|x(\frac{t}{2})|^{\beta-1}x(\frac{t}{2}))^5+|x(\frac{t}{2})|^{\beta-1}x(\frac{t}{2})]=0, ~~t\geq 1\end{eqnarray}
(2.10)

的振动性,其中z(t)=x(t)+\frac{1}{2}x(t-1), \alpha>0, \beta>0为常数.

这里r(t)=t^{2\alpha+1}, p(t)=\frac{1}{2}, g(t)=-(1+\frac{\alpha}{2})t^{2\alpha}, f(t, u)=2^\beta t^{\alpha+1}(u^3+u), u=|x(\frac{t}{2})|^{\beta-1}x(\frac{t}{2}), \sigma(t)=\frac{t}{2}, \tau(t)=t-1.所以, q(t)=2^\beta t^{\alpha+1}.易知 {\rm (H_1)}-{\rm (H_3)}满足.又因为

\varphi(t)=\exp \left(\int_1^t \frac{g(u)}{r(u)}d u\right)=\frac{1}{t^{1+\frac{\alpha}{2}}}, R(t)=\varphi(t)r(t)=t^{\frac{3\alpha}{2}}, \varphi(t)q(t)\left[1-p(\sigma(t))\right]^\beta= t^{\frac{\alpha}{2}},

所以,易知(1.12)式和(2.8)式满足.又由于当t\geq 2时, t-t^{-\frac{\alpha}{2}}\geq1, 所以

\begin{eqnarray*}\int_1^\infty\left[\frac{1}{R(t)}\int_1^{t}\varphi(s)q(s){\rm d} s\right]^{\frac{1}{\alpha}}{\rm d} t&=&\int_{1}^{\infty}\left[\frac{2^\beta}{t^{3\alpha/2}}\int_{1}^{t} s^{\frac{\alpha}{2}}{\rm d} s\right]^\frac{1}{\alpha}{\rm d} t\\&=&\left(\frac{2^{\beta+1}}{2+\alpha}\right)^{\frac{1}{\alpha}}\int_{1}^\infty \frac{(t-t^{-\alpha/2})^{\frac{1}{\alpha}}}{t}{\rm d} t\\&\geq &\left(\frac{2^{\beta+1}}{2+\alpha}\right)^{\frac{1}{\alpha}}\int_{2}^\infty \frac{1}{t}{\rm d} t =\infty, \end{eqnarray*}

所以, (2.9)式也成立.故由推论2.3知,方程(2.10)的每个解x(t)振动或\lim\limits_{t\to\infty}x(t)=0.

例2.4  讨论方程

\begin{equation}\left(e ^{2t}z'(t)\right)'-z'(t)+\frac{2+e ^2}{2e }(e^{2t}-1)x(t-1)=0, ~~t\geq 0\end{equation}
(2.11)

的振动性,其中z=x(t)+\frac{1}{2}x(t-2).

这里有r(t)=e^{2t}, p(t)=\frac{1}{2}, g(t)=-1, q(t)=\frac{2+e^2}{2e}(e^{2t}-1), \tau(t)=t-2, \sigma(t)=t-1, \alpha=\beta=1, \tau'(t)=1, p'(t)=0, r'(t)+g(t)=-1+2e^{2t}>1,

\varphi(t)=\exp\left(\int_0^t \frac{g(u)}{r(u)}{\rm d} u\right)=\exp\left(\frac{1}{2}(e^{-2t}-1)\right),

R(t)=\varphi(t)r(t)=e^{2t}\exp\left(\frac{1}{2}(e^{-2t}-1)\right)>e^{2t},

所以

\int_0^\infty \frac{1}{R(t)}{\rm d} t< \int_0^\infty e^{-2t}{\rm d} t=\frac{1}{2}, ~~\int_0^\infty \varphi(t)q(t)[1-p(\sigma(t))] {\rm d} t\geq \frac{2+e^2}{4e}\int_0^\infty (e^{2t}-1){\rm d} t=\infty .

又因为由L'Hopital法则,得

\lim\limits_{t\to \infty}\frac{\int_0^t \varphi(s)q(s){\rm d} s}{R(t)}=\lim\limits_{t\to \infty}\frac{\varphi(t)q(t)}{R'(t)}=\frac{2+e^2}{4e}\lim\limits_{t\to \infty}\frac{e^{2t}-1}{e^{2t}}=\frac{2+e^2}{4e}>0,

所以

\int_0^\infty \left[\frac{1}{R(t)}\int_0^t \varphi(s)q(s){\rm d} s\right]{\rm d} t=\infty.

综上所述,推论2.3的条件满足,因此,方程(2.11)的每一解x(t)振动或有 \lim\limits_{t\to \infty}x(t)=0.

事实上,容易验证x(t)=e^{-t}恰是方程(2.11)渐近收敛于零的非振动解.

注2.6  文献[13, 18-20]等对于方程(1.3)在非正则条件下,区分\alpha, \gamma的不同情况给出了若干个有效的振动定理,但它们均不适用于方程(2.11),因此,方程(1.1)即使退化为线性方程时,所列文献中的结果也是对其无效的.

参考文献

Wong J S W .

On the generalized Emden-Fowler equation

SIAM Rev, 1975, 17, 339- 360

DOI:10.1137/1017036      [本文引用: 1]

Hale J K . Theory of Functional Differential Equations. New York: Springer, 1977

Elbert A .

A half-linear second order differentail equation

Qualitative Theory of Differential Equations, 1979, 8, 153- 180

Elbert A .

Oscillation and nonoscillation theorems for some nonlinear ordinary differential equations

Ordinary and Partial Differential Equations, 1982, 9, 187- 212

URL     [本文引用: 1]

仉志余, 周勇, 俞元洪.

非线性二阶泛函微分方程的振动准则

系统科学与数学, 2000, 20 (1): 1- 10

URL     [本文引用: 1]

Zhang Z Y , Zhou Y , Yu Y H .

Oscillation criteria for nonlinear functional differential equations of second order

J Sys Sci Math Scis, 2000, 20 (1): 1- 10

URL     [本文引用: 1]

仉志余, 王晓霞, 林诗仲, 俞元洪.

非线性二阶中立型时滞微分方程的振动和非振动准则

系统科学与数学, 2006, 26 (3): 325- 334

DOI:10.3969/j.issn.1000-0577.2006.03.008     

Zhang Z Y , Wang X X , Lin S Z , Yu Y H .

Oscillation and nonoscillation criteria for second order nonlinear neutral delay differential equations

J Sys Sci Math Scis, 2006, 26 (3): 325- 334

DOI:10.3969/j.issn.1000-0577.2006.03.008     

Liu H , Meng F , Liu P .

Oscillation and asymptotic analysis on a new generalized Emden-Fowler equation

Appl Math Comput, 2012, 219, 2739- 2748

URL     [本文引用: 7]

曾云辉, 罗李平, 俞元洪.

中立型Emden-Fowler时滞微分方程的振动性

数学物理学报, 2015, 35A (4): 803- 814

DOI:10.3969/j.issn.1003-3998.2015.04.016      [本文引用: 6]

Zeng Y H , Luo L P , Yu Y H .

Oscillaition for Emden-Fowler delay differential equations of neutral type

Acta Math Sci, 2015, 35A (4): 803- 814

DOI:10.3969/j.issn.1003-3998.2015.04.016      [本文引用: 6]

Li T , Rogovchenko Y V .

Oscillation criteria for second-order superlinear Emden-Fowler neutral differential equations

Monatsh Math, 2017, 184, 489- 500

DOI:10.1007/s00605-017-1039-9      [本文引用: 1]

Li T , Thandopani E , Graef J R , Tunc E .

Oscillation of second-order Emden-Fowler neutral differential equations

Nonlinear Studies, 2013, 20 (1): 1- 8

URL     [本文引用: 1]

Luo H Y , Liu J , Liu X , Zhu C Y .

Oscillation behavior of a class of new generalized Emden-Fowler equations

Thermal Science, 2014, 18, 1567- 1572

DOI:10.2298/TSCI1405567L      [本文引用: 1]

吴英柱.

中立型Emden-Fowler泛函微分方程的振动准则

数学的实践与认识, 2017, 47 (10): 277- 284

URL     [本文引用: 1]

Wu Y Z .

Oscillation for Emden-Fowler functional differential equations of neutral type

Mathematics in Practice and theory, 2017, 47 (10): 277- 284

URL     [本文引用: 1]

Agarwal P R , Bohner M , Li T , et al.

Oscillation of second-order Emden-Fowler neutral delay differential equations

Anali di Matematica, 2014, 193, 1861- 1875

DOI:10.1007/s10231-013-0361-7      [本文引用: 2]

Grace S R , Džurina J , Tadlovskǎ I , et al.

An improved approach for studying oscillation of second-order neutral differential equations

J Inequalities and Appl, 2018, 2018, 193- 205

DOI:10.1186/s13660-018-1767-y      [本文引用: 1]

Bohner M , Grace S R , Jadlovskǎ I .

Oscillation criteria for second-order neutral delay differential equations

Electronic J Qualitative Thoery Diff Equ, 2017, 2017 (60): 1- 12

URL     [本文引用: 1]

Wang R , Li Q .

Oscillation and asymptotic properties of a class of second order Emden Fowler neutral differential equations

Springer Plus, 2016, 5 (1): 1956- 1970

DOI:10.1186/s40064-016-3622-2      [本文引用: 1]

Sun S , Li T , Han Z , Sun Y .

Oscillation of second-order neutral functional differential equations with mixed nonlinearities

Abstr Appl Anal, 2011, 2011, 1- 15

URL     [本文引用: 1]

Li T , Han Z , Zhang C , et al.

On the oscilation of second-order Emden-Fowler neutral dfferential equations

J Appl Math Comput, 2011, 37, 601- 610

DOI:10.1007/s12190-010-0453-0      [本文引用: 1]

Zhang C , Li T , Sun B , Thandapani E .

On the oscilation of higher-order half-linear delay differential equations

Appl Math Lett, 2011, 24, 1618- 1621

DOI:10.1016/j.aml.2011.04.015     

Sun S , Li T , Han Z , et al.

Oscilation theorems for second-order quasilinear neutral functional differential equations

Abstr Appl Anal, 2012, 2012, 1- 17

URL     [本文引用: 1]

罗红英, 屈英.

二阶中立型广义Emden-Fowler方程的振动准则

数学的实践与认识, 2016, 46 (1): 267- 274

URL     [本文引用: 1]

Luo H Y , Qu Y .

Oscillation criteria for second-order generalized Emden-Fowler equations of the neutral type

Mathematics in Practice and Theory, 2016, 46 (1): 267- 274

URL     [本文引用: 1]

吴英柱.

Emden-Fowler型泛函微分方程的振动准则

数学的实践与认识, 2016, 46 (5): 257- 264

URL     [本文引用: 1]

Wu Y Z .

Oscillation criteria for Functional differential equations of Emden-Fowler type

Mathematics in Practice and theory, 2016, 46 (5): 257- 264

URL     [本文引用: 1]

Erbe L , Hassan T S , Peterson A .

Oscillation criteria for nonlinear damped dynamic equations on time scales

Appl Math Comput, 2008, 203, 343- 357

URL     [本文引用: 1]

Zhang Q .

Oscillation of second-order half-linear delay dynamic equations with damping on time scales

J Comput Appl Math, 2011, 235, 1180- 1188

DOI:10.1016/j.cam.2010.07.027      [本文引用: 1]

Saker S H , Agarwal R P , O'Regan D .

Oscillation of second-order damped dynamic equations on time scales

J Math Anal Appl, 2007, 330, 1317- 133

DOI:10.1016/j.jmaa.2006.06.103      [本文引用: 1]

Rogovchenko Yu V , Tuncay F .

Oscillation criteria for second-order nonlinear differential equations with damping

Nonlinear Anal, 2008, 69, 208- 221

DOI:10.1016/j.na.2007.05.012      [本文引用: 1]

张全信, 高丽.

时间尺度上具阻尼项的二阶半线性时滞动力方程的振动准则

中国科学:数, 2010, 40 (7): 673- 682

URL     [本文引用: 1]

Zhang Q X , Gao L .

Oscillation criteria for second-order half-linear delay dynamic equations with damping on time scales

Sci Sin Math, 2010, 40 (7): 673- 682

URL     [本文引用: 1]

张全信, 高丽, 刘守华.

时间尺度上具阻尼项的二阶半线性时滞动力方程的振动准则(Ⅱ)

中国科学:数学, 2011, 41 (10): 885- 896

URL    

Zhang Q X , Gao L , Liu S H .

Oscillation criteria for second-order half-linear delay dynamic equations with damping on time scales(Ⅱ)

Sci Sin Math, 2011, 41 (10): 885- 896

URL    

张全信, 高丽, 刘守华.

时间尺度上具阻尼项的二阶半线性时滞动力方程振动的新结果

中国科学:数学, 2013, 43 (8): 793- 806

URL     [本文引用: 1]

Zhang Q X , Gao L , Liu S H .

New oscillation criteria for second-order half-linear delay dynamic equations with damping on time scales

Sci Sin Math, 2013, 43 (8): 793- 806

URL     [本文引用: 1]

孙一冰, 韩振来, 孙书荣, .

时间尺度上一类二阶具阻尼项的半线性中立型时滞动力方程的振动性

应用数学学报, 2013, 36A (3): 480- 494

DOI:10.3969/j.issn.0254-3079.2013.03.010      [本文引用: 1]

Sun Y B , Han Z L , Sun S R , et al.

Oscillation of a class of second order half-linear neutral delay dynamic equations with damping on time scales

Acta Mathematicae Applicatae Sinica, 2013, 36A (3): 480- 494

DOI:10.3969/j.issn.0254-3079.2013.03.010      [本文引用: 1]

杨甲山.

时间测度链上一类二阶Emden-Fowler型动态方程的振荡性

应用数学学报, 2016, 39A (3): 334- 350

URL     [本文引用: 1]

Yang J S .

Oscillation for a class of second-order Emden-Fowler dynamic equations on time scales

Acta Mathematicae Applicatae Sinica, 2016, 39A (3): 334- 350

URL     [本文引用: 1]

杨甲山, 李同兴.

时间模上一类二阶阻尼Emden-Fowler型动态方程的振荡性

数学物理学报, 2018, 38A (1): 134- 155

DOI:10.3969/j.issn.1003-3998.2018.01.013      [本文引用: 1]

Yang J S , Li T X .

Oscillation for a class of second-order damped Emden-Fowler dynamic equations on time scales

Acta Math Sci, 2018, 38A (1): 134- 155

DOI:10.3969/j.issn.1003-3998.2018.01.013      [本文引用: 1]

李文娟, 汤获, 俞元洪.

中立型Emden-Fowler微分方程的振动性

数学物理学报, 2017, 37A (6): 1062- 1069

DOI:10.3969/j.issn.1003-3998.2017.06.006      [本文引用: 7]

Li W J , Tang H , Yu Y H .

Oscillation of the neutral Emden-Fowler differential equation

Acta Math Sci, 2017, 37A (6): 1062- 1069

DOI:10.3969/j.issn.1003-3998.2017.06.006      [本文引用: 7]

Tadie. Oscillation criteria for some semi-linear Emden-Fowler ODE//Constanda C, Kirsch A, et al. Integral Methods in Science and Engineering. Switzerland:Springer-Verlag, 2015:607-615

[本文引用: 1]

Ma Q , Liu A .

Oscillation criteria of nonlinear fractional differential equations with damping term

Mathematica Applicata, 2016, 29, 291- 297

URL     [本文引用: 2]

Greenberg M D . Advanced Engineering Mathematics. New Jersey: Prentice Hall, 1998

[本文引用: 2]

Leighton W .

The dection of the oscillation of solitions of second order linear differential equation

Duke Math J, 1950, 17, 57- 62

DOI:10.1215/S0012-7094-50-01707-8      [本文引用: 2]

/